Randomised Algorithms

Lecture 5: Random Walks, Hitting Times and Application to 2-SAT

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

The Ehrenfest Markov Chain

Ehrenfest Model -

- A simple model for the exchange of molecules between two boxes
- We have d particles labelled 1, 2, ..., d
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega = \{0, 1, ..., d\}$ denotes the number of particles in the red box, then:

$$P_{x,x-1} = \frac{x}{d}$$
 and $P_{x,x+1} = \frac{d-x}{d}$.

Let us now enlarge the state space by looking at each particle individually!

- Random Walk on the Hypercube ——
- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version) -

- At each step t = 0, 1, 2 . . .
 - Pick a random coordinate in [d]
 - With prob. 1/2 flip coordinate.

Lazy Random Walk (2nd Version)

- At each step t = 0, 1, 2 . . .
 - Pick a random coordinate in [d]
 - Set coordinate to {0, 1} uniformly.

These two chains are equivalent!

Example of a Random Walk on a 4-Dimensional Hypercube

Total Variation Distance of Random Walk on Hypercube (d = 22)

Fig. 1. The variation distance V as a function of N, for $n = 10^{12}$.

Source: "Asymptotic analysis of a random walk on a hypercube with many dimensions", P. Diaconis, R.L. Graham, J.A. Morrison; Random Structures & Algorithms, 1990.

- This is a numerical plot of a theoretical bound, where $d = 10^{12}$ (Minor Remark: This random walk is with a loop probability of 1/(d+1))
- The variation distance exhibits a so-called cut-off phenomena:
 - Distance remains close to its maximum value 1 until step $\frac{1}{4}n \log n \Theta(n)$
 - Then distance moves close to 0 before step $\frac{1}{4}n \log n + \Theta(n)$

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

$$P(u,v) = egin{cases} rac{1}{\deg(u)} & ext{if } \{u,v\} \in E, \ 0 & ext{if } \{u,v\}
ot\in E. \end{cases}$$
 and $\pi(u) = rac{\deg(u)}{2|E|}$

Recall: $h(u, v) = \mathbf{E}_u[\min\{t \ge 1 : X_t = v\}]$ is the hitting time of v from u.

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by $\tilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2 \deg(u)} & \text{if } \{u,v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise.} \end{cases}$$

Fact: For any graph *G* the LRW on *G* is aperiodic.

SRW on C4, Periodic

LRW on C₄, Aperiodic

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

"A drunk man will find his way home, but a drunk bird may get lost forever."

But for any regular (finite) graph, the expected return time to u is $1/\pi(u) = n$

SRW Random Walk on Two-Dimensional Grids: Animation

For animation, see full slides.

Random Walk on a Path (1/2)

The *n*-path P_n is the graph with $V(P_n) = [0, n], E(P_n) = \{\{i, j\} : j = i + 1\}.$

- Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Exercise: [Exercise 4/5.15] What happens for the LRW on P_n ?

Random Walk on a Path (2/2)

Proposition

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k < n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\mathsf{Markov} \ \mathsf{Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \qquad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

System of *n* independent equations in *n* unknowns, so has a unique solution.

Thus it suffices to check that $f(k) = n^2 - k^2$ satisfies the above. Indeed

$$f(0) = 1 + f(1) = 1 + n^2 - 1^2 = n^2,$$

and for any $1 \le k \le n-1$ we have,

$$f(k) = 1 + \frac{n^2 - (k-1)^2}{2} + \frac{n^2 - (k+1)^2}{2} = n^2 - k^2.$$

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

SAT:
$$(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$$

Solution: $x_1 = \text{True}, \quad x_2 = \text{False}, \quad x_3 = \text{False} \quad \text{and} \quad x_4 = \text{True}.$

- If each clause has k literals we call the problem k-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:
 - → Model checking and hardware/software verification
 - → Design of experiments
 - → Classical planning
 - $\rightarrow \dots$

2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

Example 1 : Solution Found

$$(x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_3}) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \overline{x_3}) \wedge (x_4 \vee \overline{x_1})$$

$$T \quad F \quad F \quad T \quad T \quad T \quad T \quad T \quad F$$

- 1	(T	т	_	т)	
$\alpha = 1$	ι,	Ι,	r,	1	١.

t	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
0	F	F	F	F
1	F	T	F	F
2	T	T	F	F
3	Т	T	F	T

2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |\text{variable values shared by } A_i \text{ and } \alpha|$.

Example 2: (Another) Solution Found

α	= ((T,	F,	F,	T)	١.

t	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	T
2	F	Т	F	T
3	Т	Т	F	T

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$,

- (i) $P[X_{i+1} = 1 \mid X_i = 0] = 1$
- (ii) $P[X_{i+1} = k+1 \mid X_i = k] > 1/2$
- (iii) $P[X_{i+1} = k-1 \mid X_i = k] \leq 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the *n*-path from 0). This gives (see also [Ex 4/5.16])

E[time to find sol]
$$\leq$$
 E₀[min{ $t: X_t = n$ }] \leq **E**₀[min{ $t: Y_t = n$ }] = $h(0, n) = n^2$.

Running for 2n² steps and using Markov's inequality yields:

Proposition

Provided a solution exists, RANDOMISED-2-SAT will return a valid solution in $O(n^2)$ steps with probability at least 1/2.

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p. Then for any $C \geq 1$, $\lceil \frac{C}{p} \cdot \log n \rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1 - n^{-C}$.

Proof: Recall that $1 - p \le e^{-p}$ for all real p. Let $t = \lceil \frac{C}{p} \log n \rceil$ and observe

$$P[t \text{ runs all fail}] \le (1 - p)^t$$

$$\le e^{-pt}$$

$$\le n^{-C},$$

thus the probability one of the runs succeeds is at least $1 - n^{-C}$.

- RANDOMISED-2-SAT

There is a $O(n^2 \log n)$ -step algorithm for 2-SAT which succeeds w.h.p.