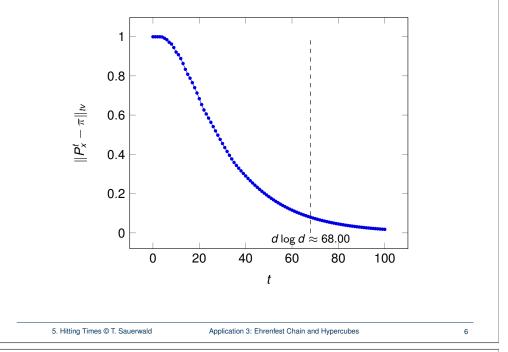


Total Variation Distance of Random Walk on Hypercube (d = 22)



Outline

Application 3: Ehrenfest Chain and Hypercubes

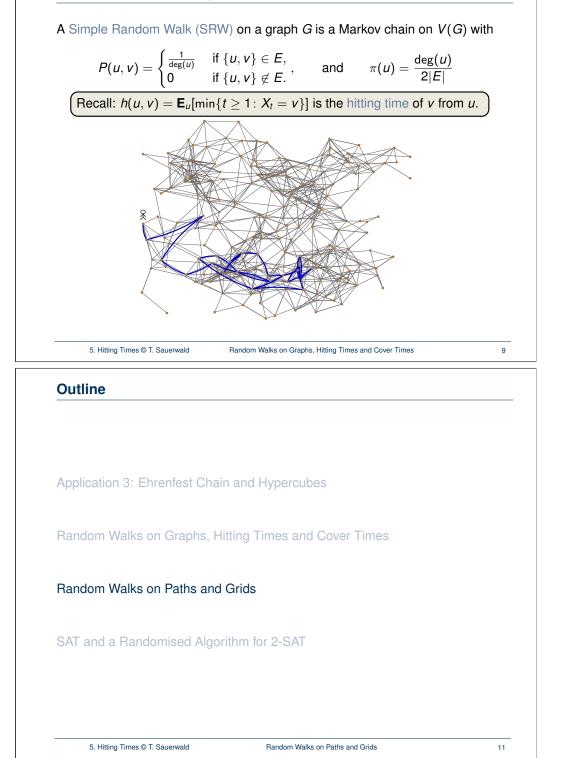
Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

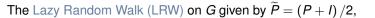
SAT and a Randomised Algorithm for 2-SAT

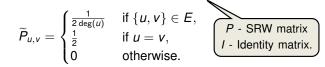
5. Hitting Times © T. Sauerwald

Random Walks on Graphs

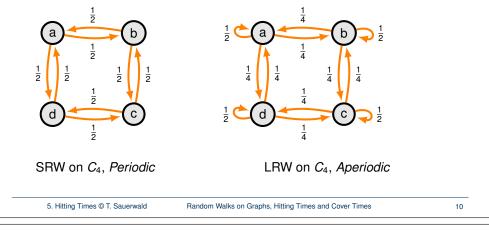


Lazy Random Walks and Periodicity

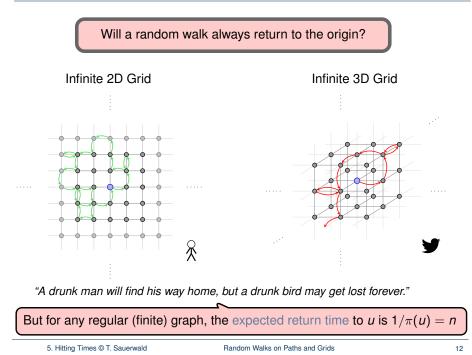




Fact: For any graph G the LRW on G is aperiodic.



1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)



	o-Dimensional Grids: Animation	
For animation, see full slides.		

Random Walk on a Path (2/2)

— Proposition .

For the SRW on
$$P_n$$
 we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \quad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$

System of *n* independent equations in *n* unknowns, so has a unique solution.

