## Randomised Algorithms

Lecture 3: Concentration Inequalities, Application to Quick-Sort, Extensions

Thomas Sauerwald (tms41@cam.ac.uk)


## Outline

## Application 2: Randomised QuickSort

## Extensions of Chernoff Bounds

## Applications of Method of Bounded Differences

## Appendix: More on Moment Generating Functions (non-examinable)

## QuickSort

QuickSort (Input $A[1], A[2], \ldots, A[n]$ )
1: Pick an element from the array, the so-called pivot
2: If $|A|=0$ or $|A|=1$ then
return $A$
else
5: $\quad$ Create two subarrays $A_{1}$ and $A_{2}$ (without the pivot) such that:
6: $\quad A_{1}$ contains the elements that are smaller than the pivot $A_{2}$ contains the elements that are greater (or equal) than the pivot
8: $\quad \operatorname{QuickSort}\left(A_{1}\right)$
9: QuickSort $\left(A_{2}\right)$
10: return $A$

- Example: Let $A=(2,8,9,1,7,5,6,3,4)$ with $A[7]=6$ as pivot.
$\Rightarrow A_{1}=(2,1,5,3,4)$ and $A_{2}=(8,9,7)$
- Worst-Case Complexity (number of comparisons) is $\Theta\left(n^{2}\right)$, while Average-Case Complexity is $O(n \log n)$.

We will now give a proof of this "well-known" result!

## QuickSort: How to Count Comparisons



## Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.
This should be your standard answer in this course $\odot$

Let us analyse QuickSort with random pivots.

1. Assume $A$ consists of $n$ different numbers, w.l.o.g., $\{1,2, \ldots, n\}$
2. Let $H_{i}$ be the deepest level where element $i$ appears in the tree.

Then the number of comparison is $H=\sum_{i=1}^{n} H_{i}$
3. We will prove that there exists $C>0$ such that

$$
\mathbf{P}[H \leq C n \log n] \geq 1-n^{-1} .
$$

4. Actually, we will prove sth slightly stronger:

$$
\mathbf{P}\left[\bigcap_{i=1}^{n}\left\{H_{i} \leq C \log n\right\}\right] \geq 1-n^{-1}
$$

## Randomised QuickSort: Analysis (2/4)

- Let $P$ be a path from the root to the deepest level of some element
- A node in $P$ is called good if the corresponding pivot partitions the array into two subarrays each of size at most $2 / 3$ of the previous one
- otherwise, the node is bad
- Further let $s_{t}$ be the size of the array at level $t$ in $P$.

- Element 2: $(2,8,9,1,7,5,6,3,4) \rightarrow(2,1,5,3,4) \rightarrow(2,5,3,4) \rightarrow(2,3) \rightarrow(2)$


## Randomised QuickSort: Analysis (3/4)

- Consider now any element $i \in\{1,2, \ldots, n\}$ and construct the path $P=P(i)$ one level by one
- For $P$ to proceed from level $k$ to $k+1$, the condition $s_{k}>1$ is necessary

How far could such a path $P$ possibly run until we have $s_{k}=1$ ?

- We start with $s_{0}=n$
- First Case, good node: $s_{k+1} \leq \frac{2}{3} \cdot s_{k} \cdot$ This even holds always,
- Second Case, bad node: $s_{k+1} \leq s_{k}$. i.e., deterministically!
$\Rightarrow$ There are at most $T=\frac{\log n}{\log (3 / 2)}<3 \log n$ many good nodes on any path $P$.
- Assume $|P| \geq C \log n$ for $C:=24$
$\Rightarrow$ number of bad vertices in the first $24 \log n$ levels is more than $21 \log n$.
Let us now upper bound the probability that this "bad event" happens!


## Randomised QuickSort: Analysis (4/4)

- Consider the first $24 \log n$ vertices of $P$ to the deepest level of element $i$.
- For any level $j \in\{0,1, \ldots, 24 \log n-1\}$, define an indicator variable $X_{j}$ :
- $X_{j}=1$ if the node at level $j$ is bad,
- $X_{j}=0$ if the node at level $j$ is good.
- $\mathbf{P}\left[X_{j}=1 \mid X_{0}=x_{0}, \ldots, X_{j-1}=X_{j-1}\right] \leq \frac{2}{3}$

- $X:=\sum_{j=0}^{24 \log n-1} X_{j}$ satisfies relaxed independence assumption (Lecture 2)

Question: Edge Case: What if the path $P$ does not reach level $j$ ?

