Randomised Algorithms

Lecture 11: Spectral Graph Theory

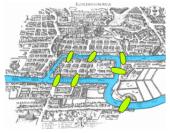
Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

Introduction to (Spectral) Graph Theory and Clustering

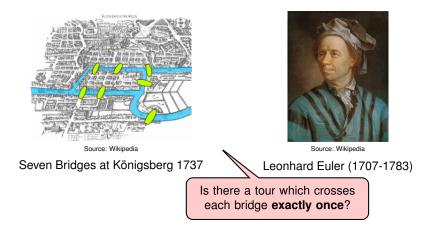
Matrices, Spectrum and Structure

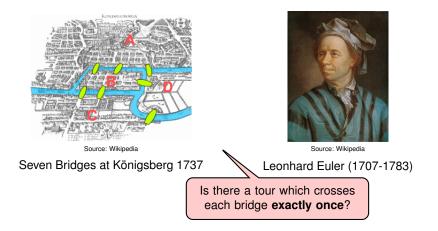
A Simplified Clustering Problem

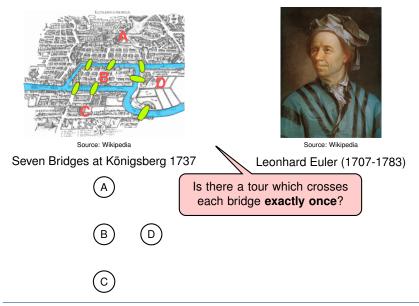


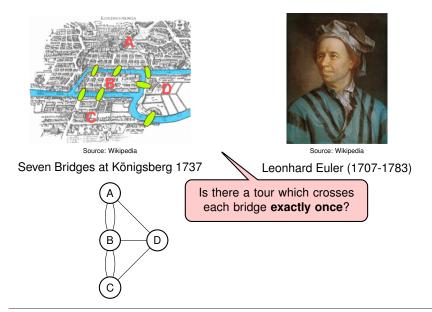
Source: Wikipedia

Seven Bridges at Königsberg 1737

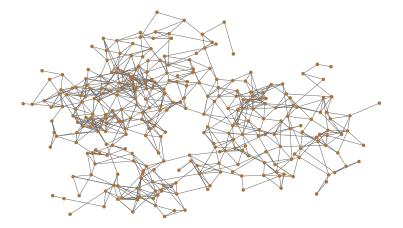




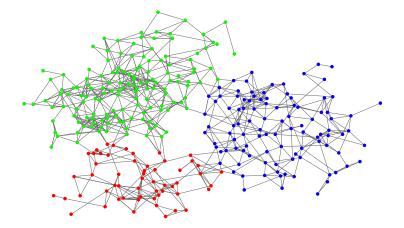




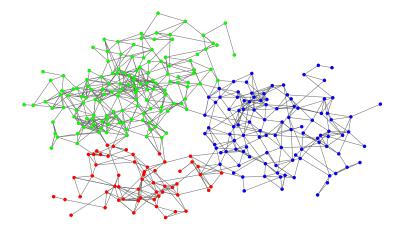
Graphs Nowadays: Clustering



Graphs Nowadays: Clustering



Graphs Nowadays: Clustering



Goal: Use spectrum of graphs (unstructured data) to extract clustering (communities) or other structural information.

Applications of Graph Clustering

- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network
- . . .

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network
 - •
- Unsupervised learning method

(there is no ground truth (usually), and we cannot learn from mistakes!)

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network

•

- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network

• . . .

- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
 - Geometric Clustering: partition points in a Euclidean space
 - k-means, k-medians, k-centres, etc.

Applications of Graph Clustering

- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network

•

- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
 - Geometric Clustering: partition points in a Euclidean space
 - k-means, k-medians, k-centres, etc.
 - Graph Clustering: partition vertices in a graph
 - modularity, conductance, min-cut, etc.

Applications of Graph Clustering

- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network

•

- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
 - Geometric Clustering: partition points in a Euclidean space
 - k-means, k-medians, k-centres, etc.
 - Graph Clustering: partition vertices in a graph
 - modularity, conductance, min-cut, etc.

