Randomised Algorithms

Lecture 9: Approximation Algorithms: MAX-3-CNF and Vertex-Cover

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio -

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost (value) $\mathbf{E}[C]$ of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{\mathbf{E}[C]}{C^*}, \frac{C^*}{\mathbf{E}[C]}\right) \leq \rho(n).$$

not covered here (non-examinable)

Randomised Approximation Schemes

An approximation scheme is an approximation algorithm, which given any input and $\epsilon > 0$, is a $(1 + \epsilon)$ -approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon > 0$, the runtime is polynomial in n. For example, $O(n^{2/\epsilon})$.
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1/\epsilon$ and n. For example, $O((1/\epsilon)^2 \cdot n^3)$.

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (x_1 \lor \overline{x_3} \lor \overline{x_5}) \land (x_2 \lor \overline{x_4} \lor x_5) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$$

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0 \text{ and } x_5 = 1 \text{ satisfies 3 (out of 4 clauses)}$$

Idea: What about assigning each variable uniformly and independently at random?

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = 1$$
{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i,

$$\mathbf{P}[\text{clause } i \text{ is not satisfied}] = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

$$\Rightarrow \qquad \mathbf{P}[\text{clause } i \text{ is satisfied}] = 1 - \frac{1}{8} = \frac{7}{8}$$

$$\Rightarrow \qquad \mathbf{E}[Y_i] = \mathbf{P}[Y_i = 1] \cdot 1 = \frac{7}{8}.$$

• Let $Y := \sum_{i=1}^{m} Y_i$ be the number of satisfied clauses. Then,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} \mathbf{E}[Y_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} \cdot m. \quad \Box$$
Linearity of Expectations
maximum number of satisfiable clauses is m.

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

Corollary

For any instance of MAX-3-CNF, there exists an assignment which satisfies at least $\frac{7}{8}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \ge \mathbf{E}[Y]$

Probabilistic Method: powerful tool to show existence of a non-obvious property.

Corollary -

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Follows from the previous Corollary.

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7/8) \cdot m$ clauses is at least 1/(8m)

$$\mathbf{E}[Y] = \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 1] + \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 0].$$

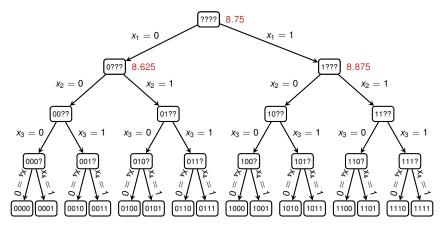
Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]$

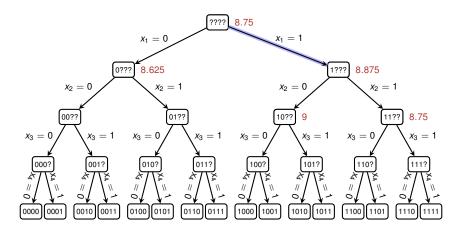
GREEDY-3-CNF(ϕ , n, m)

- 1: **for** j = 1, 2, ..., n
- 2: Compute **E**[$Y \mid x_1 = v_1 \dots, x_{j-1} = v_{j-1}, x_j = 1$]
- 3: Compute **E** [$Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 0$]
- 4: Let $x_j = v_j$ so that the conditional expectation is maximised
- 5: **return** the assignment v_1, v_2, \ldots, v_n

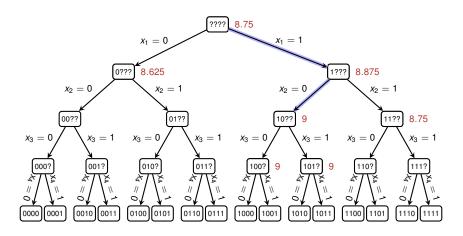
$$\begin{array}{l} \left(X_1 \vee X_2 \vee X_3 \right) \wedge \left(X_1 \vee \overline{X_2} \vee \overline{X_4} \right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4} \right) \wedge \left(\overline{X_1} \vee \overline{X_3} \vee X_4 \right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4} \right) \wedge \\ \left(\overline{X_1} \vee \overline{X_2} \vee \overline{X_3} \right) \wedge \left(\overline{X_1} \vee X_2 \vee X_3 \right) \wedge \left(\overline{X_1} \vee \overline{X_2} \vee X_3 \right) \wedge \left(X_1 \vee X_3 \vee X_4 \right) \wedge \left(X_2 \vee \overline{X_3} \vee \overline{X_4} \right) \end{array}$$



