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Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= jterative procedure somewhat similar to Gaussian elimination

Basic ldea:
= Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while

the objective value will not decrease <[|n that sense, it is a greedy algorithm.

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

Extended Example: Conversion into Slack Form

maximise 3x1  + Xo +
subject to
X1 + X2 +
2x1 4+ 2x2 +
4 + X +
X1, X2, X3
|
1
\Z
zZ =
X4 = 30 —
X5 = 24 —
Xs = 36 —

2X3

3X3
5X3
2X3
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Conversion into slack form
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2X1
4x4
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Extended Example: Iteration 1

z = 3xi  + Xo + 2X3
xs = 30 — X1 — X — 3Xx3
Xs = 24 — 2X1 — 2X2 — 5x3
X6 = 36 — 4x, — X2 — 2X3
A
[Basic solution: (%1,%, . .., X3) = (0,0,0,30, 24, 36) ]
/1 AN

[This basic solution is feasiblej [Objective value is 0.]
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Extended Example: Iteration 1

[Increasing the value of x4 would increase the objective value.]

v
z = i + X + 2x3
xs = 30 — X1 — X — 3Xx3
Xs = 24 — 2X3 — 2X2 — 5x3
X = 36 — 4x; - Xo — 2X3

N

[The third constraint is the tightest and limits how much we can increase x; ]

N

-
Switch roles of x; and xg:
» Solving for x; yields:

_g_Xe_X3_ X
=9-F -5

= Substitute this into x¢ in the other three equations
&

~N
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z = 27 + % 4 g_%
X5:6—%—4X3+%
N

[Basic solution: (X1, X2,...,X) = (9,0,0,21,6,0) with objective value 27)
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Extended Example: lteration 2

z:27+%+%_%

x4:21_%_%+%

X5:6_%—4X3+%
N

[The third constraint is the tightest and limits how much we can increase xs.J

\

(Switch roles of x; and xs:
= Solving for x3 yields:

e S _ 3 X5 Xe
T2 8 4 &

= Substitute this into x3 in the other three equations
(.

~N
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Extended Example: Iteration 3

[Increasing the value of x; would increase the objective value.j

A\
_ 111 X xs  11x
z = =z *t 16 8 16
_ 33 X2 Xs O
o= 7 6 T B 16
_ 3 _ 3 _ X Xo
X3 = 2 8 4 7 8
_ 69 3x 5% _ X
X = Tt H5 T 7B 16
N

[Basic solution: (X1, X, . . .

» 29 4

%) = (2,0,32,%,0,0) with objective value 11 = 27.75]
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Extended Example: Iteration 3

_ 111 X2 _ xs _  11x
zZ = 7 * 716 8 16
- 38 _ X Xs _ DX
o= 7 6 ©~ 8 16
— 3 _ 3 _ X Xo
xo= 32 8 i T 8
_ 69 3x2 5% _ Xe
x = 4 *t J6 T 8 16
N
[The second constraint is the tightest and limits how much we can increase XQ.J
N\
\N

( \
Switch roles of x> and x3:

= Solving for x; yields:

= Substitute this into x; in the other three equations
(.
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Extended Example: Iteration 4

[AII coefficients are negative, and hence this basic solution is optimal!]

N
z = 28 ﬁ_%_%
xx = 8 + 2 + £ - %
" = 18 - 2 + 3

N

[Basic solution: (X7, %, . .., Xa) — (8, 4,0, 18,0, 0) with objective value 28 ]
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Extended Example: Visualization of SIMPLEX

X3
Xo
(0,12,0)
12
(0,0,4.8) @
9.6
(0,0, ‘ e (8,4,0)
0 (8.25,0,15) @ 28
27.75
X1
0.0.0)
27

Exercise: [Ex. 6/7.6] How many basic solutions (including
non-feasible ones) are there?