Graphs and Matrices

Graphs

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Shortest Paths

• . . .

Matrices

(0	1	0	1\
11	0	1	1 0 1
0	1	0	1
\1	0	1	ó/

- Eigenvalues
- Eigenvectors
- Inverse
- Determinant
- Matrix-powers
- . . .

Graphs and Matrices

Graphs

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Shortest Paths
- . . .

Matrices

/0	1	0	1\
1	0	1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
0	1	0	1
1	0	1	ó)

- Eigenvalues
- Eigenvectors
- Inverse
- Determinant
- Matrix-powers
- . . .

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Adjacency Matrix

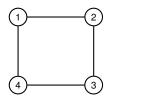
Adjacency matrix Let G = (V, E) be an undirected graph. The adjacency matrix of G is the n by n matrix **A** defined as $\mathbf{A}_{u,v} = \begin{cases} 1 & \text{if } \{u, v\} \in E \\ 0 & \text{otherwise.} \end{cases}$

Adjacency Matrix

Adjacency matrix _____

Let G = (V, E) be an undirected graph. The adjacency matrix of G is the *n* by *n* matrix **A** defined as

$$\mathbf{A}_{u,v} = egin{cases} 1 & ext{if } \{u,v\} \in E \ 0 & ext{otherwise.} \end{cases}$$



$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Adjacency Matrix

Adjacency matrix — Let G = (V, E) be an undirected graph. The adjacency matrix of G is the *n* by *n* matrix **A** defined as

$$\mathbf{A}_{u,v} = egin{cases} 1 & ext{if } \{u,v\} \in E \ 0 & ext{otherwise.} \end{cases}$$

Properties of A:

- The sum of elements in each row/column *i* equals the degree of the corresponding vertex *i*, deg(*i*)
- Since G is undirected, A is symmetric

Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}.$$

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

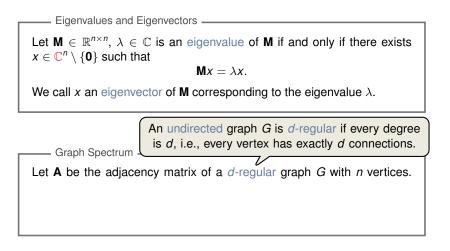
Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{X} = \lambda \mathbf{X}.$$

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

Graph Spectrum

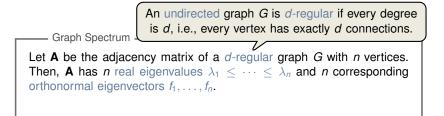
Let **A** be the adjacency matrix of a d-regular graph G with n vertices.

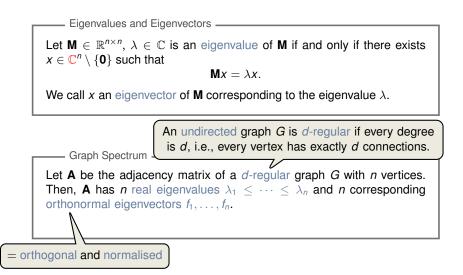


Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{X} = \lambda \mathbf{X}.$$

We call x an eigenvector of **M** corresponding to the eigenvalue λ .





Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{X} = \lambda \mathbf{X}.$$

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

An undirected graph *G* is *d*-regular if every degree is *d*, i.e., every vertex has exactly *d* connections.

Graph Spectrum Graph Spectrum Let **A** be the adjacency matrix of a *d*-regular graph *G* with *n* vertices. Then, **A** has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n . These eigenvalues associated with their multiplicities constitute the spectrum of *G*.

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{X} = \lambda \mathbf{X}.$$

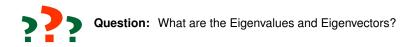
We call x an eigenvector of **M** corresponding to the eigenvalue λ .

An undirected graph *G* is *d*-regular if every degree is *d*, i.e., every vertex has exactly *d* connections.

