
Randomised Algorithms
Lecture 3: Concentration Inequalities, Application to Quick-Sort, Extensions

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

Outline

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 2

QuickSort

QUICKSORT (Input A[1],A[2], . . . ,A[n])
1: Pick an element from the array, the so-called pivot
2: If |A| = 0 or |A| = 1 then
3: return A
4: else
5: Create two subarrays A1 and A2 (without the pivot) such that:
6: A1 contains the elements that are smaller than the pivot
7: A2 contains the elements that are greater (or equal) than the pivot
8: QUICKSORT(A1)
9: QUICKSORT(A2)

10: return A

Example: Let A = (2, 8, 9, 1, 7, 5, 6, 3, 4) with A[7] = 6 as pivot.
⇒ A1 = (2, 1, 5, 3, 4) and A2 = (8, 9, 7)

Worst-Case Complexity (number of comparisons) is Θ(n2),
while Average-Case Complexity is O(n log n).

We will now give a proof of this “well-known” result!
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4

2,5,3,4

2,3

2

5

8,9,7

8,9

8

What is the number of comparisons?

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the depths of all nodes in the tree (why?). In this case:

0 + 1 + 1 + 2 + 2 + 3 + 3 + 3 + 4 = 19.
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don’t, just pick one at random.

This should be your standard answer in this course ,

Let us analyse QUICKSORT with random pivots.

1. Assume A consists of n different numbers, w.l.o.g., {1, 2, . . . , n}
2. Let Hi be the deepest level where element i appears in the tree.

Then the number of comparison is H =
∑n

i=1 Hi

3. We will prove that there exists C > 0 such that

P [ H ≤ Cn log n ] ≥ 1− n−1.

4. Actually, we will prove sth slightly stronger:

P

[
n⋂

i=1

{Hi ≤ C log n}

]
≥ 1− n−1.
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Randomised QuickSort: Analysis (2/4)

Let P be a path from the root to the deepest level of some element
A node in P is called good if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
otherwise, the node is bad

Further let st be the size of the array at level t in P.

2,8,9,1,7,5,6,3,4

2,1,5,3,4

2,5,3,4

2,3

2

5

8,9,7

8,9

8

good

bad

good

good

good

s0 = 9

s1 = 5

s2 = 4

s3 = 2

s4 = 1

Element 2: (2, 8, 9, 1, 7, 5, 6, 3, 4)→ (2, 1, 5, 3, 4)→ (2, 5, 3, 4)→ (2, 3)→ (2)
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Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!
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Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n vertices of P to the deepest level of element i .
For any level j ∈ {0, 1, . . . , 24 log n − 1}, define an indicator variable Xj :

Xj = 1 if the node at level j is bad,
Xj = 0 if the node at level j is good.

P [ Xj = 1 | X0 = x0, . . . ,Xj−1 = xj−1 ]≤ 2
3

X :=
∑24 log n−1

j=0 Xj satisfies relaxed independence assumption (Lecture 2)

pivot
1 `/3 2`/3 `

bad good bad

Question: Edge Case: What if the path P does not reach level j?

We can now apply the “nicer” Chernoff Bound!

We have E [ X ] ≤ (2/3) · 24 log n = 16 log n

Then, by the “nicer” Chernoff Bounds

P [ X ≥ E [ X ] + t ] ≤ e−2t2/n

P [ X > 21 log n ] ≤ P [ X > E [ X ] + 5 log n ]

≤ e−2(5 log n)2/(24 log n)

= e−(50/24) log n ≤ n−2.

Hence P has more than 24 log n nodes with probability at most n−2.

As there are in total n paths, by the union bound, the probability that at
least one of them has more than 24 log n nodes is at most n−1.

This implies P
[⋂n

i=1{Hi ≤ 24 log n}
]
≥ 1− n−1, as needed.

.13. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n vertices of P to the deepest level of element i .
For any level j ∈ {0, 1, . . . , 24 log n − 1}, define an indicator variable Xj :

Xj = 1 if the node at level j is bad,
Xj = 0 if the node at level j is good.