JAN
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Extended Example: Alternative Runs (1/2) Extended Example: Alternative Runs (2/2)

z = 3xq + Xo + 2X3 z = 3x1 + Xo + 2X3
X4 = 30 — X4 — Xo — 3X3 X4 = 30 — X4 — Xo — 3X3
X5 = 24 — 2Xq — 2Xo — 5x3 X5 = 24 — 2Xq - 2Xo - 5x3
Xp = 36 — 4x4 — X2 — 2X3 Xp = 36 — 4X1 — Xo — 2X3
I . |
! Switch roles of x, and xs ! Switch roles of x3 and xs
\/
= _ X3 _ X5 48 11x; X; 2x;
z = 12 + 2x > 5 z = T+ ﬁoﬁ‘ + -f — joé
5x; X
X2 = 12 — X1 — TS — ?5 Xq = 738 % % —+ 3X5
X, = 18 — X2 - X4 % X5 = %ﬂ _ %))g 2% _ X5
_ _ X3 X5
I i . - =~ .
| Switch roles of x; and xs Switch roles of x; and xg _ - -~ ~~~__ Switch roles of x, and x;
v &~ RN
_ _ X X 2%
2= om0 ; g SR SR N SN I R N
_ X3 X5 Xp
x = 8 + F 4+ - 3 o= f - % o+ 5 - T o= 8 o+ B o+ B -
X = 4 - 8% - 2% + % X3 = % - 3% - 2 0+ % X = 4 - Ssﬂ - zsﬁ +
6 = 18 - B + % W o= o+ F o % - % “ o= 18 - 3 o+ 3
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Outline The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.

2 let A be anew m x n matrix
3 b= bl/ale . s . .
4 foreach j € N —{e} ( Need that a, # 0! { Rewrite “tight” equation
5 Qej = aij/aze . for enterring variable xe.
6 Gy = l/ale
7 // Compute the coefficients of the remaining constraints.
. . . P / — 1

Details of the Simplex Algorithm 8 foreachi € B —{/} — -
9 bi = bi —aiebe { Substituting x. into
10 for cach j € N — fe} other equations.
11 ajj = djj —djedej
12 ail = _aieael

13 // Compute the objective function.
14 D =v+ceh,
15 foreach j € N — {e}

Substituting xe into

N A A

16 ;= ¢j = Cele; objective function.
17 (/,‘\1 = —Ce[lz[

18  // Compute new sets of basic and nonbasic variables.

19 N=N-{u{l} Update non-basic
20 B =B—{ljU{e} and basic variables

21 return (]\7, B, g,b, c,v)
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X; = 0 for each j € N.
2. Ye == b//ale.
3. X; = b — aib, for each i € B\ {e}.

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = B/ — ZE,,X,,
jeN
we have X; = b; for each i € B. Hence Xe = be = bj/aj.
3. After substituting into the other constraints, we have

Y,' = B/ = b,’ — a;eBe. O
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Formalizing the Simplex Algorithm: Questions

Questions:
* How do we determine whether a linear program is feasible?
= What do we do if the linear program is feasible, but the initial basic

solution is not feasible?
= How do we determine whether a linear program is unbounded?
= How do we choose the entering and leaving variables?

[Example before was a particularly nice one! ]
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The formal procedure SIMPLEX

Returns a slack form with a

SIMPLEX (A, b, ¢)
I (N.B.,A,b.c.v) = INITIALIZE-SIMPLEX (4, b. ¢) feasible basic solution (if it exists)
2 let A be anew vector of length m

]

The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

1 (N,B,A,b,c,v) = INITIALIZE-SIMPLEX (A, b, ¢)
2 let A be a new vector of length m
3 while some index j € N hasc; > 0

4 choose an index e € N for which ¢, > 0
5 for each index i € B

6 ifa;, >0

7 A; = bi/a;,

8 else A, = ©

9 choose an index / € B that minimizes A;
10 if A; == 00
11 return “unbounded”

3 :while some index j € N hasc; >0 : (I\/Iain Loop: )
4 : choose an index e € N for which ¢, > 0 | . terminlates it all coefficients in
> for ea chindexi € B | objective function are

6 ifa; >0 ! non-positive

7 A; = bi/aje :< Li . . .

g I else A, = 0o . = |ne_4 p|cks_ enterring \_/arlable
9 : choose an index / € B that minimizes A; : Xo With) positive coefficient

