Randomised Algorithms

Lecture 10: Approximation Algorithms: Set-Cover and MAX-CNF

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

The Weighted Set-Cover Problem

- Set Cover Problem -

- Given: set X and a family of subsets F, and a cost function c: F → R⁺
- Goal: Find a minimum-cost subset $\mathcal{C} \subseteq \mathcal{F}$

Sum over the costs of all sets in C

 $X = \bigcup_{S \in \mathcal{C}} S.$

Remarks:

- generalisation of the weighted Vertex-Cover problem
- models resource allocation problems

Outline

Weighted Set Cover

MAX-CNF

10. Approximation Algorithms © T. Sauerwald

Weighted Set Cover

2

Setting up an Integer Program

Question: Try to formulate the integer program and linear program of the weighted SET-COVER problem (solution on next slide!)

Setting up an Integer Program

0-1 Integer Program —

subject to
$$\sum_{S \in \mathcal{F}: x \in S} y(S) \geq 1$$
 for each $x \in X$

$$y(S) \in \{0,1\}$$
 for each $S \in \mathcal{J}$

Linear Program —

minimize
$$\sum_{s} c(S)y(S)$$

subject to
$$\sum_{S \in \mathcal{F}: x \in S} y(S) \geq 1$$
 for each $x \in X$

$$y(S) \in [0,1]$$
 for each $S \in \mathcal{F}$

10. Approximation Algorithms © T. Sauerwald

Weighted Set Cover

Randomised Rounding

$$S_1$$
 S_2 S_3 S_4 S_5 S_6 $c:$ 2 3 3 5 1 2 $\overline{y}(.):$ 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the \overline{y} -values as probabilities for picking the respective set.

Randomised Rounding -

- Let $C \subseteq \mathcal{F}$ be a random set with each set S being included independently with probability $\overline{y}(S)$.
- More precisely, if \overline{y} denotes the optimal solution of the LP, then we compute an integral solution y by:

$$y(S) = \begin{cases} 1 & \text{with probability } \overline{y}(S) \\ 0 & \text{otherwise.} \end{cases}$$
 for all $S \in \mathcal{F}$.

Weighted Set Cover

• Therefore, $\mathbf{E}[y(S)] = \overline{y}(S)$.

Back to the Example

$$S_1$$
 S_2 S_3 S_4 S_5 S_6 $c:$ 2 3 3 5 1 2 $\overline{y}(.)$: 1/2 1/2 1/2 1 1/2 Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all \overline{y} 's were below 1/2, we would not even return a valid cover!

10. Approximation Algorithms © T. Sauerwald

Weighted Set Cover

Randomised Rounding

$$S_1$$
 S_2 S_3 S_4 S_5 S_6 $c:$ 2 3 3 5 1 2 $\overline{y}(.)$: 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the \overline{y} -values as probabilities for picking the respective set.

Lemma -

• The expected cost satisfies

10. Approximation Algorithms © T. Sauerwald

$$\mathsf{E}\left[\,c(\mathcal{C})\,
ight] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$$

• The probability that an element $x \in X$ is covered satisfies

$$\mathbf{P}\left[x\in\bigcup_{S\in\mathcal{C}}S\right]\geq 1-\frac{1}{e}.$$

Proof of Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability $\overline{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$.
- The probability that x is covered satisfies $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$.

Proof:

• Step 1: The expected cost of the random set \mathcal{C}

$$\begin{split} \mathbf{E}\left[c(\mathcal{C})\right] &= \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right] \\ &= \sum_{S \in \mathcal{F}} \mathbf{P}\left[S \in \mathcal{C}\right] \cdot c(S) = \sum_{S \in \mathcal{F}} \overline{y}(S) \cdot c(S). \end{split}$$

• Step 2: The probability for an element to be (not) covered

$$\mathbf{P}[x \not\in \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \mathbf{P}[S \not\in \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - \overline{y}(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-\overline{y}(S)} \overline{y} \text{ solves the LP!}$$

$$= e^{-\sum_{S \in \mathcal{F}: \ x \in S} \overline{y}(S)} \leq e^{-1} \quad \Box$$

10. Approximation Algorithms © T. Sauerwald

Weighted Set Cover

Analysis of Weighted Set Cover-LP

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that \mathcal{C} is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the 2 ln niterations with probability at least $1 - \frac{1}{9}$, so that

$$\mathbf{P}[x \notin \cup_{S \in \mathcal{C}} S] \le \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

This implies for the event that all elements are covered:

$$\mathbf{P}[X = \cup_{S \in \mathcal{C}} S] = 1 - \mathbf{P} \left[\bigcup_{x \in X} \{ x \notin \cup_{S \in \mathcal{C}} S \} \right]$$

$$\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B] > 1 - \sum_{x \in X} \mathbf{P}[x \notin \cup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio
 - By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$.