P [ Xj = 1 | X0 = x0, . . . ,Xj−1 = xj−1 ]≤ 2
3

X :=
∑24 log n−1

j=0 Xj satisfies relaxed independence assumption (Lecture 2)

pivot
1 `/3 2`/3 `

bad good bad

Question: Edge Case: What if the path P does not reach level j?

Answer: We can then simply define Xj as 0 (deterministically).

We can now apply the “nicer” Chernoff Bound!

We have E [ X ] ≤ (2/3) · 24 log n = 16 log n

Then, by the “nicer” Chernoff Bounds

P [ X ≥ E [ X ] + t ] ≤ e−2t2/n

P [ X > 21 log n ] ≤ P [ X > E [ X ] + 5 log n ] ≤ e−2(5 log n)2/(24 log n)

= e−(50/24) log n ≤ n−2.

Hence P has more than 24 log n nodes with probability at most n−2.

As there are in total n paths, by the union bound, the probability that at
least one of them has more than 24 log n nodes is at most n−1.

This implies P
[⋂n

i=1{Hi ≤ 24 log n}
]
≥ 1− n−1, as needed.
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Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n vertices of P to the deepest level of element i .
For any level j ∈ {0, 1, . . . , 24 log n − 1}, define an indicator variable Xj :

Xj = 1 if the node at level j is bad,
Xj = 0 if the node at level j is good.

P [ Xj = 1 | X0 = x0, . . . ,Xj−1 = xj−1 ]≤ 2
3

X :=
∑24 log n−1

j=0 Xj satisfies relaxed independence assumption (Lecture 2)

pivot
1 `/3 2`/3 `

bad good bad

We can now apply the “nicer” Chernoff Bound!

We have E [ X ] ≤ (2/3) · 24 log n = 16 log n

Then, by the “nicer” Chernoff Bounds
P [ X ≥ E [ X ] + t ] ≤ e−2t2/n

P [ X > 21 log n ] ≤ P [ X > E [ X ] + 5 log n ]

≤ e−2(5 log n)2/(24 log n)

= e−(50/24) log n ≤ n−2.

Hence P has more than 24 log n nodes with probability at most n−2.

As there are in total n paths, by the union bound, the probability that at
least one of them has more than 24 log n nodes is at most n−1.

This implies P
[⋂n

i=1{Hi ≤ 24 log n}
]
≥ 1− n−1, as needed.
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Randomised QuickSort: Final Remarks

Well-known: any comparison-based sorting algorithm needs Ω(n log n)

A classical result: expected number of comparison of randomised
QUICKSORT is 2n log n + O(n) (see, e.g., book by Mitzenmacher & Upfal)

Exercise: [Ex 2-3.6] Our upper bound of O(n log n) whp also
immediately implies a O(n log n) bound on the expected number
of comparisons!

It is possible to deterministically find the best pivot element that divides
the array into two subarrays of the same size.

The latter requires to compute the median of the array in linear time,
which is not easy...

The presented randomised algorithm for QUICKSORT is much easier to
implement!
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Hoeffding’s Extension

Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

Unfortunately the distribution of the Xi may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

Hoeffding’s Lemma helps us here:

Let X be a random variable with mean 0 such that a ≤ X ≤ b. Then for
all λ ∈ R,

E
[

eλX
]
≤ exp

(
(b − a)2λ2

8

)
Hoeffding’s Extension Lemma

You can always consider
X ′ = X − E [ X ]

We omit the proof of this lemma!
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Hoeffding Bounds

Let X1, . . . ,Xn be independent random variable with mean µi such that
ai ≤ Xi ≤ bi . Let X = X1 + . . . + Xn, and let µ = E [ X ] =

∑n
i=1 µi . Then

for any t > 0

P [ X ≥ µ+ t ] ≤ exp

(
− 2t2∑n

i=1(bi − ai )2

)
,

and

P [ X ≤ µ− t ] ≤ exp

(
− 2t2∑n

i=1(bi − ai )2

)
.