10 : if A; == 00 ) = Lines 6_— 9 pick _the tigh.test
11, return “unbounded” ! constraint, associated with x;
121 __¢lse (N, B, 4,b,c,v) = PVOT(N, B, 4,b.¢c,v.1.¢) 1 " Line 11 returns “unbounded” if
13 fori = 1ton there are no constraints
14 ifiech * Line 12 calls PIvoT, switching
15 X =b; roles of x; and Xe
16 elsex;, =0 ~ J

17 return (%1, %, ..., %) ﬁ Return corresponding solution. ]

7. Linear Programming © T. Sauerwald Details of the Simplex Algorithm

13.1

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
2. foreach i € B, we have b; > 0,

3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 !,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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Outline

Finding an Initial Solution
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Finding an Initial Solution

maximise 2xX1  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 S —4
X17X2 2 0
|
i Conversion into slack form
v
zZ = 2X1 — Xo
X3 = 2 - 2X1 + X2
X2 = -4 - Xy + 5%
N

[Basic solution (X1, X2, X3, X4) = (0,0, 2, —4) is not feasiblelj
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Geometric lllustration

maximise 2x;  — Xo
subject to
2X1 — Xo
X1 — 5X2
X1, X2
X2

2
—4 | Questions:

0 * How to determine whether
there is any feasible solution?

IV IAIA

= |f there is one, how to determine
! Ly an initial basic solution?

X1
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Formulating an Auxiliary Linear Program

maximise Y7 GX;
subject to
Sicap < b fori=1,2,....m,
X > 0 forj=1,2,...,n
i Formulating an Auxiliary Linear Program
\4
maximise —Xo
subject to
Yiiaixi—xo < b fori=1,2,....,m,
x > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof. Exercise!
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» Let us illustrate the role of xy as “distance from feasibility”
« We'll also see that increasing xg enlarges the feasible region

7. Linear Programming © T. Sauerwald Finding an Initial Solution 18

Geometric lllustration

« Let us now modify the original linear program so that it is not
feasible

= Hence the auxiliary linear program has only a solution for a
sufficiently large xo > 0!
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maximise —Xo
subject to
2x1 — X2 — X < 2
X1 — 5X2 — X0 S —4
X0, X1, X2 > 0
For the animation see the full slides.
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Geometric lllustration
maximise —Xo
subject to
2X1 — X2 — X < =2
X1+ 5% - x < 4
X0, X1, X2 > 0

For the animation see the full slides.
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INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A4, b, ¢)

Test solution with N = {1,2,...,n}, B={n+1,n+
2,...,n+ m}, Xx; = b for i € B, X; = 0 otherwise.

1 let k be the index of the minimum b;

]

=—
2 ifb, >0 // is the initial basic solution feasible?
3 return ({1,2,..., ny.{n+1n+2,....n+m}, Ab,c0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x, - ; ;
let (N, B, A, b,c,v) be the resulting slack form for L, £ will be the leaving variable so
I =n+k that x, has the most negative value.

]

(N.B,A.b,c,v) = PIVOT(N, B, A,b,c.v.1,0) ‘( Pivot step with x, leaving and X, entering. ]
// The basic solution is now feasible for L.

iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
t0 L,y is found
11 if the optimal solution to L,,, sets X, to 0 i This pivot step does not change]

5
6
7 /I Ly hasn + 1 nonbasic variables and m basic variables.
8
9
0

12 if Xo is basic ) , ) the value of any variable.
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L, remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”

Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x7 — Xo
subject to
2X1 — Xo S 2
X1 — 5X2 S —4
X1, Xz > 0

