# **Randomised Algorithms**

Lecture 3: Concentration Inequalities, Application to Quick-Sort, Extensions

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024



#### **Outline**

### Application 2: Randomised QuickSort

**Extensions of Chernoff Bounds** 

Applications of Method of Bounded Differences

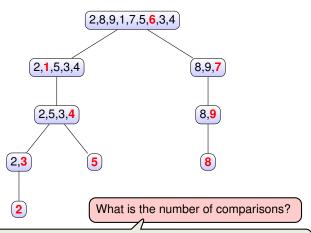
Appendix: More on Moment Generating Functions (non-examinable)

```
QUICKSORT (Input A[1], A[2], \ldots, A[n])
1: Pick an element from the array, the so-called pivot
2: If |A| = 0 or |A| = 1 then
3.
        return A
4. else
5:
        Create two subarrays A_1 and A_2 (without the pivot) such that:
           A_1 contains the elements that are smaller than the pivot
6.
           A<sub>2</sub> contains the elements that are greater (or equal) than the pivot
7:
        QUICKSORT(A_1)
8.
        QUICKSORT(A_2)
9:
        return A
10.
```

- Example: Let A = (2, 8, 9, 1, 7, 5, 6, 3, 4) with A[7] = 6 as pivot.  $\Rightarrow A_1 = (2, 1, 5, 3, 4)$  and  $A_2 = (8, 9, 7)$
- Worst-Case Complexity (number of comparisons) is  $\Theta(n^2)$ , while Average-Case Complexity is  $O(n \log n)$ .

We will now give a proof of this "well-known" result!

## **QuickSort: How to Count Comparisons**



Note that the number of comparison by QUICKSORT is equivalent to the sum of the depths of all nodes in the tree (why?). In this case:

$$0+1+1+2+2+3+3+3+4=19.$$

## Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

This should be your standard answer in this course ©

Let us analyse QUICKSORT with random pivots.

- 1. Assume A consists of n different numbers, w.l.o.g.,  $\{1, 2, ..., n\}$
- 2. Let  $H_i$  be the deepest level where element i appears in the tree. Then the number of comparison is  $H = \sum_{i=1}^{n} H_i$
- 3. We will prove that there exists C > 0 such that

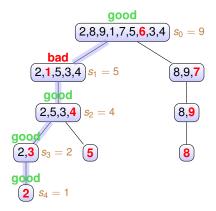
$$P[H < Cn \log n] > 1 - n^{-1}$$
.

4. Actually, we will prove sth slightly stronger:

$$\mathbf{P}\left[\bigcap_{i=1}^n \{H_i \leq C \log n\}\right] \geq 1 - n^{-1}.$$

#### Randomised QuickSort: Analysis (2/4)

- Let P be a path from the root to the deepest level of some element
  - A node in P is called good if the corresponding pivot partitions the array into two subarrays each of size at most 2/3 of the previous one
  - otherwise, the node is bad
- Further let  $s_t$  be the size of the array at level t in P.



■ Element 2:  $(2,8,9,1,7,5,6,3,4) \rightarrow (2,1,5,3,4) \rightarrow (2,5,3,4) \rightarrow (2,3) \rightarrow (2)$ 

### Randomised QuickSort: Analysis (3/4)

- Consider now any element  $i \in \{1, 2, ..., n\}$  and construct the path P = P(i) one level by one
- For P to proceed from level k to k+1, the condition  $s_k > 1$  is necessary

How far could such a path P possibly run until we have  $s_k = 1$ ?

- We start with  $s_0 = n$
- First Case, good node:  $s_{k+1} \leq \frac{2}{3} \cdot s_k$ .
- Second Case, bad node:  $s_{k+1} \leq s_k$ .

This even holds always, i.e., deterministically!

- $\Rightarrow$  There are at most  $T = \frac{\log n}{\log(3/2)} < 3\log n$  many good nodes on any path P.
  - Assume  $|P| \ge C \log n$  for C := 24
    - $\Rightarrow$  number of **bad** vertices in the first 24 log *n* levels is more than 21 log *n*.

Let us now upper bound the probability that this "bad event" happens!

### Randomised QuickSort: Analysis (4/4)

- Consider the first 24 log n vertices of P to the deepest level of element i.
- For any level  $j \in \{0, 1, \dots, 24 \log n 1\}$ , define an indicator variable  $X_i$ :

  - X<sub>j</sub> = 1 if the node at level j is bad,
    X<sub>i</sub> = 0 if the node at level j is good.

$$\begin{array}{c|c}
 & \text{bad} & \text{good} & \text{bad} \\
1 & \ell/3 & 2\ell/3 & \ell
\end{array}$$
 pivot

■ **P**[ $X_j = 1 \mid X_0 = x_0, \dots, X_{j-1} = x_{j-1}$ ]  $\leq \frac{2}{3}$ •  $X := \sum_{i=0}^{24 \log n - 1} X_i$  satisfies relaxed independence assumption (Lecture 2)



**Question:** Edge Case: What if the path P does not reach level j?

## Randomised QuickSort: Analysis (4/4)

- Consider the first 24 log n vertices of P to the deepest level of element i.
- For any level  $j \in \{0, 1, \dots, 24 \log n 1\}$ , define an indicator variable  $X_i$ :
- X<sub>j</sub> = 1 if the node at level j is bad,
  X<sub>i</sub> = 0 if the node at level j is good. • **P**[ $X_j = 1 \mid X_0 = X_0, \dots, X_{j-1} = X_{j-1}$ ]  $\leq \frac{2}{7}$

•  $X := \sum_{i=0}^{24 \log n - 1} X_i$  satisfies relaxed independence assumption (Lecture 2)



**Question:** Edge Case: What if the path P does not reach level j?

**Answer:** We can then simply define  $X_i$  as 0 (deterministically).

## Randomised QuickSort: Analysis (4/4)

- Consider the first 24 log n vertices of P to the deepest level of element i.
- For any level  $j \in \{0, 1, \dots, 24 \log n 1\}$ , define an indicator variable  $X_i$ :

  - X<sub>j</sub> = 1 if the node at level j is bad,
    X<sub>i</sub> = 0 if the node at level j is good.

