Randomised Algorithms

Lecture 9: Approximation Algorithms: MAX-3-CNF and Vertex-Cover

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio -

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost (value) $\mathbf{E}[C]$ of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{\mathbf{E}[C]}{C^*}, \frac{C^*}{\mathbf{E}[C]}\right) \leq \rho(n).$$

not covered here (non-examinable)

Randomised Approximation Schemes

An approximation scheme is an approximation algorithm, which given any input and $\epsilon>0$, is a $(1+\epsilon)$ -approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon > 0$, the runtime is polynomial in n. For example, $O(n^{2/\epsilon})$.
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1/\epsilon$ and n. For example, $O((1/\epsilon)^2 \cdot n^3)$.

Pandomised Approximation MAX-3-CNF Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald

Randomised Approximation

2

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$(x_1 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_3} \vee \overline{x_5}) \wedge (x_2 \vee \overline{x_4} \vee x_5) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_3})$$

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$$
 and $x_5 = 1$ satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

5

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary

For any instance of MAX-3-CNF, there exists an assignment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $\mathit{Y}(\omega) \geq \mathbf{E}\left[\right. \mathit{Y} \left. \right]$

Probabilistic Method: powerful tool to show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Follows from the previous Corollary.

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = \mathbf{1}\{\text{clause } i \text{ is satisfied}\}$$

• Since each literal (including its negation) appears at most once in clause i,

P[clause *i* is not satisfied] =
$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

⇒ P[clause *i* is satisfied] = $1 - \frac{1}{8} = \frac{7}{8}$

⇒ E[Y_i] = P[Y_i = 1] · 1 = $\frac{7}{8}$

• Let $Y := \sum_{i=1}^{m} Y_i$ be the number of satisfied clauses. Then,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} \mathbf{E}[Y_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} \cdot m. \quad \Box$$
(Linearity of Expectations) maximum number of satisfiable clauses is m

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

Expected Approximation Ratio

- Theorem 35.6 -

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7/8) \cdot m$ clauses is at least 1/(8m)

$$\mathbf{E}[Y] = \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 1] + \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 0].$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least **E**[Y]

GREEDY-3-CNF(ϕ , n, m)

1: **for**
$$j = 1, 2, ..., n$$

Compute **E**[
$$Y \mid x_1 = v_1 \dots, x_{i-1} = v_{i-1}, x_i = 1$$
]

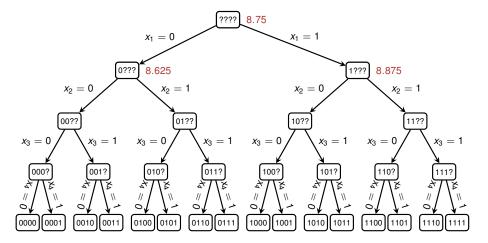
3: Compute **E**[
$$Y \mid x_1 = v_1, \dots, x_{i-1} = v_{i-1}, x_i = 0$$
]

Let $x_i = v_i$ so that the conditional expectation is maximised

5: **return** the assignment v_1, v_2, \ldots, v_n

Run of GREEDY-3-CNF(φ , n, m)

 $\begin{array}{c} \left(X_1 \vee X_2 \vee X_3 \right) \wedge \left(X_1 \vee \overline{X_2} \vee \overline{X_4} \right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4} \right) \wedge \left(\overline{X_1} \vee \overline{X_3} \vee X_4 \right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4} \right) \wedge \\ \left(\overline{X_1} \vee \overline{X_2} \vee \overline{X_3} \right) \wedge \left(\overline{X_1} \vee X_2 \vee X_3 \right) \wedge \left(\overline{X_1} \vee \overline{X_2} \vee X_3 \right) \wedge \left(X_1 \vee X_3 \vee X_4 \right) \wedge \left(X_2 \vee \overline{X_3} \vee \overline{X_4} \right) \end{array}$



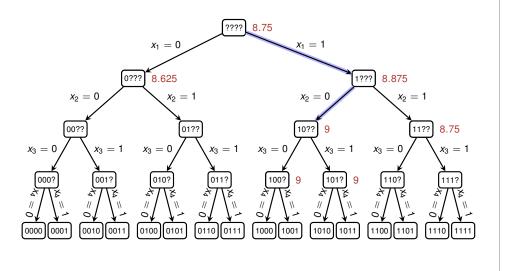
9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