## Randomised QuickSort: Analysis (4/4)

- Consider the first $24 \log n$ vertices of $P$ to the deepest level of element $i$.
- For any level $j \in\{0,1, \ldots, 24 \log n-1\}$, define an indicator variable $X_{j}$ :
- $X_{j}=1$ if the node at level $j$ is bad,
- $X_{j}=0$ if the node at level $j$ is good.
- $\mathbf{P}\left[X_{j}=1 \mid X_{0}=x_{0}, \ldots, X_{j-1}=x_{j-1}\right] \leq \frac{2}{3}$

- $X:=\sum_{j=0}^{24 \log n-1} X_{j}$ satisfies relaxed independence assumption (Lecture 2)

Question: Edge Case: What if the path $P$ does not reach level $j$ ?

Answer: We can then simply define $X_{j}$ as 0 (deterministically).

## Randomised QuickSort: Analysis (4/4)

- Consider the first $24 \log n$ vertices of $P$ to the deepest level of element $i$.
- For any level $j \in\{0,1, \ldots, 24 \log n-1\}$, define an indicator variable $X_{j}$ :
- $X_{j}=1$ if the node at level $j$ is bad,
- $X_{j}=0$ if the node at level $j$ is good.
- $\mathbf{P}\left[X_{j}=1 \mid X_{0}=x_{0}, \ldots, X_{j-1}=x_{j-1}\right] \leq \frac{2}{3}$
- $X:=\sum_{j=0}^{24 \log n-1} X_{j}$ satisfies relaxed independence assumption (Lecture 2)


## We can now apply the "nicer" Chernoff Bound!

- We have $\mathbf{E}[X] \leq(2 / 3) \cdot 24 \log n=16 \log n$
- Then, by the "nicer" Chernoff Bounds $\quad \mathbf{P}[X \geq \mathbf{E}[X]+t] \leq e^{-2 t^{2} / n}$
$\mathbf{P}[X>21 \log n] \leq \mathbf{P}[X>\mathbf{E}[X]+5 \log n]$
- Hence $P$ has more than $24 \log n$ nodes with probability at most $n^{-2}$.
- As there are in total $n$ paths, by the union bound, the probability that at least one of them has more than $24 \log n$ nodes is at most $n^{-1}$.
- This implies $\mathbf{P}\left[\bigcap_{i=1}^{n}\left\{H_{i} \leq 24 \log n\right\}\right] \geq 1-n^{-1}$, as needed. $\square$


## Randomised QuickSort: Final Remarks

- Well-known: any comparison-based sorting algorithm needs $\Omega(n \log n)$
- A classical result: expected number of comparison of randomised QuickSort is $2 n \log n+O(n)$ (see, e.g., book by Mitzenmacher \& Upfal)

Exercise: [Ex 2-3.6] Our upper bound of $O(n \log n)$ whp also immediately implies a $O(n \log n)$ bound on the expected number of comparisons!

- It is possible to deterministically find the best pivot element that divides the array into two subarrays of the same size.
- The latter requires to compute the median of the array in linear time, which is not easy...
- The presented randomised algorithm for QuickSort is much easier to implement!


## Outline

## Application 2: Randomised QuickSort

## Extensions of Chernoff Bounds

## Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)

## Hoeffding's Extension

- Besides sums of independent Bernoulli random variables, sums of independent and bounded random variables are very frequent in applications.
- Unfortunately the distribution of the $X_{i}$ may be unknown or hard to compute, thus it will be hard to compute the moment-generating function.
- Hoeffding's Lemma helps us here:

> You can always consider $X^{\prime}=X-\mathrm{E}[X]$

Hoeffding's Extension Lemma
Let $X$ be a random variable with mean 0 such that $a \leq X \leq b$. Then for all $\lambda \in \mathbb{R}$,

$$
\mathbf{E}\left[e^{\lambda x}\right] \leq \exp \left(\frac{(b-a)^{2} \lambda^{2}}{8}\right)
$$

We omit the proof of this lemma!

## Hoeffding Bounds

## Hoeffding's Inequality

Let $X_{1}, \ldots, X_{n}$ be independent random variable with mean $\mu_{i}$ such that $a_{i} \leq X_{i} \leq b_{i}$. Let $X=X_{1}+\ldots+X_{n}$, and let $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} \mu_{i}$. Then for any $t>0$

$$
\mathbf{P}[X \geq \mu+t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

and

$$
\mathbf{P}[X \leq \mu-t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

## Proof Outline (skipped):

- Let $X_{i}^{\prime}=X_{i}-\mu_{i}$ and $X^{\prime}=X_{1}^{\prime}+\ldots+X_{n}^{\prime}$, then $\mathbf{P}[X \geq \mu+t]=\mathbf{P}\left[X^{\prime} \geq t\right]$
- $\mathbf{P}\left[X^{\prime} \geq t\right] \leq e^{-\lambda t} \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X_{i}^{\prime}}\right] \leq \exp \left[-\lambda t+\frac{\lambda^{2}}{8} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}\right]$
- Choose $\lambda=\frac{4 t}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}$ to get the result.

