Randomised Algorithms
Lecture 3: Concentration Inequalities, Application to Quick-Sort, Extensions

Thomas Sauerwald (tms41@cam. ac.uk)

Lent 2024

Outline

Application 2: Randomised QuickSort

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

QuickSort

=y

O ONOO RN

QUICKSORT (Input A[1], A[2], ..., A[n])

: Pick an element from the array, the so-called pivot
: If |[A|=0or |A| =1 then

return A
else
Create two subarrays A and A, (without the pivot) such that:
A1 contains the elements that are smaller than the pivot
A> contains the elements that are greater (or equal) than the pivot
QUICKSORT(A)
QUICKSORT(Az)
return A

Example: Let A= (2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
= A1 =(2,1,5,3,4)and A = (8,9,7)

Worst-Case Complexity (number of comparisons) is ©(n?),
while Average-Case Complexity is O(nlog n).
2

[We will now give a proof of this “well-known” result!]

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4 8,9,7

8.9)
® ®

[What is the number of comparisons?]
71

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the depths of all nodes in the tree (why?). In this case:

O+1+14+2+2+3+3+3+4=19.

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element / appears in the tree.
Then the number of comparisonis H = >, H;

3. We will prove that there exists C > 0 such that
P[H < Cnlogn]>1—n"".

4. Actually, we will prove sth slightly stronger:

P

i=1

({H < Clogn}] >1-n".

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

Randomised QuickSort: Analysis (2/4)

» Let P be a path from the root to the deepest level of some element

= Anodein Pis called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad

= Further let s; be the size of the array at level t in P.

2,8,9,1,7,5,6,3,4)s0 = 9

8,9,7

2,534] 2= 4 (8,9)

232 ® ®
34*1

* Element 2: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (2,5,3,4) — (2,3) — (2)

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 6

Randomised QuickSort: Analysis (3/4)

= Consider now any element i € {1,2, ..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with sp = n

H . - 2
* First Case, node: i1 = 5 - Sk This even holds always,
= Second Case, bad node: s, 1 < sx. i.e., deterministically!
= There are at most T = ,0;‘2% < 3log n many nodes on any path P.

= Assume |P| > Clognfor C := 24
= number of bad vertices in the first 24 log n levels is more than 21 log n.

N
(Let us now upper bound the probability that this “bad event” happens!j

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

Randomised QuickSort: Analysis (4/4)

» Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:
= X; = 1 if the node at level j is bad,
= Xj = 0 if the node at level j is . ! bad } } bad
'P[X':1|X0:X0,...,)(j_1:)(j_1]§% 1 E/S 26/3

0
= X =Y 7 e X satisfies relaxed independence assumption (Lecture 2)

pivot

’ ’ ’ Question: Edge Case: What if the path P does not reach level j?
m H =

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8.1

Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X:
= X; = 1 if the node at level j is bad,
= Xj = 0 if the node at level j is . F bad } } bad
*P[X=1]X=X,..., X1 =xX-1]<} 143 23

0
- X = Zf;‘é"g”_‘ X; satisfies relaxed independence assumption (Lecture 2)

Il

’ , ’ Question: Edge Case: What if the path P does not reach level j?
|

|| | ”
[Answer: We can then simply define X; as 0 (deterministically). j

pivot

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X:
= X; = 1if the node at level j is bad, bad bad

= X; = 0if the node at level j is . \ 1

*P[X=1]X=X,..., X1 =x-1]<} 148 23

0
- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (Lecture 2)

We can now apply the “nicer” Chernoff Bound!

* We have E[X] < (2/3) -24logn=16logn
= Then, by the “nicer” Chernoff Bounds {P [X>E[X]+1] < 6_2[2/"]

P[X >21logn] <P[X >E[X]+5logn]

* Hence P has more than 24 log n nodes with probability at most n—2.

= As there are in total n paths, by the union bound, the probability that at

least one of them has more than 24 log n nodes is at most n~".

* This implies P [_,{H; < 24logn}] > 1 —n"", as needed. [

pivot

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

8.3

Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)

= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)

JAN

= |t is possible to deterministically find the best pivot element that divides
the array into two subarrays of the same size.

= The latter requires to compute the median of the array in linear time,
which is not easy...

= The presented randomised algorithm for QUICKSORT is much easier to
implement!

Exercise: [Ex 2-3.6] Our upper bound of O(nlog n) whp also
immediately implies a O(nlog n) bound on the expected number
of comparisons!

