QuickSort

QuickSort (Input $A[1], A[2], \ldots, A[n]$)
1. Pick an element from the array, the so-called pivot
2. If $|A| = 0$ or $|A| = 1$ then
 - return A
3. else
 - Create two subarrays A_1 and A_2 (without the pivot) such that:
 - A_1 contains the elements that are smaller than the pivot
 - A_2 contains the elements that are greater (or equal) than the pivot
 - QuickSort(A_1)
 - QuickSort(A_2)
4. return A

- **Example:** Let $A = (2, 8, 9, 1, 7, 5, 6, 3, 4)$ with $A[7] = 6$ as pivot.
 $A_1 = (2, 1, 5, 3, 4)$ and $A_2 = (8, 9, 7)$
- Worst-Case Complexity (number of comparisons) is $\Theta(n^2)$,
 while Average-Case Complexity is $O(n \log n)$.

We will now give a proof of this “well-known” result!
How to pick a good pivot? We don't. Just pick one at random.

This should be your standard answer in this course 😊

Let us analyse QuickSort with random pivots.
1. Assume \(A \) consists of \(n \) different numbers, w.l.o.g., \(\{1, 2, \ldots, n\} \)
2. Let \(H \) be the deepest level where element \(i \) appears in the tree.
 Then the number of comparison is \(H = \sum_{i=1}^{n} H_i \)
3. We will prove that there exists \(C > 0 \) such that
 \[
 P[H \leq C n \log n] \geq 1 - n^{-1}.
 \]
4. Actually, we will prove something slightly stronger:
 \[
 P[\bigcap_{i=1}^{n} \{H_i \leq C \log n\}] \geq 1 - n^{-1}.
 \]

Randomised QuickSort: Analysis (3/4)

- Consider now any element \(i \in \{1, 2, \ldots, n\} \) and construct the path
 \(P = P(i) \) one level by one
- For \(P \) to proceed from level \(k \) to \(k + 1 \), the condition \(s_k > 1 \) is necessary

How far could such a path \(P \) possibly run until we have \(s_k = 1 \)?

- We start with \(s_0 = n \)
- **First Case**, good node: \(s_{k+1} \leq \frac{2}{3} \cdot s_k \)
- **Second Case**, bad node: \(s_{k+1} \leq s_k \)

\[\Rightarrow \] There are at most \(T = \frac{\log n}{\log(3/2)} < 3 \log n \) many good nodes on any path \(P \).
- Assume \(|P| \geq C \log n \) for \(C := 24 \)
 \[\Rightarrow \] number of bad vertices in the first \(24 \log n \) levels is more than \(21 \log n \).

Let us now upper bound the probability that this "bad event" happens!

Randomised QuickSort: Analysis (4/4)

- Consider the first \(24 \log n \) vertices of \(P \) to the deepest level of element \(i \).
- For any level \(j \in \{0, 1, \ldots, 24 \log n - 1\} \), define an indicator variable \(X_j \):
 - \(X_j = 1 \) if the node at level \(j \) is good,
 - \(X_j = 0 \) if the node at level \(j \) is bad.
- \(P[X_j = 1 | X_0 = x_0, \ldots, X_{j-1} = x_{j-1}] \leq \frac{2}{3} \)
- \(X := \sum_{j=0}^{24 \log n - 1} X_j \) satisfies relaxed independence assumption (Lecture 2)

Question: Edge Case: What if the path \(P \) does not reach level \(j \)?

Randomised QuickSort: Analysis (2/4)

- Let \(P \) be a path from the root to the deepest level of some element
 - A node in \(P \) is called good if the corresponding pivot partitions the array into two subarrays each of size at most \(2/3 \) of the previous one
 - otherwise, the node is bad
- Further let \(s_i \) be the size of the array at level \(i \) in \(P \).

![Diagram](image_url)
Randomised QuickSort: Analysis (4/4)

- Consider the first $24 \log n$ vertices of P to the deepest level of element i.
- For any level $j \in \{0, 1, \ldots, 24 \log n - 1\}$, define an indicator variable X_j:
 - $X_j = 1$ if the node at level j is bad,
 - $X_j = 0$ if the node at level j is good.
- $P \{ X_j = 1 \mid X_0 = x_0, \ldots, X_{j-1} = x_{j-1} \} \leq \frac{2}{3}$
- $X := \sum_{j=0}^{24 \log n - 1} X_j$ satisfies relaxed independence assumption (Lecture 2)

Question: Edge Case: What if the path P does not reach level j?

Answer: We can then simply define X_j as 0 (deterministically).

Randomised QuickSort: Final Remarks

- A classical result: expected number of comparison of randomised QUICKSORT is $2n \log n + O(n)$ (see, e.g., book by Mitzenmacher & Upfal)

Exercise: [Ex 2-3.6] Our upper bound of $O(n \log n)$ whp also immediately implies a $O(n \log n)$ bound on the expected number of comparisons!

- It is possible to deterministically find the best pivot element that divides the array into two subarrays of the same size.
- The latter requires to compute the median of the array in linear time, which is not easy...
- The presented randomised algorithm for QUICKSORT is much easier to implement!

Outline

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)
Method of Bounded Differences

- Besides sums of independent Bernoulli random variables, sums of independent and bounded random variables are very frequent in applications.
- Unfortunately the distribution of the X_i may be unknown or hard to compute, thus it will be hard to compute the moment-generating function.
- Hoeffding’s Lemma helps us here: You can always consider $X' = X - E[X]$.