Weighted Set Cover

■ Linearity \Rightarrow **E** [c(C)] \leq 2 ln(n) $\cdot \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S) \leq$ 2 ln(n) $\cdot c(C^*)$

The Final Step

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{a}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets C.

WEIGHTED SET COVER-LP(X, \mathcal{F}, c)

- 1: compute \overline{y} , an optimal solution to the linear program
- 2: $\mathcal{C} = \emptyset$
- 3: **repeat** 2 ln *n* times
- for each $S \in \mathcal{F}$
- let $C = C \cup \{S\}$ with probability $\overline{y}(S)$
- 6: return C

10. Approximation Algorithms © T. Sauerwald

Weighted Set Cover

Analysis of Weighted Set Cover-LP

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

By Markov's inequality,
$$\mathbf{P}[c(\mathcal{C}) \le 4 \ln(n) \cdot c(\mathcal{C}^*)] \ge 1/2$$
.

Hence with probability at least $1 - \frac{1}{n} - \frac{1}{2} > \frac{1}{3}$, solution is valid and within a factor of $4 \ln(n)$ of the optimum.

probability could be further increased by repeating

clearly runs in polynomial-time!

Typical Approach for Designing Approximation Algorithms based on LPs

[Exercise Question (9/10).10] gives a different perspective on the amplification procedure through non-linear randomised rounding.

Outline

Weighted Set Cover

MAX-CNF

10. Approximation Algorithms © T. Sauerwald

MAX-CNF

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

Analysis -

For any clause i which has length ℓ ,

P[clause *i* is satisfied] = $1 - 2^{-\ell} := \alpha_{\ell}$.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:

- First statement as in the proof of Theorem 35.6. For clause *i* not to be satisfied, all ℓ occurring variables must be set to a specific value.
- As before, let $Y := \sum_{i=1}^{m} Y_i$ be the number of satisfied clauses. Then,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} \mathbf{E}[Y_i] \ge \sum_{i=1}^{m} \frac{1}{2} = \frac{1}{2} \cdot m.$$

MAX-CNF

Recall:

MAX-3-CNF Satisfiability -

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

- Given: CNF formula, e.g.: $(x_1 \vee \overline{x_4}) \wedge (x_2 \vee \overline{x_3} \vee x_4 \vee \overline{x_5}) \wedge \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?

- Allowing arbitrary clause lengths makes the problem more interesting (we will see that simply guessing is not the best!)
- a nice concluding example where we can practice previously learned approaches

10. Approximation Algorithms © T. Sauerwald

MAX-CNF

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

0-1 Integer Program —

maximize
$$\sum_{i=1}^{m} z_i$$

These auxiliary variables are used to reflect whether a clause is satisfied or not

subject to
$$\sum_{j \in C_i^+} y_j + \sum_{j \in C_i^-} (1 - y_j) \ge z_i$$
 for each $i = 1, 2, \dots, m$

 C_i^+ is the index set of the unnegated variables of clause i.

$$z_i \in \{0,1\}$$
 for each $i = 1, 2, ..., m$

$$y_j \in \{0,1\}$$
 for each $j = 1, 2, \dots, n$

- In the corresponding LP each $\in \{0, 1\}$ is replaced by $\in [0, 1]$
- Let $(\overline{y}, \overline{z})$ be the optimal solution of the LP
- Obtain an integer solution v through randomised rounding of \overline{v}

Analysis of Randomised Rounding

Lemma –

For any clause i of length ℓ .

P[clause *i* is satisfied]
$$\geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i$$
.

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause i appear non-negated (otherwise replace every occurrence of x_i by $\overline{x_i}$ in the whole formula)
- Further, by relabelling assume $C_i = (x_1 \vee \cdots \vee x_\ell)$

$$\Rightarrow$$
 P[clause *i* is satisfied] = 1 - $\prod_{i=1}^{\ell}$ **P**[y_i is false] = 1 - $\prod_{i=1}^{\ell}$ $(1 - \overline{y}_i)$

 $\frac{a_1 + \ldots + a_k}{k} \ge \sqrt[k]{a_1 \times \ldots \times a_k}.$ $\geq 1 - \left(\frac{\sum_{j=1}^{\ell} (1 - \overline{y}_j)}{\ell}\right)^{\ell}$ Arithmetic vs. geometric mean:

$$\begin{aligned}
\mathbf{x} &\geq 1 - \left(\frac{\sum_{j=1}^{\ell} (1 - \overline{y}_j)}{\ell}\right)^{\ell} \\
&= 1 - \left(1 - \frac{\sum_{j=1}^{\ell} \overline{y}_j}{\ell}\right)^{\ell} \geq 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}.
\end{aligned}$$

10. Approximation Algorithms © T. Sauerwald

Analysis of Randomised Rounding

Lemma

For any clause *i* of length ℓ ,

P[clause *i* is satisfied]
$$\geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i$$
.