!
i Formulating the auxiliary linear program
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Example of INITIALIZE-SIMPLEX (2/3)
V4 = — X0
X3 = 2 — 2X1 + X2 + X0
Xx = -4 - xx + X + X
|
| Pivot with x entering and x, leaving
v
V4 = -4 — X + B - X
Xo = 4 + X - b5x +  Xa
ﬂ X3 = 6 - Xi - 4x +  Xa
[Basic solution (4,0,0,6,0) is feasible! || _. . ) )
1 Pivot with x2 entering and x, leaving
v
V4 = - X0
x. = 14 4 9 X4
s = 5. 7 5 5 T 3
[Optimal solution has xo = 0, hence the initial problem was feasible!]
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\4
maximise - X
subject to
2xX1  — X2 — X < 2
X1 — 5xo — X0 < —4
X1, X2, Xo > 0
Basic solution ‘
(0,0,0,2, —4) not feasible! | Converting into slack form
N v
V4 = — X0
X3 = 2 - 2x + X2 + X
X4 = -4 — X1 + 5% + X
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Example of INITIALIZE-SIMPLEX (3/3)
V4 = — X0
e = § - % 4+ X o4 X
12 4x 9)? )t(_)
— 0 _ 1 4
x = 5 t 5 5 t 7

Set xo = 0 and express objective function

[2x1 — =20 —(§-2+3+ %)] by non-basic variables

(44444

~N
Z——4—|—9X1—X4
7’3' 5 5
x = £ + ¥ o+ %

AN

(=)

[Basic solution (0, #, ¥, 0), which is feasible!]

Lemma 29.12
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.
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Fundamental Theorem of Linear Programming

~——— Theorem 29.13 (Fundamental Theorem of Linear Programming) ——————————7m-
For any linear program L, given in standard form, either:

1. Lis infeasible = SIMPLEX returns “infeasible”.

2. Lis unbounded = SIMPLEX returns “unbounded”.

3. L has an optimal solution with a finite objective value
= SIMPLEX returns an optimal solution with a finite objective value.

. v

N

[Small Technicality: need to equip SIMPLEX with an “anti-cycling strategy” (see extra slides)]

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)
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Workflow for Solving Linear Programs

[Linear Program (in any form)]

( Standard Form j

( Slack Form j

—

No Feasible Solution
INITIALIZE-SIMPLEX terminates

Feasible Basic Solution
INITIALIZE-SIMPLEX followed by SIMPLEX

-

[ LP unbounded J LP bounded

SIMPLEX terminates

SIMPLEX returns optimum

7. Linear Programming © T. Sauerwald Finding an Initial Solution
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

——— Simplex Algorithm X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n) /
= In theory: even with anti-cycling may
need exponential time o*
O

X1

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms

= |nterior-Point Methods: traverses the

interior of the feasible set of solutions
(not just vertices!)

X3
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Outlook: Alternatives to Worst Case Analysis (non-examinable)

1.2 Famous Failures and the Need for Alternatives

For many problems a bit beyond the scope of an undergraduate course, the
downside of worst-case analysis rears its ugly head. This section reviews four

famous examples in which worst-case analysis gives misleading or useless advice
about how to solve a problem. These examples motivate the alternatives to worst-
case analysis that are surveyed in Section 1.4 and described in detail in later chapters
of the book.

1.2.1 The Simplex Method for Linear Programming

Perhaps the most famous failure of worst-case analysis concerns linear programming,
the problem of optimizing a linear function subject to linear constraints (Figure 1.1).
Dantzig proposed in the 1940s an algorithm for solving linear programs called
the simplex method. The simplex method solves linear programs using greedy local

Source: “Beyond the Worst-Case Analysis of Algorithms” by Tim Roughgarden, 2020
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Outline

Appendix: Cycling and Termination (non-examinable)
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = X + X2 4+ X3

X4 = 8 — X1 — X2
X5 = X2 — X3

!
! Pivot with x4 entering and x4 leaving
Y

z = 8 + X3 — X
XX = 8 - X - Xa
X5 = X2 — X3
[ Cycling: If additionally slack form at two ] i Pivot with x; entering and xs leaving
iterations are identical, SIMPLEX fails to terminate! |v
4 = 8 4+ X2 - X2 - Xs
X3 = 8 — Xo — X
X3 = X2 - X5
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Exercise: Execute one more step of the Simplex Algorithm on
the tableau from the previous slide.
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Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by b; = bj + ¢;, where ¢; > ¢;,1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic
solution is feasible, SIMPLEX either reports that the program is unboun-
ded or returns a feasible solution in at most (") iterations.

m

Every set B of basic variables uniquely determines a slack
form, and there are at most ("}) unique slack forms.
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