

3

Randomised QuickSort: Analysis (1/4)

Let us analyse QUICKSORT with random pivots.

- 1. Assume A consists of *n* different numbers, w.l.o.g., $\{1, 2, ..., n\}$
- 2. Let H_i be the deepest level where element *i* appears in the tree. Then the number of comparison is $H = \sum_{i=1}^{n} H_i$
- 3. We will prove that there exists C > 0 such that

$$\mathbf{P}[H \le Cn \log n] \ge 1 - n^{-1}.$$

4. Actually, we will prove sth slightly stronger:

$$\mathbf{P}\left[\bigcap_{i=1}^n \left\{H_i \leq C \log n\right\}\right] \geq 1 - n^{-1}.$$

3. Concentration © T. Sauerwald

Application 2: Randomised QuickSort

5

7

Randomised QuickSort: Analysis (3/4)

- Consider now any element $i \in \{1, 2, ..., n\}$ and construct the path P = P(i) one level by one
- For *P* to proceed from level *k* to k + 1, the condition $s_k > 1$ is necessary

How far could such a path *P* possibly run until we have $s_k = 1$?

- We start with $s_0 = n$
- First Case, good node: $s_{k+1} \leq \frac{2}{3} \cdot s_k$.
- Second Case, bad node: $s_{k+1} \leq s_k$. i.e., deterministically!
- ⇒ There are at most $T = \frac{\log n}{\log(3/2)} < 3 \log n$ many good nodes on any path *P*.
- Assume $|P| \ge C \log n$ for C := 24

 \Rightarrow number of **bad** vertices in the first 24 log *n* levels is more than 21 log *n*.

Let us now upper bound the probability that this "bad event" happens!

This even holds always,

Randomised QuickSort: Analysis (2/4)

- Let P be a path from the root to the deepest level of some element
 - A node in P is called good if the corresponding pivot partitions the array into two subarrays each of size at most 2/3 of the previous one
 - otherwise, the node is bad
- Further let *s*_t be the size of the array at level *t* in *P*.

Randomised QuickSort: Analysis (4/4)

Randomised QuickSort: Analysis (4/4)

- Well-known: any comparison-based sorting algorithm needs $\Omega(n \log n)$
- A classical result: expected number of comparison of randomised QUICKSORT is $2n \log n + O(n)$ (see, e.g., book by Mitzenmacher & Upfal)

Exercise: [Ex 2-3.6] Our upper bound of $O(n \log n)$ whp also immediately implies a $O(n \log n)$ bound on the expected number of comparisons!

- It is possible to deterministically find the best pivot element that divides the array into two subarrays of the same size.
- The latter requires to compute the median of the array in linear time. which is not easy...
- The presented randomised algorithm for QUICKSORT is much easier to implement!

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)

Hoeffding's Extension

- Besides sums of independent Bernoulli random variables, sums of independent and bounded random variables are very frequent in applications.
- Unfortunately the distribution of the X_i may be unknown or hard to compute, thus it will be hard to compute the moment-generating function.
- Hoeffding's Lemma helps us here: You can always consider

– Hoeffding's Extension Lemma –

Let *X* be a random variable with mean 0 such that $a \le X \le b$. Then for all $\lambda \in \mathbb{R}$,

$$\mathsf{E}\left[e^{\lambda X}\right] \leq \exp\left(\frac{(b-a)^2\lambda^2}{8}\right)$$

We omit the proof of this lemma!

3. Concentration © T. Sauerwald

Extensions of Chernoff Bounds

 $X' = X - \mathbf{E}[X]$

Method of Bounded Differences

Framework -

Suppose, we have independent random variables X_1, \ldots, X_n . We want to study the random variable:

 $f(X_1,\ldots,X_n)$

Some examples:

- 1. $X = X_1 + \ldots + X_n$ (our setting earlier)
- 2. In balls into bins, X_i indicates where ball *i* is allocated, and $f(X_1, \ldots, X_m)$ is the number of empty bins
- 3. In a randomly generated graph, X_i indicates if the *i*-th edge is present and $f(X_1, \ldots, X_m)$ represents the number of connected components of *G*

In all those cases (and more) we can easily prove concentration of $f(X_1, \ldots, X_n)$ around its mean by the so-called **Method of Bounded Differences**.

