Randomised Algorithms

Lecture 7: Linear Programming: Simplex Algorithm

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

Simplex Algorithm: Introduction

Simplex Algorithm

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Extended Example: Conversion into Slack Form

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
Basic solution: $(\overline{x_1}, \overline{x_2}, ..., \overline{x_6}) = (0, 0, 0, 30, 24, 36)$
This basic solution is **feasible**
Objective value is 0.

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Switch roles of x_1 and x_6 :

Solving for x₁ yields:

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$
.

• Substitute this into x_1 in the other three equations

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_4}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_4}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_4}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_4}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Switch roles of x_3 and x_5 :

Solving for x₃ yields:

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} - \frac{x_6}{8}$$

• Substitute this into x_3 in the other three equations

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

Basic solution: $(\overline{X_1}, \overline{X_2}, \dots, \overline{X_6}) = (\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with objective value $\frac{111}{4} = 27.75$

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Solving for x₂ yields:

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$
.

• Substitute this into x_2 in the other three equations

All coefficients are negative, and hence this basic solution is optimal!

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_1}{3}$$

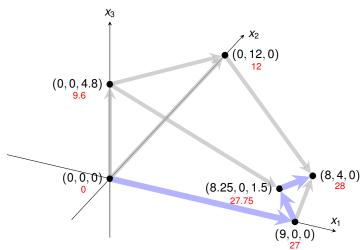
$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_1}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_1}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

Extended Example: Visualization of SIMPLEX



Exercise: [Ex. 6/7.6] How many basic solutions (including non-feasible ones) are there?

Extended Example: Alternative Runs (1/2)

Extended Example: Alternative Runs (2/2)

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$y = 3x_1 + x_2 + 2x_3$$

$$x_6 = 36 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$y = 3x_1 + x_2 + 2x_2 + 2x_3$$

$$x_6 = 36 - 2x_1 - 2x_2 - 5x_3$$

$$x_1 + x_2 + x_2 + 2x_3$$
Switch roles of x_1 and x_2

$$x_3 = 24 - 2x_1 + x_2 + 2x_2 + 2x_3$$

$$x_4 = \frac{78}{5} + \frac{x_1}{5} + \frac{x_2}{5} + \frac{3x_5}{5}$$

$$x_4 = \frac{78}{5} + \frac{x_1}{5} + \frac{x_2}{5} + \frac{2x_2}{5} - \frac{x_5}{5}$$

$$x_6 = \frac{132}{5} - \frac{16x_1}{5} - \frac{x_2}{5} + \frac{2x_3}{5}$$
Switch roles of x_1 and x_2

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_4 + x_5 + x_5$$

X1

Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

The Pivot Step Formally

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
                                                                                Rewrite "tight" equation
    for each j \in N - \{e\} Need that a_{le} \neq 0!
          \hat{a}_{ei} = a_{li}/a_{le}
                                                                               for enterring variable x_e.
 6 \hat{a}_{el} = 1/a_{le}
     // Compute the coefficients of the remaining constraints.
     for each i \in B - \{l\}
       \hat{b}_i = b_i - a_{ia}\hat{b}_a
                                                                                Substituting x_e into
     for each j \in N - \{e\}
                                                                                  other equations.
               \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ie}\hat{a}_{el}
     // Compute the objective function.
14 \quad \hat{v} = v + c_a \hat{b}_a
                                                                                Substituting x<sub>e</sub> into
15 for each j \in N - \{e\}
16
     \hat{c}_i = c_i - c_e \hat{a}_{ei}
                                                                                 objective function.
     \hat{c}_{I} = -c_{e}\hat{a}_{eI}
    // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
                                                                                 Update non-basic
20 \hat{B} = B - \{l\} \cup \{e\}
                                                                                and basic variables
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```

Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \hat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

3. After substituting into the other constraints, we have

$$\overline{X}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e.$$

Formalizing the Simplex Algorithm: Questions

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Example before was a particularly nice one!