9.1

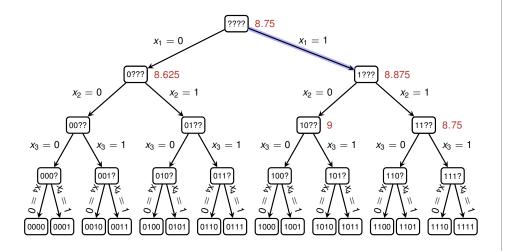
Run of GREEDY-3-CNF(φ , n, m)

 $1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge 1 \wedge (x_3) \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee \overline{x_4})$



Run of GREEDY-3-CNF(φ , n, m)

 $1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge (\overline{x_2} \vee \overline{x_3}) \wedge (x_2 \vee x_3) \wedge (\overline{x_2} \vee x_3) \wedge 1 \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4})$

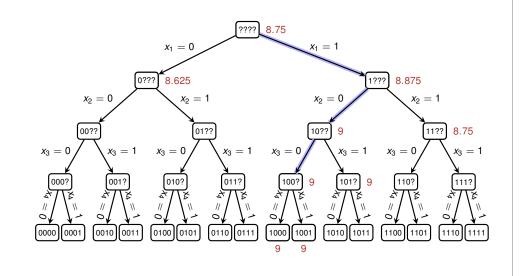


9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

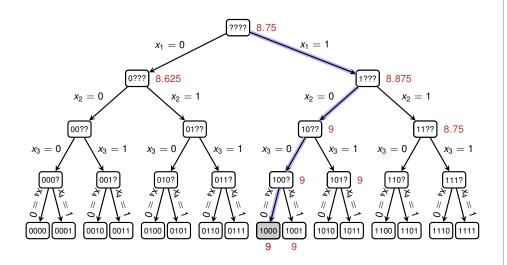
9.2

Run of GREEDY-3-CNF(φ , n, m)



Run of GREEDY-3-CNF(φ , n, m)

 $1 \land 1 \land 1 \land 1 \land 1 \land 1 \land 0 \land 1 \land 1 \land 1$



9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

9.5

Analysis of GREEDY-3-CNF (ϕ, n, m)

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , \emph{n} , \emph{m}) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
 - In iteration $j=1,2,\ldots,n,\ Y=Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

$$\mathbf{E}[Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^{m} \mathbf{E}[Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$

■ Step 2: satisfies at least 7/8 · m clauses

computable in O(1)

• Due to the greedy choice in each iteration j = 1, 2, ..., n,

$$\mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = v_j] \ge \mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}]$$

$$\ge \mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-2} = v_{j-2}]$$

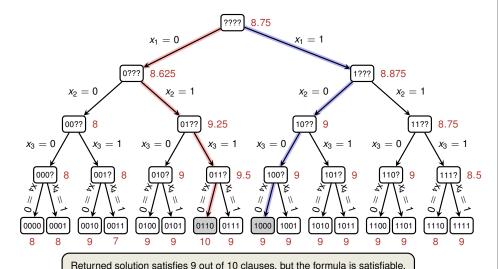
. _

MAX-3-CNF

$$\geq \mathbf{E}[Y] = \frac{7}{8} \cdot m.$$

Run of GREEDY-3-CNF(φ , n, m)

 $\begin{array}{c} \left(X_1 \vee X_2 \vee X_3 \right) \wedge \left(X_1 \vee \overline{X_2} \vee \overline{X_4} \right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4} \right) \wedge \left(\overline{X_1} \vee \overline{X_3} \vee X_4 \right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4} \right) \wedge \\ \left(\overline{X_1} \vee \overline{X_2} \vee \overline{X_3} \right) \wedge \left(\overline{X_1} \vee X_2 \vee X_3 \right) \wedge \left(\overline{X_1} \vee \overline{X_2} \vee X_3 \right) \wedge \left(\overline{X_1} \vee \overline{X_2} \vee \overline{X_4} \right) \wedge \\ \end{array}$



9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

9.6

MAX-3-CNF: Concluding Remarks

- Theorem 35.6 -

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad'97) -

For any $\epsilon>0$, there is no polynomial time 8/7 $-\epsilon$ approximation algorithm of MAX3-CNF unless P=NP.

