Randomised Algorithms

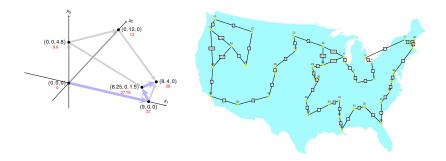
Lecture 6: Linear Programming: Introduction

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

A Simple Example of a Linear Program

Formulating Problems as Linear Programs



- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Linear Programming (informal definition)

- maximise or minimise an objective, given limited resources (competing constraint)
- constraints are specified as (in)equalities
- objective function and constraints are linear

A Simple Example of a Linear Optimisation Problem

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

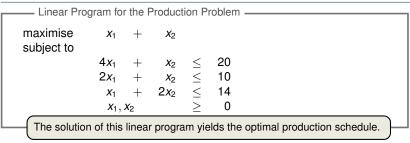
58 58

Smartphone

- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units
- You have a daily supply of:
 - glass: 20 units
 - copper: 10 units
 - rare-earth elements: 14 units
 - (and enough of everything else...)

How to maximise your daily earnings?

The Linear Program



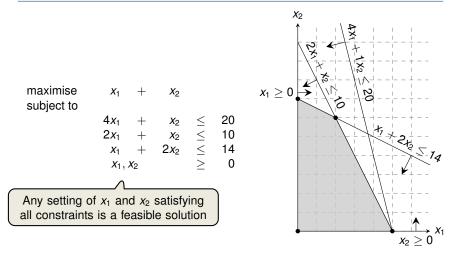
Formal Definition of Linear Program —

• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.$$

- Linear Equality: $f(x_1, x_2, ..., x_n) = b$ Linear Inequality: $f(x_1, x_2, ..., x_n) \stackrel{>}{\leq} b$ Linear Constraints
- Linear-Progamming Problem: either minimise or maximise a linear function subject to a set of linear constraints

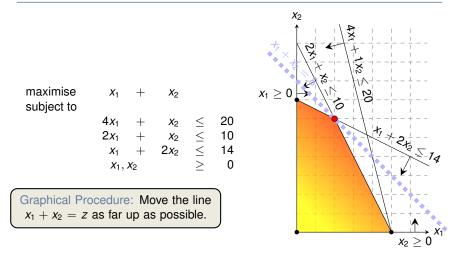
Finding the Optimal Production Schedule



???

Question: Which aspect did we ignore in the formulation of the linear program?

Finding the Optimal Production Schedule



While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.

A Simple Example of a Linear Program

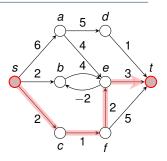
Formulating Problems as Linear Programs

Shortest Paths

Single-Pair Shortest Path Problem –

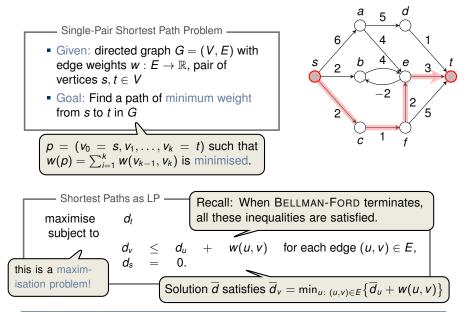
- Given: directed graph G = (V, E) with edge weights w : E → ℝ, pair of vertices s, t ∈ V
- Goal: Find a path of minimum weight from *s* to *t* in *G*

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.



Exercise: Translate the SPSP problem into a linear program!

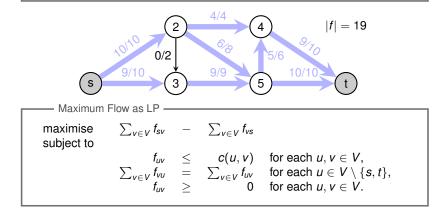
Shortest Paths



Maximum Flow

- Maximum Flow Problem

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation



Minimum-Cost Flow

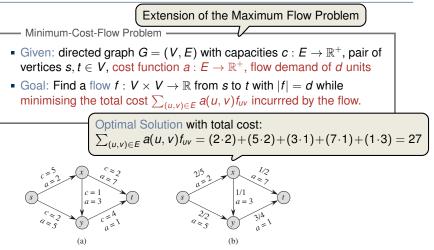


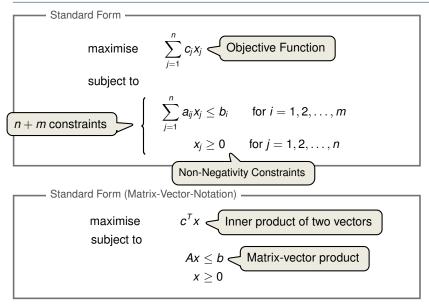
Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