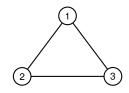
Let **A** be the adjacency matrix of a *d*-regular graph *G* with *n* vertices. Then, **A** has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n . These eigenvalues associated with their multiplicities constitute the spectrum of *G*.

Remark: For symmetric matrices we have algebraic multiplicity = geometric multiplicity (otherwise ≥)

Graph Spectrum



Question: What are the Eigenvalues and Eigenvectors?

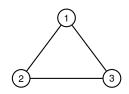


$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Example 1

Bonus: Can you find a short-cut to det $(\mathbf{A} - \lambda \cdot \mathbf{I})$?

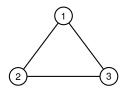
Question: What are the Eigenvalues and Eigenvectors?



$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Bonus: Can you find a short-cut to det $(\mathbf{A} - \lambda \cdot \mathbf{I})$?

Question: What are the Eigenvalues and Eigenvectors?



$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Solution:

- The three eigenvalues are $\lambda_1 = \lambda_2 = -1, \lambda_3 = 2$.
- The three eigenvectors are (for example):

$$f_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad f_2 = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{pmatrix}, \quad f_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Laplacian Matrix

Laplacian Matrix ______

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the *n* by *n* matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.

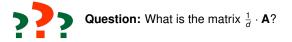
Laplacian Matrix

Laplacian Matrix _____

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the *n* by *n* matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.



Laplacian Matrix

Laplacian Matrix ______

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the *n* by *n* matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.

$$\begin{array}{c|ccccc} 1 & -1/2 & 0 & -1/2 \\ \hline \\ -1/2 & 1 & -1/2 & 0 \\ 0 & -1/2 & 1 & -1/2 \\ -1/2 & 0 & -1/2 & 1 \end{array}$$

Laplacian Matrix

Laplacian Matrix ______

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the *n* by *n* matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.

Properties of L:

The sum of elements in each row/column equals zero

Laplacian Matrix

Laplacian Matrix _____

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the *n* by *n* matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.

Properties of L:

- The sum of elements in each row/column equals zero
- L is symmetric

Correspondence between Adjacency and Laplacian Matrix -

A and L have the same set of eigenvectors.

Exercise: Prove this correspondence. Hint: Use that $L = I - \frac{1}{d}A$. *[Exercise 11/12.1]*

Eigenvalues and eigenvectors ______ Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ such that $\mathbf{M}x = \lambda x$.

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

Graph Spectrum -

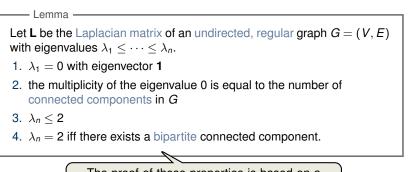
Let **L** be the Laplacian matrix of a *d*-regular graph *G* with *n* vertices. Then, **L** has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n . These eigenvalues associated with their multiplicities constitute the spectrum of *G*. Lemma

Let **L** be the Laplacian matrix of an undirected, regular graph G = (V, E) with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$.

- 1. $\lambda_1 = 0$ with eigenvector **1**
- 2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in *G*

Let **L** be the Laplacian matrix of an undirected, regular graph G = (V, E) with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$.

- 1. $\lambda_1 = 0$ with eigenvector **1**
- 2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in *G*
- 3. $\lambda_n \leq 2$
- 4. $\lambda_n = 2$ iff there exists a bipartite connected component.



The proof of these properties is based on a powerful characterisation of eigenvalues/vectors!

Courant-Fischer Min-Max Formula — Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_k = \min_{\substack{S: \dim(S)=k}} \max_{\substack{x \in S, x \neq 0}} \frac{x' \mathbf{M} x}{x^T x},$$

where S is a subspace of \mathbb{R}^n . The eigenvectors corresponding to $\lambda_1, \ldots, \lambda_k$ minimise such expression.