Randomised Rounding yields a $1/(1-1/e) \approx 1.5820$ randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause i = 1, 2, ..., m, let ℓ_i be the corresponding length.
- Then the expected number of satisfied clauses is:

$$\mathbf{E}[Y] = \sum_{i=1}^{m} \mathbf{E}[Y_i] \ge \sum_{i=1}^{m} \left(1 - \left(1 - \frac{1}{\ell_i}\right)^{\ell_i}\right) \cdot \overline{z}_i \ge \sum_{i=1}^{m} \left(1 - \frac{1}{e}\right) \cdot \overline{z}_i \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$\qquad \qquad \mathsf{Since} \ (1 - 1/x)^x \le 1/e \qquad \mathsf{LP} \ \mathsf{solution} \ \mathsf{at} \ \mathsf{least} \ \mathsf{as} \ \mathsf{good} \ \mathsf{as} \ \mathsf{optimum}$$

Analysis of Randomised Rounding

Lemma –

For any clause i of length ℓ .

P[clause *i* is satisfied]
$$\geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{Z}_i$$
.

Proof of Lemma (2/2):

So far we have shown:

P[clause *i* is satisfied]
$$\geq 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}$$

• For any $\ell \ge 1$, define $g(z) := 1 - \left(1 - \frac{z}{\ell}\right)^{\ell}$. This is a concave function with g(0) = 0 and $g(1) = 1 - \left(1 - \frac{1}{\ell}\right)^{\ell} =: \beta_{\ell}$.

$$\Rightarrow g(z) \ge \frac{\beta_{\ell} \cdot z}{\beta_{\ell} \cdot z} \quad \text{for any } z \in [0,1] \quad 1 - (1 - \frac{1}{3})^3 = -\frac{1}{3}$$

• Therefore, **P** [clause *i* is satisfied] $\geq \beta_{\ell} \cdot \overline{z}_{i}$.

10. Approximation Algorithms © T. Sauerwald

Approach 3: Hybrid Algorithm

Summarv

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HYBRID-MAX-CNF(φ , n, m)

- 1: Let $b \in \{0, 1\}$ be the flip of a fair coin
- 2: If b = 0 then perform random quessing
- 3: If b = 1 then perform randomised rounding
- 4: return the computed solution

Algorithm sets each variable x_i to TRUE with prob. $\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \overline{y}_i$. Note, however, that variables are **not** independently assigned!

Theorem

HYBRID-MAX-CNF(φ , n, m) is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause *i* is satisfied with probability at least $3/4 \cdot \overline{z}_i$
- For any clause *i* of length ℓ :
 - Algorithm 1 satisfies it with probability $1 2^{-\ell} = \alpha_{\ell} \ge \alpha_{\ell} \cdot \overline{Z}_{i}$.
 - Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \overline{z}_{i}$.
 - HYBRID-MAX-CNF(φ , n, m) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \overline{Z}_i + \frac{1}{2} \cdot \beta_{\ell} \cdot \overline{Z}_i$.
- Note $\frac{\alpha_\ell + \beta_\ell}{2} = 3/4$ for $\ell \in \{1, 2\}$, and for $\ell \ge 3$, $\frac{\alpha_\ell + \beta_\ell}{2} \ge 3/4$ (see figure)
- ⇒ HYBRID-MAX-CNF(φ , n, m) satisfies it with prob. at least $3/4 \cdot \overline{z}_i$

10. Approximation Algorithms $\ensuremath{\texttt{©}}$ T. Sauerwald

MAX-CNF

MAX-CNF Conclusion

Summar

- Since $\alpha_2 = \beta_2 = 3/4$, we cannot achieve a better approximation ratio than 4/3 by combining Algorithm 1 & 2 in a different way
- The 4/3-approximation algorithm can be easily derandomised
 - Idea: use the conditional expectation trick for both Algorithm 1 & 2 and output the better solution
- The 4/3-approximation algorithm applies unchanged to a weighted version of MAX-CNF, where each clause has a non-negative weight
- Even MAX-2-CNF (every clause has length 2) is NP-hard!

10. Approximation Algorithms © T. Sauerwald

MAX-CNF

17