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort

Outline

Extensions of Chernoff Bounds

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds

Hoeffding’s Extension

Hoeffding Bounds

= Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

= Hoeffding’s Lemma helps us here: | You can always consider
X = X -—E[X]

Hoeffding’s Extension Lemma

Let X be a random variable with mean 0 such that a < X < b. Then for

all A e R,
AX (b — a)2A2
E [e } < exp (8

We omit the proof of this lemmal

Hoeffding’s Inequality

Let Xi,..., X, be independent random variable with mean p; such that
a<X<b.LetX=Xi+...+ X andlety=E[X]=>", u. Then
forany t >0

PIX > it 1] <ex <_2")
TSP TS bi—ar)
and

Proof Outline (skipped):
slet X =Xi—piand X' = X{ +...+ X, thenP[X > u+t]=P[X > t]

s P[X' >t]<e M, E [eAX/] < exp [—At+ 230 (b — a)?

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds

Method of Bounded Differences

Framework

Suppose, we have independent random variables Xj, ..., X,. We want
to study the random variable:

(X, ., Xn)

Some examples:

1. X =Xi + ...+ X, (our setting earlier)
2. In balls into bins, X; indicates where ball i is allocated, and f(Xi, ..., Xn)
is the number of empty bins

3. Inarandomly generated graph, X; indicates if the i-th edge is present and
f(Xi, ..., Xm) represents the number of connected components of G

In all those cases (and more) we can easily prove
concentration of f(Xi,..., X,) around its mean by
the so-called Method of Bounded Differences.

. _ 4t
Choose A oY ST (b=a? to get the result.
(This is not magic! you just need to optimise A!j
3. Concentration © T. Sauerwald Extensions of Chernoff Bounds 12
Method of Bounded Differences
A function f is called Lipschitz with parameters ¢ = (c1, .. ., ¢,) if for all
i=1,2,...,n,
|f(X1,X2, ey Xie1, Xiy Xig,y - - ,Xn) — f(X1,X2, Ce ,X,',1,)7,',X,'+1,.. . ,Xn)| <c,

where x; and X; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi, ..., Xy be independent random variables. Let f be Lipschitz with
parameters ¢ = (Ci, ..., Cn). Let X = f(Xi,..., Xn). Then forany t > 0,

22
P[X2>p+t] <exp —W)
i=1 %

||X<u—1|<exp(—n 2).
Z C

i=1"i

= Notice the similarity with Hoeffding’s inequality! [Exercise 2/3.14]
= The proof is omitted here (it requires the concept of martingales).

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds 14

Outline

Applications of Method of Bounded Differences

Application 3: Balls into Bins (again...)

UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;

» Let Z be the number of empty bins (after assigning the m balls)

» Z=2(X1,...,Xm)and Z is Lipschitzwithe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)

= By McDiarmid’s inequality, for any t > 0,

P[IZ-E[Z]|>t] <2 2/
/1

This is a decent bound, but for some values of m it is far from
tight and stronger bounds are possible through a refined analysis.

]

3. Concentration © T. Sauerwald Applications of Method of Bounded Differences

3. Concentration © T. Sauerwald Applications of Method of Bounded Differences 15
Application 4: Bin Packing
,,,,,, e 1
0.85

0.2

= We are given nitems of sizes in the unit interval [0, 1]
= We want to pack those items into the fewest number of unit-capacity bins
= Suppose the item sizes X; are independent random variables in [0, 1]

Let B= B(Xi, ..., Xn) be the optimal number of bins
= The Lipschitz conditions holds with ¢ = (1,...,1). Why?

= Therefore
P[IB-E[B]|>t]<2-e 2"
Z

This is a typical example where proving concentration is
much easier than calculating (or estimating) the expectation!

3. Concentration © T. Sauerwald Applications of Method of Bounded Differences 17

Outline

Appendix: More on Moment Generating Functions (non-examinable)

3. Concentration © T. Sauerwald Appendix: More on Moment Generating Functions (non-examinable)

Moment Generating Functions (hon-examinable)

Moment-Generating Function

The moment-generating function of a random variable X is

Mx(t) = E {etx} . wheretcR.

71

[

Using power series of e and differentiating shows
that Mx(t) encapsulates all moments of X.

Lemma

1. If X and Y are two r.v.s with Mx(t) = My(t) for all t € (-9, +9) for
some ¢ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

My v (£) = Mx(t) - My(t).

Proof of 2:
My y(t) = E [e“xm] —E [e‘x : e’Y} OE [e’x} E [e’y] = Mx(My(t) O

3. Concentration © T. Sauerwald Appendix: More on Moment Generating Functions (non-examinable) 19

	Application 2: Randomised QuickSort
	Extensions of Chernoff Bounds
	Applications of Method of Bounded Differences
	Appendix: More on Moment Generating Functions (non-examinable)

