Randomised Algorithms

Lecture 5: Random Walks, Hitting Times and Application to 2-SAT

Thomas Sauerwald (tms41@cam.ac.uk)

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles labelled $1,2, \ldots, d$
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega=\{0,1, \ldots, d\}$ denotes the number of particles in the red box, then:

$$
P_{x, x-1}=\frac{x}{d} \quad \text { and } \quad P_{x, x+1}=\frac{d-x}{d}
$$

Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Solution: Add self-loops to break periodic behaviour!

> Problem: This Markov Chain is periodic, as the number of ones always switches between odd to even!

L Lazy Random Walk (1st Version)

- At each step $t=0,1,2 \ldots$
- Pick a random coordinate in [d]
- With prob. 1/2 flip coordinate.

These two chains are equivalent!

Example of a Random Walk on a 4-Dimensional Hypercube

Total Variation Distance of Random Walk on Hypercube $(d=22)$

Theoretical Results (by Diaconis, Graham and Morrison)

Fig. 1. The variation distance V as a function of N, for $n=10^{12}$.
Source: "Asymptotic analysis of a random walk on a hypercube with many dimensions", P. Diaconis, R.L. Graham, J.A. Morrison; Random Structures \& Algorithms, 1990.

- This is a numerical plot of a theoretical bound, where $d=10^{12}$ (Minor Remark: This random walk is with a loop probability of $1 /(d+1)$)
- The variation distance exhibits a so-called cut-off phenomena:
- Distance remains close to its maximum value 1 until step $\frac{1}{4} n \log n-\Theta(n)$
- Then distance moves close to 0 before step $\frac{1}{4} n \log n+\Theta(n)$

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P(u, v)=\left\{\begin{array}{ll}
\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
0 & \text { if }\{u, v\} \notin E .
\end{array} \quad \text { and } \quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}\right.
$$

Recall: $h(u, v)=\mathbf{E}_{u}\left[\min \left\{t \geq 1: X_{t}=v\right\}\right]$ is the hitting time of v from u.

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by $\widetilde{P}=(P+I) / 2$,

$$
\widetilde{P}_{u, v}= \begin{cases}\frac{1}{2 \operatorname{deg}(u)} & \text { if }\{u, v\} \in E \\ \frac{1}{2} & \text { if } u=v \\ 0 & \text { otherwise }\end{cases}
$$

P - SRW matrix I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.

SRW on C_{4}, Periodic

LRW on C_{4}, Aperiodic

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid

y
"A drunk man will find his way home, but a drunk bird may get lost forever."
But for any regular (finite) graph, the expected return time to u is $1 / \pi(u)=n$

SRW Random Walk on Two-Dimensional Grids: Animation

For animation, see full slides.

Random Walk on a Path (1/2)

The n-path P_{n} is the graph with $V\left(P_{n}\right)=[0, n], E\left(P_{n}\right)=\{\{i, j\}: j=i+1\}$.

Proposition
For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k<n$.

Exercise: [Exercise 4/5.15] What happens for the LRW on P_{n} ?

Random Walk on a Path (2/2)

Proposition

For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k<n$.

Recall: Hitting times are the solution to the set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} P(x, z) \cdot h(z, y) \quad \forall x \neq y \in V
$$

Proof: Let $f(k)=h(k, n)$ and set $f(n):=0$. By the Markov property

$$
f(0)=1+f(1) \quad \text { and } \quad f(k)=1+\frac{f(k-1)}{2}+\frac{f(k+1)}{2} \quad \text { for } 1 \leq k \leq n-1
$$

System of n independent equations in n unknowns, so has a unique solution.
Thus it suffices to check that $f(k)=n^{2}-k^{2}$ satisfies the above. Indeed

$$
f(0)=1+f(1)=1+n^{2}-1^{2}=n^{2}
$$

and for any $1 \leq k \leq n-1$ we have,

$$
f(k)=1+\frac{n^{2}-(k-1)^{2}}{2}+\frac{n^{2}-(k+1)^{2}}{2}=n^{2}-k^{2}
$$

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

$$
\text { SAT: }\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right)
$$

Solution: $x_{1}=$ True, $\quad x_{2}=$ False, $\quad x_{3}=$ False \quad and $\quad x_{4}=$ True.

- If each clause has k literals we call the problem k-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:
\rightarrow Model checking and hardware/software verification
\rightarrow Design of experiments
\rightarrow Classical planning
\rightarrow...

2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

Example 1 : Solution Found

$$
\alpha=(\mathrm{T}, \mathrm{~T}, \mathrm{~F}, \mathrm{~T}) .
$$

t	x_{1}	x_{2}	x_{3}	x_{4}
0	F	F	F	F
1	F	T	F	F
2	T	T	F	F
3	T	T	F	T

2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 : (Another) Solution Found

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(T, F, F, T)$.
$\begin{array}{llllllllll}\mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{F}\end{array}$

4

t	x_{1}	x_{2}	x_{3}	x_{4}
0	F	F	F	F
1	F	F	F	T
2	F	T	F	T
3	T	T	F	T

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised-2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED-2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$
(ii) $\mathbf{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$
(iii) $\mathbf{P}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leq 1 / 2$.

Notice that if $X_{i}=n$ then $A_{i}=\alpha$ thus solution found (may find another first).
Assume (pessimistically) that $X_{0}=0$ (none of our initial guesses is right).
The process X_{i} is complicated to describe in full; however by (i) - (iii) we can bound it by Y_{i} (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])
$\mathbf{E}[$ time to find sol $] \leq \mathbf{E}_{0}\left[\min \left\{t: X_{t}=n\right\}\right] \leq \mathbf{E}_{0}\left[\min \left\{t: Y_{t}=n\right\}\right]=h(0, n)=n^{2}$.
Running for $2 n^{2}$ steps and using Markov's inequality yields:
Proposition
Provided a solution exists, RANDOMISED-2-SAT will return a valid solution in $O\left(n^{2}\right)$ steps with probability at least $1 / 2$.

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p. Then for any $C \geq 1,\left\lceil\frac{C}{p} \cdot \log n\right\rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1-n^{-C}$.

Proof: Recall that $1-p \leq e^{-p}$ for all real p. Let $t=\left\lceil\frac{c}{p} \log n\right\rceil$ and observe

$$
\begin{aligned}
\mathbf{P}[t \text { runs all fail }] & \leq(1-p)^{t} \\
& \leq e^{-p t} \\
& \leq n^{-c},
\end{aligned}
$$

thus the probability one of the runs succeeds is at least $1-n^{-c}$.

There is a $O\left(n^{2} \log n\right)$-step algorithm for 2-SAT which succeeds w.h.p.

