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Origin of Graph Theory

é.ource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

a Is there a tour which crosses

. each bridge exactly once?

Graphs Nowadays: Clustering
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Goal: Use spectrum of graphs (unstructured data) to extract clustering

(communitites) or other structural information.
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Graph Clustering (applications)

Graphs and Matrices

» Applications of Graph Clustering
= Community detection
= Group webpages according to their topics
= Find proteins performing the same function within a cell
= Image segmentation
= |dentify bottlenecks in a network

* Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

= Different formalisations for different applications

= Geometric Clustering: partition points in a Euclidean space
k-means, k-medians, k-centres, etc.

= Graph Clustering: partition vertices in a graph
modularity, conductance, min-cut, etc.
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Graphs Matrices

0 1 0 1
1 0 1 0
01 0 1
1 0 1 0

= Connectivity = Eigenvalues

= Bipartiteness = Eigenvectors

= Number of triangles = Inverse

= Graph Clustering = Determinant

* Graph isomorphism = Matrix-powers

= Maximum Flow -

= Shortest Paths
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Matrices, Spectrum and Structure
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Adjacency Matrix

Adjacency matrix

Let G = (V, E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

Auv:

i

{1 if {u,v}eE

0 otherwise.

0o =0
I RN RN
Y
o0 =

Properties of A:

= The sum of elements in each row/column i equals the degree of the
corresponding vertex i, deg(/)

= Since G is undirected, A is symmetric
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

Let M € R™" X € Cis an eigenvalue of M if and only if there exists
x € C"\ {0} such that

Mx = \x.

We call x an eigenvector of M corresponding to the eigenvalue .

An undirected graph G is d-regular if every degree
is d, i.e., every vertex has exactly d connections.
Graph Spectrum

Let A be the adjacency matrix of a d-regular graph G with n vertices.
Then, A has n real eigenvalues Ay < --- < X\, and n corresponding
orthonormal eigenvectors fi,.. ., fr. These eigenvalues associated with

their“ultiplioities constitute the spectrum of G.

1\

[: orthogonal and normalised]

[Remark: For symmetric matrices we have algebraic multiplicity = geometric multiplicity (otherwise >) j
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Example 1

Example 1

[Bonus: Can you find a short-cut to det(A — A - 1)? ]

, ’ ’ Question: What are the Eigenvalues and Eigenvectors?
m B =

o 1 1
A=[1 0 1
11 0
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[Bonus: Can you find a short-cut to det(A — A - 1)? ]

, , ’ Question: What are the Eigenvalues and Eigenvectors?
m H =

0o 1 1
A=|1 0 1
1 1 0
Solution:
= The three eigenvalues are A\ = Xp = —1, A3 = 2.
» The three eigenvectors are (for example):
1 —% 1
=0 ], =11, K=|[1
—1 —% 1
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Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

L:I—HA7

where | is the n x nidentity matrix.

p , P Question: What is the matrix ; - A?
m B =
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Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

]
L=1-—A
d b

where | is the n x nidentity matrix.

1 —1/2 0 -1/2
L_|-12 1 120
| o 12 1 12

~1/2 0 -1/2 1

Properties of L:
= The sum of elements in each row/column equals zero
= Lis symmetric

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix

A and L have the same set of eigenvectors.
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[Exercise 11/12.1]

f’} Exercise: Prove this correspondence. Hint: Use that L = 1 — JA.
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Eigenvalues and Graph Spectrum of L

Eigenvalues and eigenvectors

Let M € R™" X € Cis an eigenvalue of M if and only if there exists
x € C"\ {0} such that
Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .

Graph Spectrum

Let L be the Laplacian matrix of a d-regular graph G with n vertices.
Then, L has n real eigenvalues \y < --- < ), and n corresponding
orthonormal eigenvectors fi,.. ., fr. These eigenvalues associated with

their multiplicities constitute the spectrum of G.

Useful Facts of Graph Spectrum

Lemma

Let L be the Laplacian matrix of an undirected, regular graph G = (V, E)
with eigenvalues A\ < --- < Ap.

1. A1 = 0 with eigenvector 1

2. the multiplicity of the eigenvalue 0 is equal to the number of
connected components in G

3. <2
4. )\, = 2 iff there exists a bipartite connected component.

N
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AN

[ The proof of these properties is based on a ]

powerful characterisation of eigenvalues/vectors!