 $\begin{array}{c|c} \begin{array}{c|c} \text{Minimum Cost Flow as LP} \\ \hline \text{minimise} & \sum_{(u,v)\in E} a(u,v) f_{uv} \\ \text{subject to} \\ & f_{uv} & \leq & c(u,v) & \text{for } u,v \in V, \\ & \sum_{v \in V} f_{vu} - \sum_{v \in V} f_{uv} & = & 0 & \text{for } u \in V \setminus \{s,t\}, \\ & \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} & = & d , \\ & f_{uv} & \geq & 0 & \text{for } u,v \in V. \end{array}$

Real power of Linear Programming comes from the ability to solve **new problems**!

A Simple Example of a Linear Program

Formulating Problems as Linear Programs



- 1. The objective might be a minimisation rather than maximisation.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

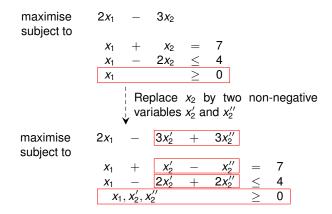
Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.

1. The objective might be a minimisation rather than maximisation.

minimise	$-2x_{1}$	+	3 <i>x</i> 2		
subject to					
	<i>X</i> ₁	+	<i>X</i> ₂	=	7
	<i>X</i> ₁	_	$2x_2$	\leq	4
	<i>X</i> ₁		x ₂ 2x ₂	\geq	0
		Ne	gate o	oject	ive function
	<u> </u>	V			
maximise	$2x_1$	_	3 <i>x</i> 2		
subject to					
	<i>x</i> ₁	+	<i>x</i> ₂	=	7
	x ₁ x ₁	+ -	x ₂ 2x ₂	= 	7 4

2. There might be variables without nonnegativity constraints.



3. There might be equality constraints.

maximise $2x_1$ $3x_2'$ 3x₂" +subject to *x*₂'' $+ x'_{2}$ *X*1 = \leq $2x_2$ $2x_{2}^{T'}$ +*X*₁ _ x_1, x_2', x_2'' 0 Replace each equality by two inequalities. maximise 3x2 $2x_1$ $+ 3x_{2}''$ subject to $egin{array}{rcl} x'_2 & - & x''_2 \ x'_2 & - & x''_2 \ 2x'_2 & + & 2x''_2 \end{array}$ $\begin{array}{ccc} \leq & 7\\ \geq & 7\\ \leq & 4\\ \geq & 0 \end{array}$ X_1 +*X*1 $2x_2'$ *X*1 _ x_1, x_2', x_2''

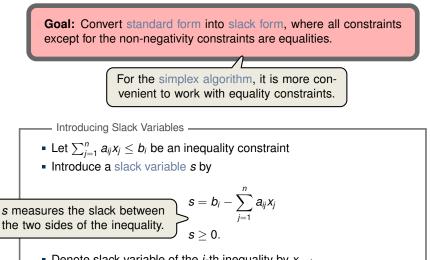
4. There might be inequality constraints (with \geq instead of \leq).

maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂ ′	+	3 <i>x</i> 2″		
-	<i>X</i> ₁	+	x_2'	_	<i>x</i> ₂ ''	\leq	7
	<i>X</i> 1	+	<i>x</i> ₂ '	_	x2''	\geq	7
	<i>x</i> ₁	-	2 <i>x</i> ₂ '	+	2 <i>x</i> ₂ ''	\leq	4
	<i>X</i> 1	$, x_{2}', x_{2}'$	<2 ^{''}			\geq	0
		↓ Ne	egate i	respe	ective in	nequa	lities.
maximise subject to	2 <i>x</i> ₁	-	3 <i>x</i> ₂ ′	+	3 <i>x</i> 2′′		
	<i>X</i> ₁	+	X_2'	_	<i>x</i> ₂ ''	\leq	7
	$-x_1$	—	<i>X</i> ₂ '	+	x''_2	\leq	-7
	<i>x</i> ₁	-	$2x_{2}^{'}$	+	$2x_{2}^{''}$	\leq	4
	<i>x</i> ₁	, <i>x</i> ₂ ', <i>x</i>	$c_{2}^{\prime \prime}$			\geq	0