The formal procedure SIMPLEX

```
SIMPLEX(A, b, c)
                                                                          Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                      feasible basic solution (if it exists)
     let \Delta be a new vector of length m
    while some index j \in N has c_i > 0
                                                                              Main Loop:
          choose an index e \in N for which c_e > 0

    terminates if all coefficients in

          for each index i \in B
                                                                                   objective function are
               if a_{ie} > 0
                                                                                   non-positive
                    \Delta_i = b_i/a_{ie}
                                                                                Line 4 picks enterring variable
               else \Delta_i = \infty
                                                                                   x<sub>e</sub> with positive coefficient
          choose an index l \in B that minimizes \Delta_i
                                                                                ■ Lines 6 — 9 pick the tightest
10
          if \Delta_I == \infty
                                                                                   constraint, associated with x1
11
               return "unbounded"
12
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
                                                                                Line 11 returns "unbounded" if
     for i = 1 to n
                                                                                   there are no constraints
14
          if i \in B
                                                                                Line 12 calls PIVOT, switching
15
               \bar{x}_i = b_i
                                                                                   roles of x_i and x_p
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

Return corresponding solution.

The formal procedure SIMPLEX

```
SIMPLEX (A, b, c)

1 (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)

2 let \Delta be a new vector of length m

3 while some index j \in N has c_j > 0

4 choose an index e \in N for which c_e > 0

5 for each index i \in B

6 if a_{ie} > 0

7 \Delta_i = b_i/a_{ie}

8 else \Delta_i = \infty

9 choose an index l \in B that minimizes \Delta_i

10 if \Delta_l = \infty

11 return "unbounded"
```

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,
- 3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 -

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

Finding an Initial Solution

maximise
$$2x_1 - x_2$$
 subject to
$$2x_1 - x_2 \leq 2 \\ x_1 - 5x_2 \leq -4 \\ x_1, x_2 \geq 0$$
 Conversion into slack form
$$z = 2x_1 - x_2 \\ x_3 = 2 - 2x_1 + x_2 \\ x_4 = -4 - x_1 + 5x_2$$
 Basic solution $(x_1, x_2, x_3, x_4) = (0, 0, 2, -4)$ is not feasible!

Geometric Illustration

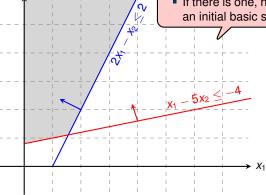
maximise subject to

$$2x_1 - x_2$$

 χ_2

Questions:

- How to determine whether there is any feasible solution?
- If there is one, how to determine an initial basic solution?



Formulating an Auxiliary Linear Program

maximise
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{j} \geq 0 \quad \text{for } j=1,2,\ldots,n$$
 Formulating an Auxiliary Linear Program maximise subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} - x_{0} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{i} \geq 0 \quad \text{for } j=0,1,\ldots,n$$

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

Proof. Exercise!

- Lemma 29.11

- Let us illustrate the role of x_0 as "distance from feasibility"
- We'll also see that increasing x_0 enlarges the feasible region

Geometric Illustration

For the animation see the full slides.

- Let us now modify the original linear program so that it is not feasible
- \Rightarrow Hence the auxiliary linear program has only a solution for a sufficiently large $x_0 > 0$!

Geometric Illustration

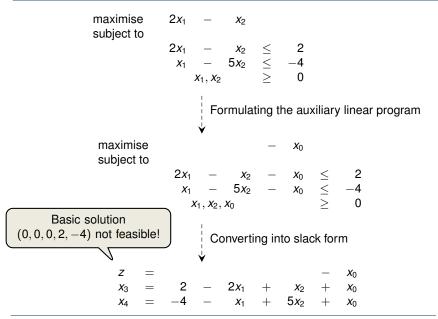
maximise
$$-x_0$$
 subject to
$$2x_1 - x_2 - x_0 \le -2 \\ -x_1 + 5x_2 - x_0 \le 4 \\ x_0, x_1, x_2 \ge 0$$

For the animation see the full slides.

INITIALIZE-SIMPLEX

