

Inear programming is a powerful tool in optimisation

(8, 4, 0)

(9,0,0)

(8.25, 0, 1.5)

- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

(0, 0)

3

Outline

Introduction

A Simple Example of a Linear Program

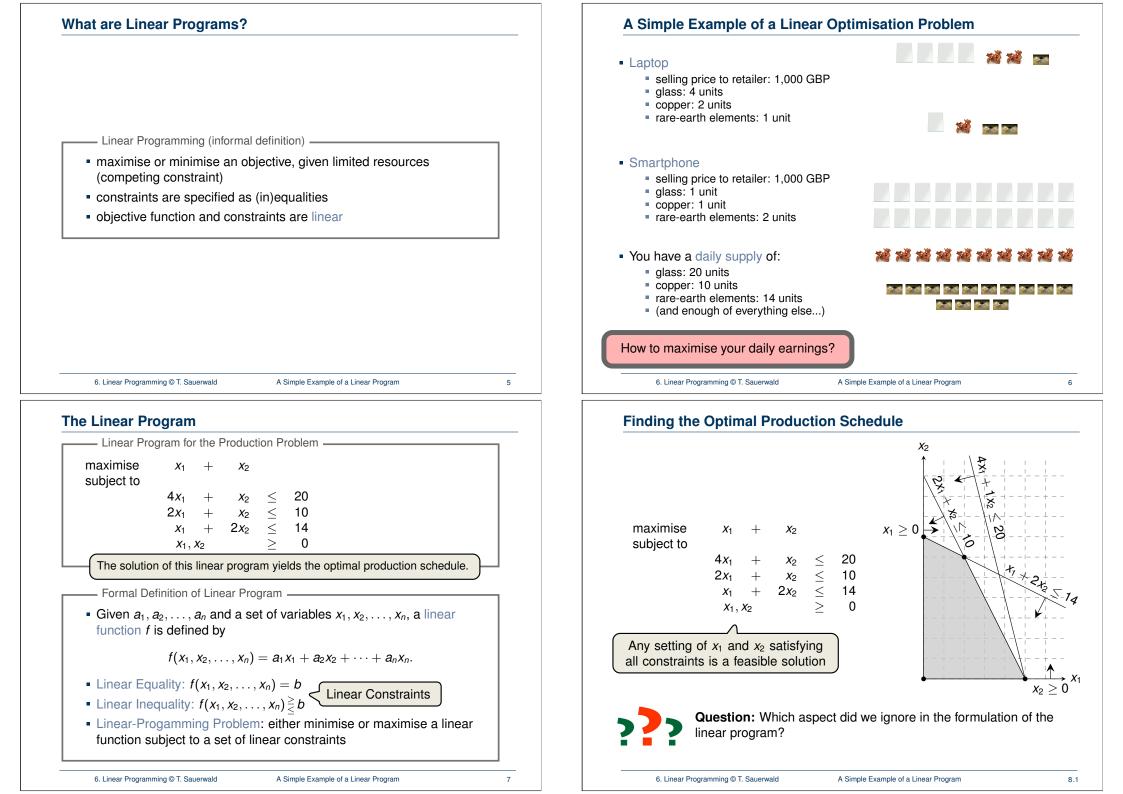
Formulating Problems as Linear Programs

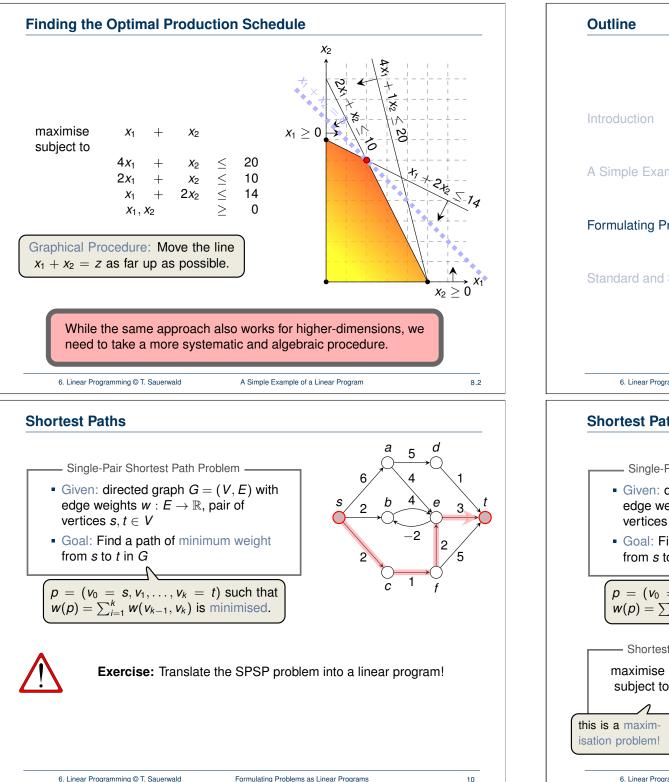
Standard and Slack Forms

6. Linear Programming © T. Sauerwald

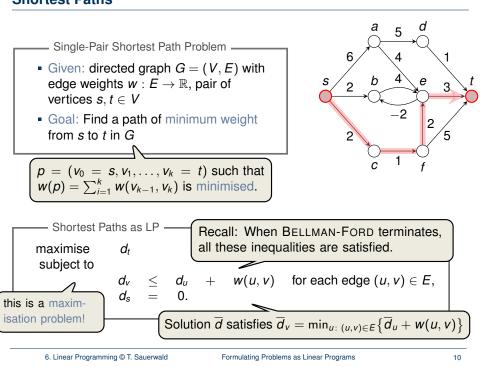
Introduction

2

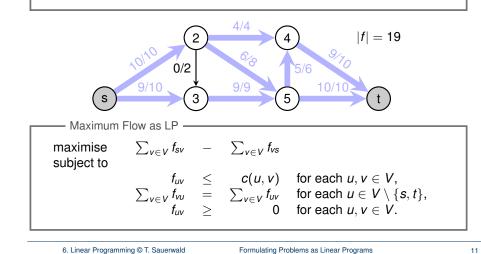

Outline

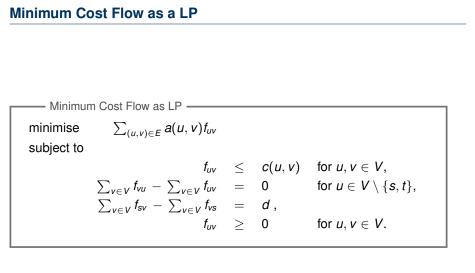

ntroduction

A Simple Example of a Linear Program