Rename	variable	e nan	nes (fo	r con	sisten	cy).)
maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃		
	<i>X</i> ₁	+	<i>X</i> 2	_	<i>X</i> 3	\leq	7
	$-x_{1}$	_	<i>X</i> 2	+	<i>X</i> 3	\leq	-7
	<i>X</i> ₁	_	$2x_{2}$	+	$2x_{3}$	\leq	4
	\geq	0					

It is always possible to convert a linear program into standard form.

Converting Standard Form into Slack Form (1/3)



Denote slack variable of the *i*-th inequality by x_{n+i}

Converting Standard Form into Slack Form (2/3)

 $- 3x_2$ maximise $2x_1$ $3x_3$ +subject to Introduce slack variables maximise $2x_1$ $3x_3$ $3x_2$ +_ subject to = 7 – x_1 X4 — X₂ + X_3 $\begin{array}{rcl} x_{1} & & x_{2} & \\ x_{5} & = & -7 & + & x_{1} & + & x_{2} & - \\ x_{6} & = & 4 & - & x_{1} & + & 2x_{2} & - \end{array}$ X_3 $2x_3$ \geq 0 $X_1, X_2, X_3, X_4, X_5, X_6$

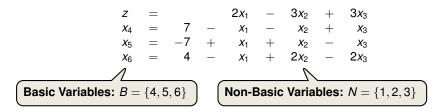
maximise subject to

 $2x_1 - 3x_2 + 3x_3$ $x_4 = 7 - x_1 - x_2 + x_3$ $x_5 = -7 + x_1 + x_2 - x_3$ $x_6 = 4 - x_1 + 2x_2 - 2x_3$ $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Use variable *z* to denote objective function and omit the nonnegativity constraints.

	Ζ	=			2 <i>x</i> ₁	—	3 <i>x</i> 2	+	3 <i>x</i> 3
	<i>X</i> 4	=	7	—	<i>X</i> 1	—	<i>X</i> 2	+	<i>X</i> 3
	<i>X</i> 5	=	-7	+	<i>X</i> ₁	+	<i>x</i> ₂	_	<i>X</i> 3
	<i>X</i> 6	=	4	—	<i>X</i> ₁	+	$2x_{2}$	—	2 <i>x</i> ₃
		\square							
This	is ca	lled s	lack fo	orm.)				

Basic and Non-Basic Variables



Slack Form (Formal Definition) —

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$egin{aligned} z &= v + \sum_{j \in N} c_j x_j \ x_i &= b_i - \sum_{j \in N} a_{ij} x_j \ & ext{for } i \in B, \end{aligned}$$

and all variables are non-negative.

Variables/Coefficients on the right hand side are indexed by *B* and *N*.

Slack Form (Example)

	Ζ	=	28	_	$\frac{X_3}{6}$	_	$\frac{x_{5}}{6}$	_	$\frac{2x_{6}}{3}$	
					$\frac{x_3}{6}$					
	<i>x</i> ₂	=	4	_	$\frac{8x_{3}}{3}$	_	$\frac{2x_{5}}{3}$	+	<u>x₆</u> 3	
	<i>X</i> 4	=	18	_	$\frac{x_{3}}{2}$	+	<u>x</u> 5 2			
Slack Form	Nota	tion -								
■ <i>B</i> = {1,2,4	4}, N	l = {	3, 5, 6	5}						
$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$										
•	b=	$\begin{pmatrix} b_1\\b_2\\b_4 \end{pmatrix}$) =	$ \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix} $), c =	$= \begin{pmatrix} C_3 \\ C_5 \\ C_6 \end{pmatrix}$		(-1/ -1/ (-2/	$\begin{pmatrix} 6\\6\\3 \end{pmatrix}$	
■ <i>v</i> = 28										