Courant-Fischer Min-Max Formula — Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_k = \min_{\substack{S: \dim(S)=k}} \max_{\substack{x \in S, x \neq 0}} \frac{x^T \mathbf{M} x}{x^T x},$$

where S is a subspace of \mathbb{R}^n . The eigenvectors corresponding to $\lambda_1, \ldots, \lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{x^T \mathbf{M} x}{x^T x}$$

Courant-Fischer Min-Max Formula Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then.

$$\lambda_k = \min_{\substack{S: \dim(S)=k}} \max_{\substack{x \in S, x \neq 0}} \frac{x^T \mathbf{M} x}{x^T x},$$

where S is a subspace of \mathbb{R}^n . The eigenvectors corresponding to $\lambda_1, \ldots, \lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{0\}} \frac{x^T \mathbf{M} x}{x^T x} \qquad \qquad \lambda_2 = \min_{\substack{x \in \mathbb{R}^n \setminus \{0\} \\ x \perp f_1}} \frac{x^T x}{x^T x}$$

minimised by f_{2}

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{x^T \mathbf{M} x}{x^T x}$$

Courant-Fischer Min-Max Formula — Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_k = \min_{\substack{S: \dim(S)=k}} \max_{\substack{x \in S, x \neq 0}} \frac{x' \mathbf{M} x}{x^T x},$$

where S is a subspace of \mathbb{R}^n . The eigenvectors corresponding to $\lambda_1, \ldots, \lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{x^T \mathbf{M} x}{x^T x}$$

$$\lambda_{2} = \min_{\substack{x \in \mathbb{R}^{n} \setminus \{\mathbf{0}\}\\x \perp f_{1}}} \frac{x^{T} \mathbf{M} x}{x^{T} x}$$

minimised by f_{2}

Courant-Fischer Min-Max Formula — Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_k = \min_{\substack{S: \dim(S)=k}} \max_{\substack{x \in S, x \neq 0}} \frac{x' \mathbf{M} x}{x^T x},$$

where S is a subspace of \mathbb{R}^n . The eigenvectors corresponding to $\lambda_1, \ldots, \lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{x^T \mathbf{M} x}{x^T x}$$

$$\lambda_{2} = \min_{\substack{x \in \mathbb{R}^{n} \setminus \{\mathbf{0}\}\\x \perp f_{1}}} \frac{x^{T} \mathbf{M} x}{x^{T} x}$$

minimised by f_{2}

Quadratic Forms of the Laplacian

– Lemma –

Let **L** be the Laplacian matrix of a *d*-regular graph G = (V, E) with *n* vertices. For any $x \in \mathbb{R}^n$,

$$x^T \mathsf{L} x = \sum_{\{u,v\}\in E} \frac{(x_u - x_v)^2}{d}.$$

Quadratic Forms of the Laplacian

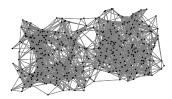
– Lemma -

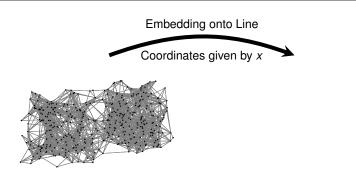
Let **L** be the Laplacian matrix of a *d*-regular graph G = (V, E) with *n* vertices. For any $x \in \mathbb{R}^n$,

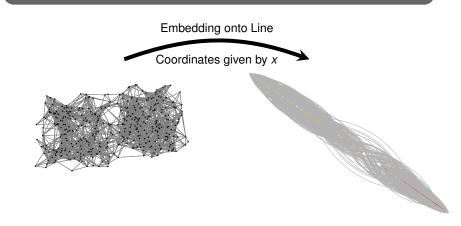
$$x^T \mathbf{L} x = \sum_{\{u,v\}\in E} \frac{(x_u - x_v)^2}{d}.$$

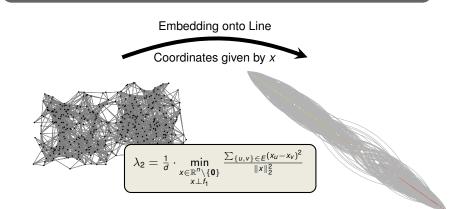
Proof:

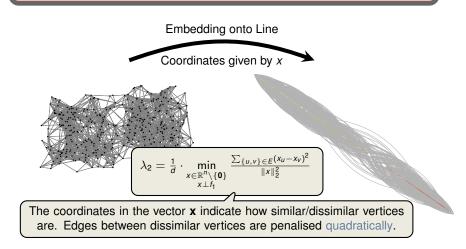
$$\begin{aligned} x^T \mathbf{L} x &= x^T \left(\mathbf{I} - \frac{1}{d} \mathbf{A} \right) x = x^T x - \frac{1}{d} x^T \mathbf{A} x \\ &= \sum_{u \in V} x_u^2 - \frac{2}{d} \sum_{\{u,v\} \in E} x_u x_v \\ &= \frac{1}{d} \sum_{\{u,v\} \in E} (x_u^2 + x_v^2 - 2x_u x_v) \\ &= \sum_{\{u,v\} \in E} \frac{(x_u - x_v)^2}{d}. \end{aligned}$$







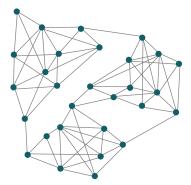


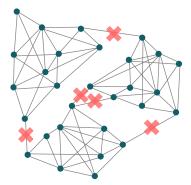


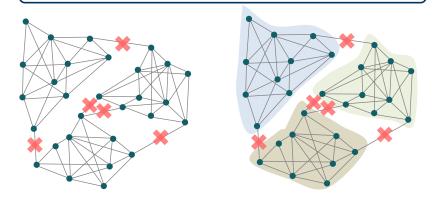
Introduction to (Spectral) Graph Theory and Clustering

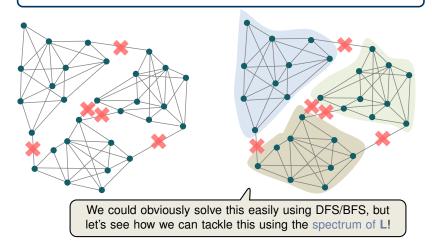
Matrices, Spectrum and Structure

A Simplified Clustering Problem

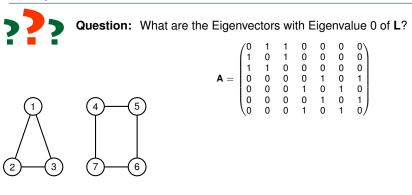








Question: What are the Eigenvectors with Eigenvalue 0 of L?



Question: What are the Eigenvectors with Eigenvalue 0 of L? $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$ 5 0 1 0 $\begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 \\ \end{pmatrix}$ 0 0 L = 6 2 3 7 0 Λ

0

Question: What are the Eigenvectors with Eigenvalue 0 of L? $\begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 \\ \end{pmatrix}$ L = 6 3

Solution:

- Two smallest eigenvalues are $\lambda_1 = \lambda_2 = 0$.
- The corresponding two eigenvectors are:

$$f_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Question: What are the Eigenvectors with Eigenvalue 0 of L? $\mathbf{L} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 \\ \end{pmatrix}$ 6 3

Solution:

- Two smallest eigenvalues are λ₁ = λ₂ = 0.
- The corresponding two eigenvectors are:

$$f_1 = \begin{pmatrix} 1\\1\\1\\0\\0\\0\\0 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0\\0\\0\\1\\1\\1\\1 \end{pmatrix} (\text{ or } f_1 = \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix}, \quad f_2 = \begin{pmatrix} -1/3\\-1/3\\-1/3\\1/4\\1/4\\1/4\\1/4 \end{pmatrix})$$