Hoeffding’s Extension Lemma

Let X be a random variable with mean 0 such that $a \leq X \leq b$. Then for all $\lambda \in \mathbb{R}$,

$$
E\left[e^{\lambda X}\right] \leq \exp\left(\frac{(b-a)^2 \lambda^2}{8}\right)
$$

We omit the proof of this lemma!

Method of Bounded Differences

Framework

Suppose, we have independent random variables X_1, \ldots, X_n. We want to study the random variable:

$$f(X_1, \ldots, X_n)$$

Some examples:

1. $X = X_1 + \ldots + X_n$ (our setting earlier)
2. In balls into bins, X_i indicates where ball i is allocated, and $f(X_1, \ldots, X_m)$ is the number of empty bins
3. In a randomly generated graph, X_i indicates if the i-th edge is present and $f(X_1, \ldots, X_m)$ represents the number of connected components of G

In all those cases (and more) we can easily prove concentration of $f(X_1, \ldots, X_n)$ around its mean by the so-called **Method of Bounded Differences**.

Hoeffding Bounds

Hoeffding’s Inequality

Let X_1, \ldots, X_n be independent random variable with mean μ_i such that $a_i \leq X_i \leq b_i$. Let $X = X_1 + \ldots + X_n$, and let $\mu = E[X] = \sum_{i=1}^n \mu_i$. Then for any $t > 0$

$$
P[X \geq \mu + t] \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n \lambda^2}\right),
$$

and

$$
P[X \leq \mu - t] \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n \lambda^2}\right).
$$

Proof Outline (skipped):

- Let $X_i' = X_i - \mu_i$ and $X' = X_1' + \ldots + X_n'$, then $P[X \geq \mu + t] = P[X' \geq t]$
- $P[X' \geq t] \leq e^{-\lambda t} \prod_{i=1}^n E\left[e^{\lambda X_i'}\right] \leq \exp\left(-\lambda t + \frac{\lambda^2}{8} \sum_{i=1}^n (b_i - a_i)^2\right)$
- Choose $\lambda = \frac{2t}{\sum_{i=1}^n (b_i - a_i)^2}$ to get the result.

This is not magic! You just need to optimise λ!

McDiarmid’s Inequality

Let X_1, \ldots, X_n be independent random variables. Let f be Lipschitz with parameters $c = (c_1, \ldots, c_n)$ if for all $i = 1, 2, \ldots, n$,

$$|f(x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) - f(x_1, x_2, \ldots, x_{i-1}, \tilde{x}_i, x_{i+1}, \ldots, x_n)| \leq c_i,$$

where x_i and \tilde{x}_i are in the domain of the i-th coordinate.

McDiarmid’s inequality

Let X_1, \ldots, X_n be independent random variables. Let f be Lipschitz with parameters $c = (c_1, \ldots, c_n)$. Let $X = f(X_1, \ldots, X_n)$. Then for any $t > 0$,

$$
P[X \geq \mu + t] \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right),
$$

and

$$
P[X \leq \mu - t] \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).
$$

- Notice the similarity with Hoeffding’s inequality! [Exercise 2/3.14]
- The proof is omitted here (it requires the concept of martingales).
Application 3: Balls into Bins (again...)

Consider again m balls assigned uniformly at random into n bins.

- Enumerate the balls from 1 to m. Ball i is assigned to a random bin X_i.
- Let Z be the number of empty bins (after assigning the m balls).
- $Z = Z(X_1, \ldots, X_m)$ and Z is Lipschitz with $c = (1, \ldots, 1)$.
 (If we move one ball to another bin, number of empty bins changes by ≤ 1.)
- By McDiarmid's inequality, for any $t \geq 0$,
 \[
P \left[|Z - E[Z]| \geq t \right] \leq 2 \cdot e^{-2t^2/m}.
\]
 This is a decent bound, but for some values of m it is far from tight and stronger bounds are possible through a refined analysis.

Application 4: Bin Packing

- We are given n items of sizes in the unit interval $[0, 1]$.
- We want to pack those items into the fewest number of unit-capacity bins.
- Suppose the item sizes X_i are independent random variables in $[0, 1]$.
- Let $B = B(X_1, \ldots, X_n)$ be the optimal number of bins.
- The Lipschitz conditions holds with $c = (1, \ldots, 1)$. Why?
- Therefore
 \[
P \left[|B - E[B]| \geq t \right] \leq 2 \cdot e^{-2t^2/n}.
\]
 This is a typical example where proving concentration is much easier than calculating (or estimating) the expectation!
Moment Generating Functions (non-examinable)

Moment-Generating Function

The moment-generating function of a random variable X is

$$M_X(t) = E\left[e^{tX}\right], \quad \text{where } t \in \mathbb{R}.$$

Using power series of e and differentiating shows that $M_X(t)$ encapsulates all moments of X.

Lemma

1. If X and Y are two r.v.'s with $M_X(t) = M_Y(t)$ for all $t \in (-\delta, +\delta)$ for some $\delta > 0$, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t).$$

Proof of 2:

$$M_{X+Y}(t) = E\left[e^{t(X+Y)}\right] = E\left[e^{tX} \cdot e^{tY}\right] (i) = E\left[e^{tX}\right] \cdot E\left[e^{tY}\right] = M_X(t)M_Y(t).$$