Formulating Problems as Linear Programs

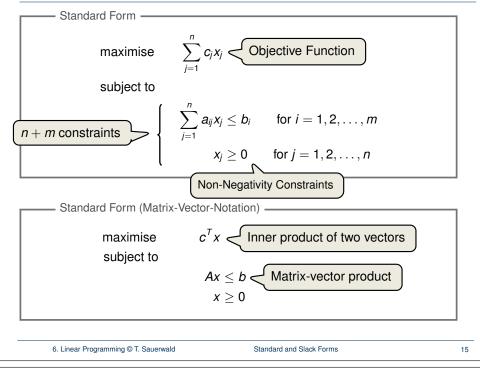
Standard and Slack Forms



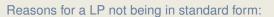

A Simple Example of a Linear Program Formulating Problems as Linear Programs Standard and Slack Forms 6. Linear Programming © T. Sauerwald Formulating Problems as Linear Programs 9 **Shortest Paths**

Maximum Flow

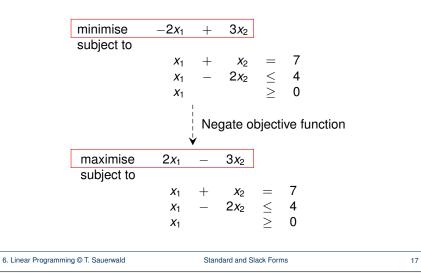
- Maximum Flow Problem —
- Given: directed graph G = (V, E) with edge capacities c : E → ℝ⁺ (recall c(u, v) = 0 if (u, v) ∉ E), pair of vertices s, t ∈ V
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation

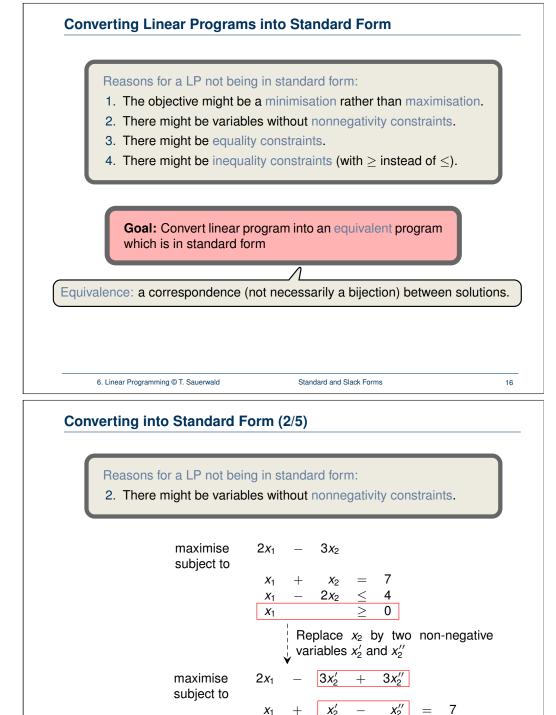

Real power of Linear Programming comes from the ability to solve **new problems**!

Minimum-Cost Flo		ension of the Maximum Flow Proble	m
Minimum-Cost-			
vertices $s, t \in$ • Goal: Find a fle	V, cost functions ow $f: V \times V$	tion $a: E \to \mathbb{R}^+$, flow demand of d using $V \to \mathbb{R}$ from <i>s</i> to <i>t</i> with $ f = d$ while	inits
		$\sum_{(u,v)\in E} a(u,v) f_{uv}$ incurred by the flo	vv.
		ution with total cost: $f_{uv} = (2 \cdot 2) + (5 \cdot 2) + (3 \cdot 1) + (7 \cdot 1)$)+(1·3) =
c = 5 $a = 2$ $c = a = a = a = a = a = a = a = a = a =$		$ \begin{array}{c} 2^{15} \\ a^{2}2 \\ s \\ q^{2}2 \\ q^{2}5 \\ y \\ q^{2}2 \\ y \\ q^{2}3 \\ y \\ q^{2}1 \\ q^{2}2 \\ y \\ q^{2}1 \\ q^{2}2 \\ q^{2}2 \\ y \\ q^{2}1 \\ q^{2}2 $	
(a)		(b)	
Figure 29.3 (a) An	example of a minir	mum-cost-flow problem. We denote the capacities by c a	ind
the costs by a . Vertex from s to t . (b) A solution	x s is the source an attion to the minimum the flow and capacity	mum-cost-flow problem. We denote the capacities by c and vertex t is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity.	ow n <i>s</i>
the costs by <i>a</i> . Verte: from <i>s</i> to <i>t</i> . (b) A solution to <i>t</i> . For each edge, the formal formal formation of the solution	x s is the source an attion to the minimum the flow and capacity	nd vertex t is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity.	ow n <i>s</i>
the costs by a . Verter from s to t . (b) A solution to t . For each edge, the	x s is the source an attion to the minimum the flow and capacity	nd vertex t is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity.	ow n <i>s</i>
the costs by <i>a</i> . Verte: from <i>s</i> to <i>t</i> . (b) A solu to <i>t</i> . For each edge, th 6. Linear Programming © T	x s is the source an attion to the minimum the flow and capacity	nd vertex t is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity.	ow n <i>s</i>
the costs by <i>a</i> . Verte: from <i>s</i> to <i>t</i> . (b) A solution to <i>t</i> . For each edge, the degree of the	x s is the source an attion to the minimum the flow and capacity	nd vertex t is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity.	ow n <i>s</i>
the costs by <i>a</i> . Verte: from <i>s</i> to <i>t</i> . (b) A solution to <i>t</i> . For each edge, the formal formal formation of the solution	x s is the source an attion to the minimum the flow and capacity	nd vertex t is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity.	ow n <i>s</i>
the costs by <i>a</i> . Verte: from <i>s</i> to <i>t</i> . (b) A solu to <i>t</i> . For each edge, th 6. Linear Programming © T Outline	x s is the source an attion to the minimum the flow and capacity	nd vertex t is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity.	ow n <i>s</i>
the costs by <i>a</i> . Verte: from <i>s</i> to <i>t</i> . (b) A solu to <i>t</i> . For each edge, th 6. Linear Programming © T Outline	x s is the source an tition to the minimu he flow and capacity Sauerwald	nd vertex <i>t</i> is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity. Formulating Problems as Linear Programs	ow n <i>s</i>
the costs by <i>a</i> . Verte: from <i>s</i> to <i>t</i> . (b) A solu to <i>t</i> . For each edge, th 6. Linear Programming © T Outline	x s is the source an tition to the minimu he flow and capacity Sauerwald	nd vertex <i>t</i> is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity. Formulating Problems as Linear Programs	ow n <i>s</i>
the costs by <i>a</i> . Verte: from <i>s</i> to <i>t</i> . (b) A solu to <i>t</i> . For each edge, th 6. Linear Programming © T Outline Introduction A Simple Example of	x s is the source an tition to the minimu he flow and capacity Sauerwald f a Linear Pro	nd vertex <i>t</i> is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity.	ow n <i>s</i>
the costs by <i>a</i> . Verte: from <i>s</i> to <i>t</i> . (b) A solu to <i>t</i> . For each edge, th 6. Linear Programming © T Outline	x s is the source an tition to the minimu he flow and capacity Sauerwald f a Linear Pro	nd vertex <i>t</i> is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity.	ow n <i>s</i>
the costs by <i>a</i> . Verte: from <i>s</i> to <i>t</i> . (b) A solu to <i>t</i> . For each edge, th 6. Linear Programming © T Outline Introduction A Simple Example of	k s is the source an tion to the minimu he flow and capacity Sauerwald f a Linear Priss s as Linear 1	nd vertex <i>t</i> is the sink, and we wish to send 4 units of flum-cost flow problem in which 4 units of flow are sent from y are written as flow/capacity.	ow