Essentially there is nothing smarter than just guessing!

11

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

The Weighted Vertex-Cover Problem

Vertex Cover Problem -

- Given: Undirected, vertex-weighted graph G = (V, E)
- Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $\{u, v\} \in E(G)$, then $u \in V'$ or $v \in V'$.

This is (still) an NP-hard problem.

Question: How can we deal with graphs that have negative weights?

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person
- Perform all tasks with the minimal amount of resources

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

12

A Greedy Approach working for Unweighted Vertex Cover

```
APPROX-VERTEX-COVER (G)
1 \quad C = \emptyset
E' = G.E
   while E' \neq \emptyset
        let (u, v) be an arbitrary edge of E'
        C = C \cup \{u, v\}
        remove from E' every edge incident on either u or v
7 return C
```

This algorithm is a 2-approximation for **unweighted graphs!**

A Greedy Approach working for Unweighted Vertex Cover

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

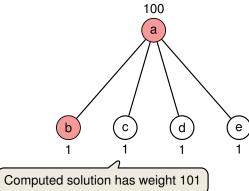
3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

remove from E' every edge incident on either u or v

7 return C
```



9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

14.2

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program

minimize $\sum_{v \in V} w(v)x(v)$

subject to $x(u) + x(v) \ge 1$ for each $(u, v) \in E$ $x(v) \in \{0, 1\}$ for each $v \in V$

optimum is a lower bound on the optimal weight of a minimum weight-cover.

Linear Program

minimize $\sum_{v \in V} w(v)x(v)$

subject to $x(u) + x(v) \ge 1$ for each $(u, v) \in E$ $x(v) \in [0, 1]$ for each $v \in V$

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.

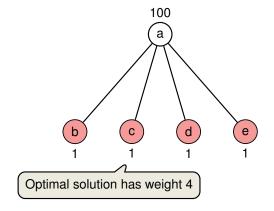
9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 $C = \emptyset$ 2 E' = G.E3 **while** $E' \neq \emptyset$ 4 let (u, v) be an arbitrary edge of E'5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v7 **return** C



9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

14.3

The Algorithm

APPROX-MIN-WEIGHT-VC(G, w)

- $1 \quad C = \emptyset$
- 2 compute \bar{x} , an optimal solution to the linear program
- 3 **for** each $v \in V$
- if $\bar{x}(v) \geq 1/2$
 - $C = C \cup \{\nu\}$
- 6 return C

Theorem 35.7

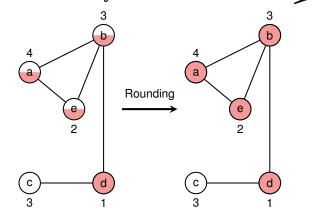
APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.

is polynomial-time because we can solve the linear program in polynomial time

Example of APPROX-MIN-WEIGHT-VC

$$\overline{x}(a) = \overline{x}(b) = \overline{x}(e) = \frac{1}{2}, \ \overline{x}(d) = 1, \ \overline{x}(c) = 0$$

$$x(a) = x(b) = x(e) = 1, \ x(d) = 1, \ x(c) = 0$$



а

fractional solution of LP with weight = 5.5

rounded solution of LP with weight = 10

optimal solution with weight = 6

9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

17

Approximation Ratio

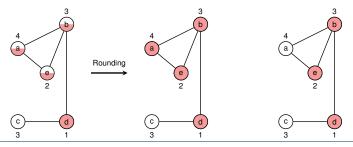
Proof (Approximation Ratio is 2 and Correctness):

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1
 - \Rightarrow at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) < 2z^*$:

$$w(C^*) \ge z^* = \sum_{v \in V} w(v) \overline{x}(v) \ge \sum_{v \in V: \ \overline{x}(v) \ge 1/2} w(v) \cdot \frac{1}{2} = \frac{1}{2} w(C).$$



9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

18