Thus it suffices to check that $f(k) = n^2 - k^2$ satisfies the above. Indeed

$$f(0) = 1 + f(1) = 1 + n^2 - 1^2 = n^2$$

and for any $1 \le k \le n-1$ we have,

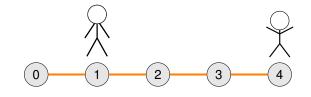
$$f(k) = 1 + \frac{n^2 - (k-1)^2}{2} + \frac{n^2 - (k+1)^2}{2} = n^2 - k^2.$$

Random Walks on Paths and Grids

15

Random Walk on a Path (1/2)

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$



— Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Exercise: [Exercise 4/5.15] What happens for the LRW on P_n ?

5. Hitting Times © T. Sauerwald

Random Walks on Paths and Grids

14

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

SAT: $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$ Solution: $x_1 = \text{True}, \quad x_2 = \text{False}, \quad x_3 = \text{False} \quad \text{and} \quad x_4 = \text{True}.$

- If each clause has k literals we call the problem k-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:
 - \rightarrow Model checking and hardware/software verification
 - ightarrow Design of experiments
 - \rightarrow Classical planning
 - $\rightarrow \ldots$

5. Hitting Times © T. Sauerwald

SAT and a Randomised Algorithm for 2-SAT

2**-SAT**

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

Example 2 : (Another) Solution Found

$(x_{1} \lor \overline{x_{2}}) \land (\overline{x_{1}} \lor \overline{x_{3}}) \land (x_{1} \lor x_{2}) \land (x_{4} \lor x_{3}) \land (x_{4} \lor \overline{x_{1}})$ T F F T T T T F T F (1) 0 1 2 3 4

5.	Hitting	Times	© T.	Sauerwald
----	---------	-------	------	-----------

SAT and a Randomised Algorithm for 2-SAT

2**-SAT**

17

X4

F

Т

Т

Т

19

 $\alpha = (\mathsf{T}, \mathsf{F}, \mathsf{F}, \mathsf{T}).$

X2

F

F

Т

Т

Х3

F

F

F

F

 X_1

F

F

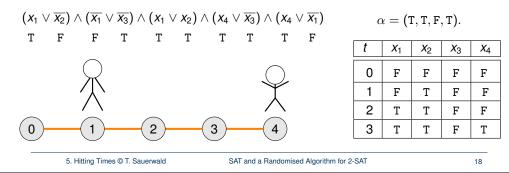
F

Т

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |$ variable values shared by A_i and $\alpha |$.

Example 1 : Solution Found



2-SAT and the SRW on the Path

— Expected iterations of (2) in RANDOMISED-2-SAT —

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n - 1$,

- (i) **P**[$X_{i+1} = 1 | X_i = 0$] = 1
- (ii) $\mathbf{P}[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$
- (iii) $\mathbf{P}[X_{i+1} = k 1 \mid X_i = k] \le 1/2.$

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the *n*-path from 0). This gives (see also [*Ex* 4/5.16])

E [time to find sol] \leq **E**₀[min{ $t : X_t = n$ }] \leq **E**₀[min{ $t : Y_t = n$ }] = $h(0, n) = n^2$.

Running for $2n^2$ steps and using Markov's inequality yields:

Proposition

Provided a solution exists, RANDOMISED-2-SAT will return a valid solution in $O(n^2)$ steps with probability at least 1/2.

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p. Then for any $C \ge 1$, $\lceil \frac{C}{p} \cdot \log n \rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1 - n^{-C}$.

Proof: Recall that $1 - p \le e^{-p}$ for all real *p*. Let $t = \lceil \frac{c}{p} \log n \rceil$ and observe

 $\mathsf{P} [t \text{ runs all fail}] \leq (1 - p)^{t} \\ \leq e^{-pt} \\ \leq n^{-c},$

thus the probability one of the runs succeeds is at least $1 - n^{-C}$.

– Randomised-2-SAT –

There is a $O(n^2 \log n)$ -step algorithm for 2-SAT which succeeds w.h.p.

5. Hitting Times © T. Sauerwald

SAT and a Randomised Algorithm for 2-SAT

21