6. Linear Programming © T. Sauerwald

14





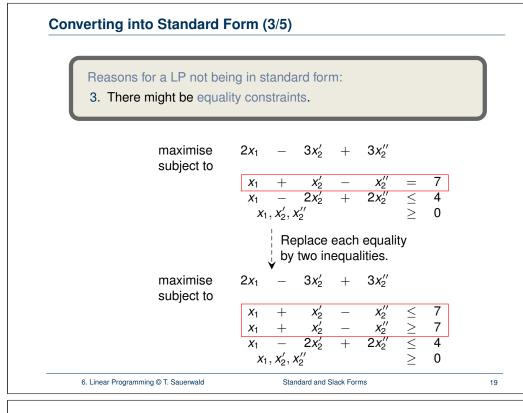
Converting into Standard Form (1/5)

1. The objective might be a minimisation rather than maximisation.

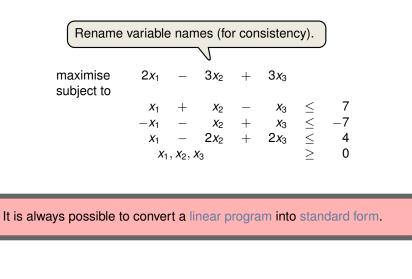
6. Linear Programming © T. Sauerwald

 $2x_2' +$

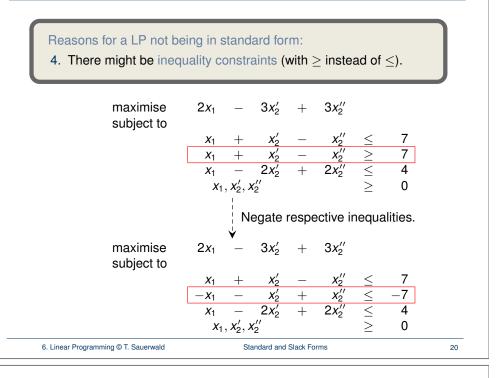
 x_1, x_2', x_3'