Hoeffding’s Inequality

Proof Outline (skipped):

Let X ′i = Xi − µi and X ′ = X ′1 + . . .+ X ′n, then P [ X ≥ µ+ t ] = P [ X ′ ≥ t ]

P [ X ′ ≥ t ] ≤ e−λt ∏n
i=1 E

[
eλX ′

i

]
≤ exp

[
−λt + λ2

8

∑n
i=1(bi − ai )

2
]

Choose λ = 4t∑n
i=1(bi−ai )

2 to get the result.

This is not magic! you just need to optimise λ!
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Method of Bounded Differences

Suppose, we have independent random variables X1, . . . ,Xn. We want
to study the random variable:

f (X1, . . . ,Xn)

Framework

Some examples:

1. X = X1 + . . .+ Xn (our setting earlier)

2. In balls into bins, Xi indicates where ball i is allocated, and f (X1, . . . ,Xm)
is the number of empty bins

3. In a randomly generated graph, Xi indicates if the i-th edge is present and
f (X1, . . . ,Xm) represents the number of connected components of G

In all those cases (and more) we can easily prove
concentration of f (X1, . . . ,Xn) around its mean by
the so-called Method of Bounded Differences.
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Method of Bounded Differences

A function f is called Lipschitz with parameters c = (c1, . . . , cn) if for all
i = 1, 2, . . . , n,

|f (x1, x2, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, x2, . . . , xi−1, x̃i , xi+1, . . . , xn)| ≤ ci ,

where xi and x̃i are in the domain of the i-th coordinate.

Let X1, . . . ,Xn be independent random variables. Let f be Lipschitz with
parameters c = (c1, . . . , cn). Let X = f (X1, . . . ,Xn). Then for any t > 0,

P [ X ≥ µ+ t ] ≤ exp

(
− 2t2∑n

i=1 c2
i

)
,

and

P [ X ≤ µ− t ] ≤ exp

(
− 2t2∑n

i=1 c2
i

)
.

McDiarmid’s inequality

Notice the similarity with Hoeffding’s inequality! [Exercise 2/3.14]

The proof is omitted here (it requires the concept of martingales).
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Application 3: Balls into Bins (again...)

Consider again m balls assigned uniformly at random into n bins.

Enumerate the balls from 1 to m. Ball i is assigned to a random bin Xi

Let Z be the number of empty bins (after assigning the m balls)
Z = Z (X1, . . . ,Xm) and Z is Lipschitz with c = (1, . . . , 1)
(If we move one ball to another bin, number of empty bins changes by ≤ 1.)

By McDiarmid’s inequality, for any t ≥ 0,

P [ |Z − E [ Z ] | > t ] ≤ 2 · e−2t2/m.

This is a decent bound, but for some values of m it is far from
tight and stronger bounds are possible through a refined analysis.
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Application 4: Bin Packing

1

0.4

0.5

0.2

0.8

0.35

0.4

0.15

0.85

0.2

We are given n items of sizes in the unit interval [0, 1]

We want to pack those items into the fewest number of unit-capacity bins

Suppose the item sizes Xi are independent random variables in [0, 1]

Let B = B(X1, . . . ,Xn) be the optimal number of bins

The Lipschitz conditions holds with c = (1, . . . , 1). Why?
Therefore

P [ |B − E [ B ] | ≥ t ] ≤ 2 · e−2t2/n.

This is a typical example where proving concentration is
much easier than calculating (or estimating) the expectation!
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Moment Generating Functions (non-examinable)

The moment-generating function of a random variable X is

MX (t) = E
[

etX
]
, where t ∈ R.

Moment-Generating Function

Using power series of e and differentiating shows
that MX (t) encapsulates all moments of X .

1. If X and Y are two r.v.’s with MX (t) = MY (t) for all t ∈ (−δ,+δ) for
some δ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

MX+Y (t) = MX (t) ·MY (t).

Lemma

Proof of 2:

MX+Y (t) = E
[

et(X+Y )
]

= E
[

etX · etY
]

(!)
= E

[
etX
]
· E
[

etY
]

= MX (t)MY (t)
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