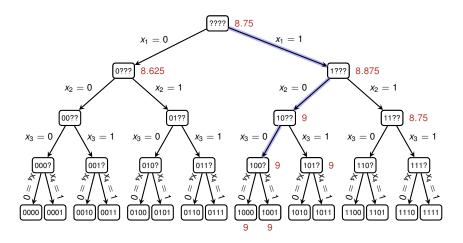
$$1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge (\overline{x_2} \vee \overline{x_3}) \wedge (x_2 \vee x_3) \wedge (\overline{x_2} \vee x_3) \wedge 1 \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4})$$



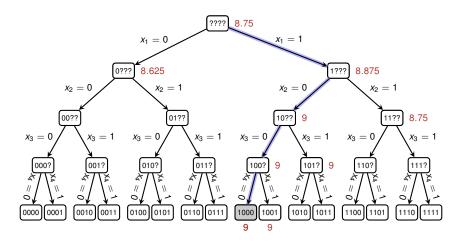
 $1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge 1 \wedge (x_3) \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee \overline{x_4})$



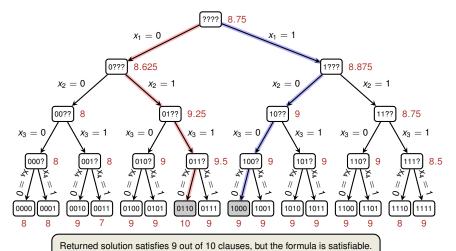
$1 \land 1 \land 1 \land 1 \land 1 \land 1 \land 0 \land 1 \land 1 \land 1$



$1 \land 1 \land 1 \land 1 \land 1 \land 1 \land 0 \land 1 \land 1 \land 1$



$$\begin{array}{c} \left(X_1 \vee X_2 \vee X_3\right) \wedge \left(X_1 \vee \overline{X_2} \vee \overline{X_4}\right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4}\right) \wedge \left(\overline{X_1} \vee \overline{X_3} \vee X_4\right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4}\right) \wedge \\ \left(\overline{X_1} \vee \overline{X_2} \vee \overline{X_3}\right) \wedge \left(\overline{X_1} \vee X_2 \vee X_3\right) \wedge \left(\overline{X_1} \vee \overline{X_2} \vee X_3\right) \wedge \left(X_1 \vee X_3 \vee X_4\right) \wedge \left(X_2 \vee \overline{X_3} \vee \overline{X_4}\right) \end{array}$$



Analysis of GREEDY-3-CNF(ϕ , n, m)

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

E [
$$Y \mid x_1 = v_1, ..., x_{j-1} = v_{j-1}, x_j = 1$$
] = $\sum_{i=1}^{m}$ **E** [$Y_i \mid x_1 = v_1, ..., x_{j-1} = v_{j-1}, x_j = 1$] **Step 2:** satisfies at least $7/8 \cdot m$ clauses

■ Step 2: satisfies at least 7/8 · m clauses

computable in
$$O(1)$$

• Due to the greedy choice in each iteration j = 1, 2, ..., n,

$$\mathsf{E} \left[\ Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = v_j \ \right] \ge \mathsf{E} \left[\ Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1} \ \right]$$

$$\ge \mathsf{E} \left[\ Y \mid x_1 = v_1, \dots, x_{j-2} = v_{j-2} \ \right]$$

$$\geq \mathbf{E}[Y] = \frac{7}{9} \cdot m.$$

MAX-3-CNF: Concluding Remarks

Theorem 35.6 ———

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

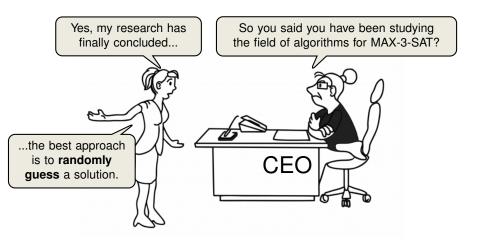
Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Theorem (Hastad'97) ----

For any $\epsilon > 0$, there is no polynomial time $8/7 - \epsilon$ approximation algorithm of MAX3-CNF unless P=NP.