>>>	Question: What a	are the Eige	envec	tors wit	h Eigenv	alue 0) of L ?		
() ()	4-5	A =	$\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{ccc} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 1 0 1 0			
2 3 Solution:	7-6	$\mathbf{L} = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$-\frac{1}{2}$ 1 $-\frac{1}{2}$ 0 0 0 0	$-\frac{1}{2}$ $-\frac{1}{2}$ 1 0 0 0 0	$\begin{array}{cccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \\ 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ -\frac{1}{2} \\ 1 \end{array} \right) $		
Two smallest eigenvalues are $\lambda_1 = \lambda_2 = 0$. Thus we can easily solve the simplified clustering prob- lem by computing the eigenvectors with eigenvalue 0									
	$f_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, f_2 =$	$ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} $							

>>>	Question: What a	are the Eige	nvec	tors wi	th Eige	nvalue () of L ?		
() ()	4-5	A =	$ \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	$\begin{array}{ccc} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$	$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}$			
2 3 Solution:		$\mathbf{L} = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$-\frac{1}{2}$ 1 $-\frac{1}{2}$ 0 0 0 0	$-\frac{1}{2}$ $-\frac{1}{2}$ 1 0 0 0 0	$\begin{array}{cccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & - \\ -\frac{1}{2} & 1 \\ 0 & - \\ -\frac{1}{2} & 0 \end{array}$	$ \begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{1}{2} & 0 \\ -\frac{1}{2} \\ \frac{1}{2} & 1 \\ 0 & -\frac{1}{2} \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ -\frac{1}{2} \\ 1 \end{array} \right) $		
 Two smallest eigenvalues are λ₁ = λ₂ = 0. Thus we can easily solve the simplified clustering problem by computing the eigenvectors with eigenvalue 0 									
	$f_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, f_2 =$	$ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} $		6	approacl	h works e	ne-grained even if the y connecte	d!	

Let us generalise and formalise the previous example!

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: G has exactly k connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ • Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show:

G has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$

Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$

Clearly, the \(\chi_C_i\)'s are orthogonal

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ • Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

 ("⇒)" *cc*(*G*) ≤ mult(0)). We will show: *G* has exactly *k* connected comp. *C*₁,..., *C_k* ⇒ λ₁ = ··· = λ_k = 0

 Take χ_{Ci} ∈ {0,1}ⁿ such that χ_{Ci}(u) = 1_{u∈Ci} for all u ∈ V

 Clearly, the χ_{Ci}'s are orthogonal

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. ("⇒ " *cc*(*G*) ≤ mult(0)). We will show: *G* has exactly *k* connected comp. *C*₁,..., *C_k* ⇒ λ₁ = ··· = λ_k = 0

Take χ_{Ci} ∈ {0,1}ⁿ such that χ_{Ci}(u) = 1_{u∈Ci} for all u ∈ V

Clearly, the χ_{Ci}'s are orthogonal

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show: $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least *k* connected comp. C_1, \ldots, C_k

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ • Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

•
$$\chi_{C_i}^T \mathbf{L} \chi_{C_i} = \frac{1}{d} \cdot \sum_{\{u,v\} \in E} (\chi_{C_i}(u) - \chi_{C_i}(v))^2 = 0 \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$$

- 2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:
 - $\lambda_1 = \dots = \lambda_k = 0 \implies G$ has at least *k* connected comp. C_1, \dots, C_k • there exist f_1, \dots, f_k orthonormal such that $\sum_{\{i_1, v_i\} \in F} (f_i(u) - f_i(v))^2 = 0$

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ • Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

 $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least *k* connected comp. C_1, \ldots, C_k

• there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) - f_i(v))^2 = 0$

• \Rightarrow f_1, \ldots, f_k constant on connected components

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: G has exactly k connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$
 - Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

 $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least k connected comp. C_1, \ldots, C_k

- there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) f_i(v))^2 = 0$
- \Rightarrow f_1, \ldots, f_k constant on connected components
- as *f*₁,..., *f_k* are pairwise orthogonal, *G* must have *k* different connected components.

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: G has exactly k connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$
 - Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

 $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least *k* connected comp. C_1, \ldots, C_k

- there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) f_i(v))^2 = 0$
- \Rightarrow f_1, \ldots, f_k constant on connected components
- as *f*₁,..., *f_k* are pairwise orthogonal, *G* must have *k* different connected components.