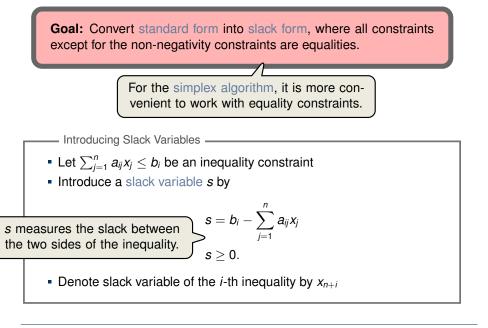

 $2x_{2}''$

 \leq


>

4


0


Converting into Standard Form (5/5)

Converting into Standard Form (4/5)

Converting Standard Form into Slack Form (1/3)

Converting Standard Form into Slack Form (2/3)

maximise subject to	$2x_1 - 3x_2 + 3x_3$	
300,001 10	$egin{array}{rcccccccccccccccccccccccccccccccccccc$	
	$-x_1 - x_2 + x_3 \leq -7$	
	$x_1 - 2x_2 + 2x_3 \leq 4$ $x_1, x_2, x_3 \geq 0$	
	Introduce slack variables	
maximise subject to	$2x_1 - 3x_2 + 3x_3$	
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	X 3
	$x_5 = -7 + x_1 + x_2 - 2x_3$ $x_6 = 4 - x_1 + 2x_2 - 2x_3$	X3 X3
	$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$	-5
		23
6. Linear Programming © T. S	Sauerwald Standard and Slack Forms	23
6. Linear Programming © T. S Basic and Non-Bas		
Basic and Non-Bas	sic Variables $= 2x_1 - 3x_2 + 3x_3$	
Basic and Non-Bas	sic Variables $= 2x_1 - 3x_2 + 3x_3$	
Basic and Non-Bas	sic Variables $= 2x_1 - 3x_2 + 3x_3$	
Basic and Non-Bas	sic Variables = $2x_1 - 3x_2 + 3x_3$ = $7 - x_1 - x_2 + x_3$ = $-7 + x_1 + x_2 - x_3$ = $4 - x_1 + 2x_2 - 2x_3$	
Basic and Non-Bas	sic Variables $= 2x_1 - 3x_2 + 3x_3$ $= 7 - x_1 - x_2 + x_3$ $= -7 + x_1 + x_2 - x_3$ $= 4 - x_1 + 2x_2 - 2x_3$	
Basic and Non-Bas	sic Variables $= 2x_{1} - 3x_{2} + 3x_{3}$ $= 7 - x_{1} - x_{2} + x_{3}$ $= -7 + x_{1} + x_{2} - x_{3}$ $= 4 - x_{1} + 2x_{2} - 2x_{3}$	
Basic and Non-Bas	$= 2x_{1} - 3x_{2} + 3x_{3}$ $= 7 - x_{1} - x_{2} + x_{3}$ $= -7 + x_{1} + x_{2} - x_{3}$ $= 4 - x_{1} + 2x_{2} - 2x_{3}$ Non-Basic Variables: $N = \{1, 2\}$	
Basic and Non-Bas Z X4 X5 X6 Basic Variables: B = Slack Form (Form)	$= 2x_{1} - 3x_{2} + 3x_{3}$ $= 7 - x_{1} - x_{2} + x_{3}$ $= -7 + x_{1} + x_{2} - x_{3}$ $= 4 - x_{1} + 2x_{2} - 2x_{3}$ Non-Basic Variables: $N = \{1, 2\}$	
Basic and Non-Bas Z X4 X5 X6 Basic Variables: B = Slack Form (Form)	sic Variables $= 2x_{1} - 3x_{2} + 3x_{3}$ $= 7 - x_{1} - x_{2} + x_{3}$ $= -7 + x_{1} + x_{2} - x_{3}$ $= 4 - x_{1} + 2x_{2} - 2x_{3}$ Non-Basic Variables: $N = \{1, 2, 2\}$ mal Definition) by a tuple (N, B, A, b, c, v) so that $z = v + \sum_{j \in N} c_{j}x_{j}$	
Basic and Non-Bas Z X4 X5 X6 Basic Variables: B = Slack Form (Form)	sic Variables $= 2x_{1} - 3x_{2} + 3x_{3}$ $= 7 - x_{1} - x_{2} + x_{3}$ $= -7 + x_{1} + x_{2} - x_{3}$ $= 4 - x_{1} + 2x_{2} - 2x_{3}$ Non-Basic Variables: $N = \{1, 2\}$ mal Definition) by a tuple (N, B, A, b, c, v) so that	