```
Test solution with N = \{1, 2, \dots, n\}, B = \{n + 1, n + 1\}
INITIALIZE-SIMPLEX (A, b, c)
                                                  2, \ldots, n+m, \overline{x}_i = b_i for i \in B, \overline{x}_i = 0 otherwise.
     let k be the index of the minimum b_k
                                  // is the initial basic solution feasible?
   if b_k > 0
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
     form L_{\text{aux}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
                                                                              \ell will be the leaving variable so
     let (N, B, A, b, c, v) be the resulting slack form for L_{aux}
    l = n + k
                                                                           that x_{\ell} has the most negative value.
     //L_{any} has n+1 nonbasic variables and m basic variables.
   (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
                                                           \neg Pivot step with x_{\ell} leaving and x_0 entering.
    // The basic solution is now feasible for L_{\text{aux}}.
   iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
          to L_{\text{aux}} is found
                                                                            This pivot step does not change
     if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
                                                                               the value of any variable.
              perform one (degenerate) pivot to make it nonbasic
13
14
          from the final slack form of L_{\text{aux}}, remove x_0 from the constraints and
               restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
              associated constraint
15
          return the modified final slack form
16
     else return "infeasible"
```

Example of Initialize-Simplex (1/3)



Example of Initialize-Simplex (2/3)

Example of Initialize-Simplex (3/3)

$$\begin{array}{rclcrcrcr}
z & = & - & x_0 \\
x_2 & = & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_2}{5} \\
x_3 & = & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_2}{5}
\end{array}$$

$$2x_1 - x_2 = 2x_1 - \left(\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}\right)$$

Set $x_0 = 0$ and express objective function by non-basic variables

$$\begin{array}{rclrcl}
z & = & -\frac{4}{5} & + & \frac{9x_1}{5} & - & \frac{x_4}{5} \\
x_2 & = & \frac{4}{5} & + & \frac{x_1}{5} & + & \frac{x_4}{5} \\
x_3 & = & \frac{14}{5} & - & \frac{9x_1}{5} & + & \frac{x_4}{5}
\end{array}$$

Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

Lemma 29.12

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)

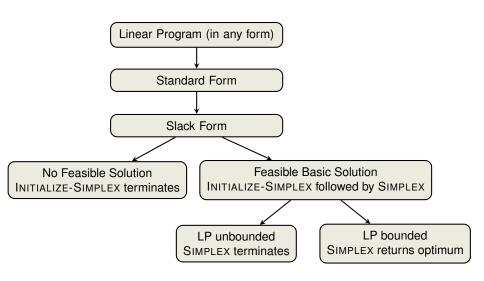
For any linear program *L*, given in standard form, either:

- 1. L is infeasible \Rightarrow SIMPLEX returns "infeasible".
- 2. *L* is unbounded \Rightarrow SIMPLEX returns "unbounded".
- 3. L has an optimal solution with a finite objective value
 - ⇒ SIMPLEX returns an optimal solution with a finite objective value.

Small Technicality: need to equip SIMPLEX with an "anti-cycling strategy" (see extra slides)

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)

Workflow for Solving Linear Programs



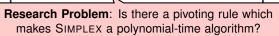
Linear Programming and Simplex: Summary and Outlook

Linear Programming -

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

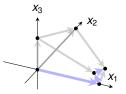
Simplex Algorithm

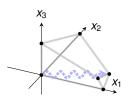
- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time



Polynomial-Time Algorithms

 Interior-Point Methods: traverses the interior of the feasible set of solutions (not just vertices!)





Outlook: Alternatives to Worst Case Analysis (non-examinable)

1.2 Famous Failures and the Need for Alternatives

For many problems a bit beyond the scope of an undergraduate course, the downside of worst-case analysis rears its ugly head. This section reviews four famous examples in which worst-case analysis gives misleading or useless advice about how to solve a problem. These examples motivate the alternatives to worst-case analysis that are surveyed in Section 1.4 and described in detail in later chapters of the book.

1.2.1 The Simplex Method for Linear Programming

Perhaps the <u>most famous failure of worst-case analysis concerns linear programming</u>, the problem of optimizing a linear function subject to linear constraints (Figure 1.1). Dantzig proposed in the 1940s an algorithm for solving linear programs called the *simplex method*. The simplex method solves linear programs using greedy local

Source: "Beyond the Worst-Case Analysis of Algorithms" by Tim Roughgarden, 2020

Outline

Simplex Algorithm by Example

Details of the Simplex Algorithm

Finding an Initial Solution

Appendix: Cycling and Termination (non-examinable)

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$z = x_1 + x_2 + x_3$$

$$x_4 = 8 - x_1 - x_2$$

$$x_5 = x_2 - x_3$$

$$Pivot with x_1 entering and x_4 leaving
$$x_1 = 8 - x_2 - x_4$$

$$x_1 = 8 - x_2 - x_3$$

$$Cycling: If additionally slack form at two iterations are identical, SIMPLEX fails to terminate!
$$x_1 = 8 - x_2 - x_4$$

$$x_2 = 8 + x_2 - x_4 - x_5$$

$$x_1 = 8 - x_2 - x_4 - x_5$$

$$x_1 = 8 - x_2 - x_4 - x_5$$

$$x_2 = - x_4 - x_5$$

$$x_3 = x_2 - x_4 - x_5$$$$$$

Exercise: Execute one more step of the Simplex Algorithm on the tableau from the previous slide.

Termination and Running Time

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

Lemma 29.7

Assuming Initialize-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set *B* of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.