3.	Concentration	© T.	Sauerwald
υ.	Concentration	e	ouucimulu

13

11

Hoeffding Bounds

Hoeffding's Inequality -

Let X_1, \ldots, X_n be independent random variable with mean μ_i such that $a_i \leq X_i \leq b_i$. Let $X = X_1 + \ldots + X_n$, and let $\mu = \mathbf{E}[X] = \sum_{i=1}^n \mu_i$. Then for any t > 0

$$\mathbf{P}\left[X \ge \mu + t\right] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

and

$$\mathbf{P}\left[X \le \mu - t\right] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

• Let $X'_i = X_i - \mu_i$ and $X' = X'_1 + \ldots + X'_n$, then $\mathbf{P}[X \ge \mu + t] = \mathbf{P}[X' \ge t]$ • $\mathbf{P}[X' \ge t] \le e^{-\lambda t} \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X'_i}\right] \le \exp\left[-\lambda t + \frac{\lambda^2}{8} \sum_{i=1}^{n} (b_i - a_i)^2\right]$ • Choose $\lambda = \frac{4t}{\sum_{i=1}^{n} (b_i - a_i)^2}$ to get the result. This is not magic! you just need to optimise λ !

3. Concentration © T. Sauerwald

Extensions of Chernoff Bounds

12

Method of Bounded Differences

A function *f* is called Lipschitz with parameters $\mathbf{c} = (c_1, \dots, c_n)$ if for all $i = 1, 2, \dots, n$,

$$|f(x_1, x_2, \ldots, x_{i-1}, \mathbf{x}_i, x_{i+1}, \ldots, x_n) - f(x_1, x_2, \ldots, x_{i-1}, \mathbf{x}_i, x_{i+1}, \ldots, x_n)| \leq c_i,$$

where x_i and \tilde{x}_i are in the domain of the *i*-th coordinate.

— McDiarmid's inequality —

Let X_1, \ldots, X_n be independent random variables. Let f be Lipschitz with parameters $\mathbf{c} = (c_1, \ldots, c_n)$. Let $X = f(X_1, \ldots, X_n)$. Then for any t > 0,

$$\mathbf{P}\left[X \ge \mu + t
ight] \le \exp\left(-rac{2t^2}{\sum_{i=1}^n c_i^2}
ight)$$

and

$$\mathbf{P}\left[X \le \mu - t\right] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)$$

• Notice the similarity with Hoeffding's inequality! [Exercise 2/3.14]

• The proof is omitted here (it requires the concept of martingales).

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)

3. Concentration © T. Sauerwald

Applications of Method of Bounded Differences

15

17

- We are given *n* items of sizes in the unit interval [0, 1]
- · We want to pack those items into the fewest number of unit-capacity bins
- Suppose the item sizes X_i are independent random variables in [0, 1]
- Let $B = B(X_1, ..., X_n)$ be the optimal number of bins
- The Lipschitz conditions holds with c = (1,...,1). Why?
- Therefore

 $\mathbf{P}[|B-\mathbf{E}[B]| \ge t] \le 2 \cdot e^{-2t^2/n}.$

This is a typical example where proving concentration is much easier than calculating (or estimating) the expectation!

Application 3: Balls into Bins (again...)

- Consider again *m* balls assigned uniformly at random into *n* bins.
- Enumerate the balls from 1 to m. Ball i is assigned to a random bin X_i
- Let *Z* be the number of empty bins (after assigning the *m* balls)
- $Z = Z(X_1, ..., X_m)$ and Z is Lipschitz with $\mathbf{c} = (1, ..., 1)$ (If we move one ball to another bin, number of empty bins changes by ≤ 1 .)
- By McDiarmid's inequality, for any $t \ge 0$,

 $\mathbf{P}[|Z-\mathbf{E}[Z]|>t] \leq 2 \cdot e^{-2t^2/m}.$

This is a decent bound, but for some values of m it is far from tight and stronger bounds are possible through a refined analysis.

3. Concentration © T. Sauerwald

Applications of Method of Bounded Differences

18

Outline

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)

Moment-Generating Function

The moment-generating function of a random variable X is

$$M_X(t) = \mathbf{E}\left[e^{tX}
ight], \qquad ext{where } t \in \mathbb{R}.$$

Using power series of *e* and differentiating shows that $M_X(t)$ encapsulates all moments of X.

— Lemma —

- 1. If X and Y are two r.v.'s with $M_X(t) = M_Y(t)$ for all $t \in (-\delta, +\delta)$ for some $\delta > 0$, then the distributions X and Y are identical.
- 2. If X and Y are independent random variables, then

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t).$$

Proof of 2:

$$M_{X+Y}(t) = \mathbf{E}\left[e^{t(X+Y)}\right] = \mathbf{E}\left[e^{tX} \cdot e^{tY}\right] \stackrel{(!)}{=} \mathbf{E}\left[e^{tX}\right] \cdot \mathbf{E}\left[e^{tY}\right] = M_X(t)M_Y(t) \quad \Box$$

3. Concentration © T. Sauerwald Appendix: More on Moment Generating Functions (non-examinable)

19