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 14




A Min-Max Characterisation of Eigenvalues and Eigenvectors

——— Courant-Fischer Min-Max Formula

Let M be an n by n symmetric matrix with eigenvalues Ay < --- < Ap.
Then,

_ x0T Mx®
Ak = min max ——e—-—,
S: dim(S)=k xeS,x#£0 (i)' x(i)

where S is a subspace of R". The eigenvectors corresponding to

A1, ..., Ax minimise such expression.
.
x Mx . x"Mx
At = min T Ae = xe]lgy\n{O} xTx
xeRM {0} X'X it

minimised by an eigenvector f; for A4 minimised by
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Quadratic Forms of the Laplacian

Lemma

Let L be the Laplacian matrix of a d-regular graph G = (V, E) with n
vertices. For any x € R”,

T . (Xu — Xv)2
X Lx = Z g

Visualising a Graph

Question: How can we visualize a complicated object like an unknown

graph with many vertices in low-dimensional space?

Embedding onto Line

minates givem

2
. Xuy—Xq
min Z{u,v}eE( u v)

: 2
xeR"\ {0} [Ix113
xLf

/)
/L

[The coordinates in the vector x indicate how similar/dissimilar vertices]

are. Edges between dissimilar vertices are penalised quadratically.
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{u,v}€E
Proof:
1 1
x"Lx=x" (1— <A ) x=x"x—- =x"Ax
d d
I
I S
uev {u,v}€E
1 2 2
=3 Z (x5 + xy — 2xuxv)
{u,v}eE
2
=y
d .
{u,v}eE
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A Simplified Clustering Problem
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A Simplified Clustering Problem

Partition the graph into connected components so that any pair of ver-
tices in the same component is connected, but vertices in different com-
ponents are not.

[ We could obviously solve this easily using DFS/BFS, but ]

let's see how we can tackle this using the spectrum of L!
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Example 2

’ , , Question: What are the Eigenvectors with Eigenvalue 0 of L?
m H =

o 1t 1 0 0 0 O
1 0 1 0 O 0 O
1 1 0 0 0 0 O
A=|0 0 0 O 1 0 1
o 0 o 1 0 1 O
e e o 0 0o o 1t 0 1
o 0 o 1t 0 1 O
1 =1 —% 0 0 0 0
7% 1 -1 o o o o0
-3 -1 0 0 0 0
e e L=/ 0o o o 1 -1 o 1
0 0 o % 1 =5 o0
o o o o0 -1 1 -}
0 0 o -4 o -5 1
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Example 2
’ , ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?
=== 01 1.0 0 0 0
10 1 0 0 0 ©
11 0 0 0 0 O
A=|0 0 0 0 1 0 1
00 01 0 1 0
00 00 1 0 f
(D—®) 0 00 101 0
i -5 -z 0 0 0 0
f% 1 I 0o 0o o o
-3 -3 1 0 0 0 ©
a e L=lo o o 1 -4 o -}
0 0 o -1 1 -1 o0
0 0 0 o -1 1 -1
1 1
Solution: 0 0 0 -1 0 -1 1

" Two smallest eigenvalues are Ay = A, = 0. [Tlhus gve G ea_sily iolve_ the simplifiec_i ﬁlugteringl proé)—
* The corresponding two eigenvectors are: em by computing the eigenvectors with eigenvalue

J

1 0 1 —1 /3\
1 0 1 -1/3
1 0 1 -1/ Next Lecture: A fine-grained
=10, =|1]|(or Ai=|1], L=] 1/4 approach works even if the
0 1 1 1/4] clusters are sparsely connected!
0 1 1 1/4
0 1 1 174 )
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Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example! ]

Proof (multiplicity of 0 equals the no. of connected components):

1. (*="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Ci,...,Cx = M =---=X=0
= Take x¢, € {0,1}" such that x¢,(u) = 1,¢¢, forallu € V
= Clearly, the x¢,’s are orthogonal

" XEI.LXC,' = 18 ) Z{u,v}eE(XC,‘(u) - XC,‘(V))2 =0 = )‘1 == >\k =0

2. ("“«="cc(G) = mult(0)). We will show:
A =---=Xx=0 = Ghas at least k connected comp. C,..., Cx
= there exist f1, .. ., f orthonormal such that 3=, ,y < g(fi(u) — f(v))2=0

= = fi,..., fx constant on connected components
= asfi,..., f, are pairwise orthogonal, G must have k different connected
components.
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