Essentially there is nothing smarter than just guessing!



Source of Image: Stefan Szeider, TU Vienna

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

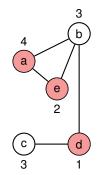
The Weighted Vertex-Cover Problem

Vertex Cover Problem

- Given: Undirected, vertex-weighted graph G = (V, E)
- Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $\{u, v\} \in E(G)$, then $u \in V'$ or $v \in V'$.

This is (still) an NP-hard problem.

Question: How can we deal with graphs that have negative weights?



Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person
- Perform all tasks with the minimal amount of resources

A Greedy Approach working for Unweighted Vertex Cover

```
APPROX-VERTEX-COVER(G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

remove from E' every edge incident on either u or v

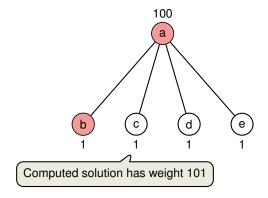
7 return C
```

This algorithm is a 2-approximation for **unweighted graphs**!

A Greedy Approach working for Unweighted Vertex Cover

```
APPROX-VERTEX-COVER (G)
```

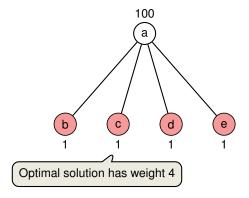
- 1 $C = \emptyset$
- 2 E' = G.E
- 3 while $E' \neq \emptyset$
- let (u, v) be an arbitrary edge of E'
- $C = C \cup \{u, v\}$
- 6 remove from E' every edge incident on either u or v
- 7 return C



A Greedy Approach working for Unweighted Vertex Cover

```
APPROX-VERTEX-COVER (G)
```

- 1 $C = \emptyset$
- E' = G.E
- 3 while $E' \neq \emptyset$
 - let (u, v) be an arbitrary edge of E'
- $C = C \cup \{u, v\}$
- 6 remove from E' every edge incident on either u or v
- 7 return C



Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

```
minimize \sum_{v \in V} w(v)x(v) subject to x(u) + x(v) \geq 1 \quad \text{for each } (u,v) \in E x(v) \in \{0,1\} \quad \text{for each } v \in V optimum is a lower bound on the optimal weight of a minimum weight-cover.
```

minimize
$$\sum_{v \in V} w(v)x(v)$$

subject to $x(u) + x(v) \ge 1$ for each $(u, v) \in E$

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.

 $x(v) \in [0,1]$ for each $v \in V$

The Algorithm

```
APPROX-MIN-WEIGHT-VC(G, w)

1 C = \emptyset

2 compute \bar{x}, an optimal solution to the linear program 3 for each v \in V

4 if \bar{x}(v) \ge 1/2

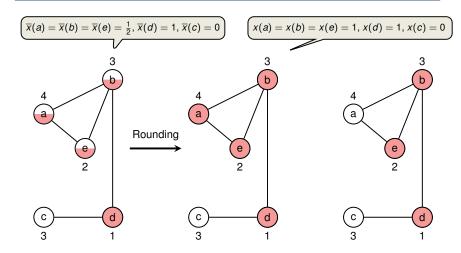
5 C = C \cup \{v\}
```

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.

is polynomial-time because we can solve the linear program in polynomial time

Example of APPROX-MIN-WEIGHT-VC



fractional solution of LP with weight = 5.5

rounded solution of LP with weight = 10

optimal solution with weight = 6

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z^* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - © Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$ \Rightarrow at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \le 2z^*$:

$$w({\color{blue}C^*}) \geq z^* = \sum_{v \in V} w(v) \overline{x}(v) \; \geq \sum_{v \in V \colon \overline{x}(v) \geq 1/2} w(v) \cdot \frac{1}{2} = \frac{1}{2} w({\color{blue}C}). \quad \Box$$