Variables/Coefficients on the right hand side are indexed by *B* and *N*.

25

Converting Standard Form into Slack Form (3/3)

maximise subject to	2 <i>x</i> ₁ -	- 3 <i>x</i> ₂	+ 3 <i>x</i> ₃							
,	<i>X</i> ₄ =	= 7	- <i>x</i> ₁	- x	2 +	<i>X</i> 3				
	<i>X</i> ₅ =	= -7	$+ x_{1}$	+ x	2 —	<i>X</i> ₃				
	<i>X</i> ₆ =	= 4	- X ₁	- $x+ x+ 2x$	2 —	2 <i>x</i> ₃				
		$x_2, x_3, x_4,$)					
						ctive function	on			
		¦ ano	d omit the	nonnegati	vity co	nstraints.				
	Z =	•	2 <i>x</i> ₁	- 3 <i>x</i> ₂	+	3 <i>x</i> ₃				
	X4 =	7								
	<i>x</i> ₅ =	-7	$+ x_{1}$	$+ x_2 + 2x_2$	_	<i>X</i> 3				
	<i>x</i> ₆ =	4	- <i>x</i> ₁	$+ 2x_2$	_	2 <i>x</i> ₃				
		1								
This	s is called	slack for	m.							
6. Linear Programming © T. S	auerwald		Standard and S	lack Forms			24			
Slack Form (Example)										
Z	= 28	_ :	<u>x₃</u> _	$\frac{x_5}{6}$ –	$\frac{2x_{6}}{3}$					
<i>x</i> ₁	= 8	+ :	<u>x₃</u> +	$\frac{x_5}{6} - \frac{x_5}{6} - \frac{2x_5}{3} + \frac{2x_5}{3}$	<u>x₆ 3</u>					
<i>x</i> ₂	= 4	- 8	$\frac{x_3}{3}$ –	$\frac{2x_5}{3}$ +	$\frac{x_6}{3}$					
<i>X</i> 4	= 18	_ :	$\frac{X_3}{2} +$	$\frac{X_5}{2}$						
			£	2						
Slack Form Nota		-)								
• $B = \{1, 2, 4\}, N$	$= \{3, 5, 6\}$	5}								
	a ₁₃ a ₁₅	a_{16}	$\binom{-1/6}{8/2}$	-1/6 1 2/3 - -1/2	$\binom{3}{1}$					
	123 a 25 143 a 45	$\left(\frac{a_{26}}{a_{46}}\right)^{-1}$	$\begin{pmatrix} 0/3\\1/2 \end{pmatrix}$	-1/2	0)					
· ·	$\langle h_{i} \rangle$	(8)	(c-)	/_1	6)					
$b = \begin{pmatrix} b_1 \\ b_2 \\ b_1 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, c = \begin{pmatrix} c_3 \\ c_5 \\ c_7 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ 2/3 \end{pmatrix}$										
	$\langle D_4 \rangle$	10/	$\langle c_{6} \rangle$	/ _2/	3/					
• <i>v</i> = 28										

6. Linear Programming © T. Sauerwald