This is not magic! you just need to optimise $\lambda$ !

## Method of Bounded Differences

## Framework

Suppose, we have independent random variables $X_{1}, \ldots, X_{n}$. We want to study the random variable:

$$
f\left(X_{1}, \ldots, X_{n}\right)
$$

Some examples:

1. $X=X_{1}+\ldots+X_{n}$ (our setting earlier)
2. In balls into bins, $X_{i}$ indicates where ball $i$ is allocated, and $f\left(X_{1}, \ldots, X_{m}\right)$ is the number of empty bins
3. In a randomly generated graph, $X_{i}$ indicates if the $i$-th edge is present and $f\left(X_{1}, \ldots, X_{m}\right)$ represents the number of connected components of $G$

In all those cases (and more) we can easily prove concentration of $f\left(X_{1}, \ldots, X_{n}\right)$ around its mean by the so-called Method of Bounded Differences.

## Method of Bounded Differences

A function $f$ is called Lipschitz with parameters $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ if for all $i=1,2, \ldots, n$,

$$
\left|f\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{i-1}, \widetilde{x}_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i},
$$

where $x_{i}$ and $\widetilde{x}_{i}$ are in the domain of the $i$-th coordinate.

## McDiarmid's inequality

Let $X_{1}, \ldots, X_{n}$ be independent random variables. Let $f$ be Lipschitz with parameters $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. Let $X=f\left(X_{1}, \ldots, X_{n}\right)$. Then for any $t>0$,

$$
\mathbf{P}[X \geq \mu+t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right),
$$

and

$$
\mathbf{P}[X \leq \mu-t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right) .
$$

- Notice the similarity with Hoeffding's inequality! [Exercise 2/3.14]
- The proof is omitted here (it requires the concept of martingales).


## Outline

## Application 2: Randomised QuickSort

## Extensions of Chernoff Bounds

## Applications of Method of Bounded Differences

## Appendix: More on Moment Generating Functions (non-examinable)

## Application 3: Balls into Bins (again...)

## 

- Consider again $m$ balls assigned uniformly at random into $n$ bins.
- Enumerate the balls from 1 to $m$. Ball $i$ is assigned to a random bin $X_{i}$
- Let $Z$ be the number of empty bins (after assigning the $m$ balls)
- $Z=Z\left(X_{1}, \ldots, X_{m}\right)$ and $Z$ is Lipschitz with $\mathbf{c}=(1, \ldots, 1)$ (If we move one ball to another bin, number of empty bins changes by $\leq 1$.)
- By McDiarmid's inequality, for any $t \geq 0$,

$$
\mathbf{P}[|Z-\mathbf{E}[Z]|>t] \leq 2 \cdot e^{-2 t^{2} / m}
$$

This is a decent bound, but for some values of $m$ it is far from tight and stronger bounds are possible through a refined analysis.

## Application 4: Bin Packing



- We are given $n$ items of sizes in the unit interval $[0,1]$
- We want to pack those items into the fewest number of unit-capacity bins
- Suppose the item sizes $X_{i}$ are independent random variables in $[0,1]$
- Let $B=B\left(X_{1}, \ldots, X_{n}\right)$ be the optimal number of bins
- The Lipschitz conditions holds with $\boldsymbol{c}=(1, \ldots, 1)$. Why?
- Therefore

$$
\mathbf{P}[|B-\mathbf{E}[B]| \geq t] \leq 2 \cdot e^{-2 t^{2} / n} .
$$

This is a typical example where proving concentration is much easier than calculating (or estimating) the expectation!

## Outline

## Application 2: Randomised QuickSort

## Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)

## Moment Generating Functions (non-examinable)

## Moment-Generating Function

The moment-generating function of a random variable $X$ is

$$
M_{X}(t)=\mathbf{E}\left[e^{t X}\right], \quad \text { where } t \in \mathbb{R}
$$

Using power series of $e$ and differentiating shows that $M_{X}(t)$ encapsulates all moments of $X$.

## Lemma

1. If $X$ and $Y$ are two r.v.'s with $M_{X}(t)=M_{Y}(t)$ for all $t \in(-\delta,+\delta)$ for some $\delta>0$, then the distributions $X$ and $Y$ are identical.
2. If $X$ and $Y$ are independent random variables, then

$$
M_{X+Y}(t)=M_{X}(t) \cdot M_{Y}(t)
$$

Proof of 2:

$$
M_{X+Y}(t)=\mathbf{E}\left[e^{t(X+Y)}\right]=\mathbf{E}\left[e^{t X} \cdot e^{t Y}\right] \stackrel{(!)}{=} \mathbf{E}\left[e^{t X}\right] \cdot \mathbf{E}\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t)
$$