- **P**[ $X_i = 1 \mid X_0 = X_0, ..., X_{i-1} = X_{i-1}$ ]  $\leq \frac{2}{3}$
- $X := \sum_{i=0}^{24 \log n 1} X_i$  satisfies relaxed independence assumption (Lecture 2)

We can now apply the "nicer" Chernoff Bound!

- We have  $\mathbf{E}[X] < (2/3) \cdot 24 \log n = 16 \log n$
- Then, by the "nicer" Chernoff Bounds  $\left\{ \mathbf{P}[X \ge \mathbf{E}[X] + t] \le e^{-2t^2/n} \right\}$

$$P[X > 21 \log n] \le P[X > E[X] + 5 \log n]$$

- Hence P has more than  $24 \log n$  nodes with probability at most  $n^{-2}$ .
- As there are in total n paths, by the union bound, the probability that at least one of them has more than  $24 \log n$  nodes is at most  $n^{-1}$ .
- This implies  $\mathbf{P}\left[\bigcap_{i=1}^n \{H_i \le 24 \log n\}\right] \ge 1 n^{-1}$ , as needed.  $\square$

#### Randomised QuickSort: Final Remarks

- Well-known: any comparison-based sorting algorithm needs  $\Omega(n \log n)$
- A classical result: expected number of comparison of randomised QUICKSORT is  $2n \log n + O(n)$  (see, e.g., book by Mitzenmacher & Upfal)



**Exercise:** [Ex 2-3.6] Our upper bound of  $O(n \log n)$  whp also immediately implies a  $O(n \log n)$  bound on the expected number of comparisons!

- It is possible to deterministically find the best pivot element that divides the array into two subarrays of the same size.
- The latter requires to compute the median of the array in linear time, which is not easy...
- The presented randomised algorithm for QUICKSORT is much easier to implement!

#### Outline

Application 2: Randomised QuickSort

#### **Extensions of Chernoff Bounds**

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)

## **Hoeffding's Extension**

- Besides sums of independent Bernoulli random variables, sums of independent and bounded random variables are very frequent in applications.
- Unfortunately the distribution of the  $X_i$  may be unknown or hard to compute, thus it will be hard to compute the moment-generating function.

• Hoeffding's Lemma helps us here: You can always consider 
$$X' = X - \mathbf{E}[X]$$

Hoeffding's Extension Lemma —

Let X be a random variable with mean 0 such that a < X < b. Then for all  $\lambda \in \mathbb{R}$ ,

$$\mathbf{E}\left[e^{\lambda X}\right] \leq \exp\left(\frac{(b-a)^2\lambda^2}{8}\right)$$

We omit the proof of this lemma!

## **Hoeffding Bounds**

Hoeffding's Inequality

Let  $X_1,\ldots,X_n$  be independent random variable with mean  $\mu_i$  such that  $a_i \leq X_i \leq b_i$ . Let  $X = X_1 + \ldots + X_n$ , and let  $\mu = \mathbf{E}[X] = \sum_{i=1}^n \mu_i$ . Then for any t > 0

$$\mathbf{P}\left[X \geq \mu + t\right] \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^{n}(b_i - a_i)^2}\right),\,$$

and

$$\mathbf{P}[X \leq \mu - t] \leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right).$$

#### Proof Outline (skipped):

■ Let 
$$X_i' = X_i - \mu_i$$
 and  $X' = X_1' + ... + X_n'$ , then  $\mathbf{P}[X \ge \mu + t] = \mathbf{P}[X' \ge t]$ 

$$\bullet \ \mathbf{P}[\,X' \geq t\,] \leq e^{-\lambda t} \textstyle\prod_{i=1}^n \mathbf{E}\left[\,e^{\lambda X_i'}\,\right] \leq \exp\left[-\lambda t + \frac{\lambda^2}{8} \textstyle\sum_{i=1}^n (b_i - a_i)^2\right]$$

■ Choose  $\lambda = \frac{4t}{\sum_{i=1}^{n} (b_i - a_i)^2}$  to get the result.

This is not magic! you just need to optimise  $\lambda$ !

#### **Method of Bounded Differences**

Framework

Suppose, we have independent random variables  $X_1, \ldots, X_n$ . We want to study the random variable:

$$f(X_1,\ldots,X_n)$$

#### Some examples:

- 1.  $X = X_1 + \ldots + X_n$  (our setting earlier)
- 2. In balls into bins,  $X_i$  indicates where ball i is allocated, and  $f(X_1, \ldots, X_m)$  is the number of empty bins
- 3. In a randomly generated graph,  $X_i$  indicates if the i-th edge is present and  $f(X_1, \ldots, X_m)$  represents the number of connected components of G

In all those cases (and more) we can easily prove concentration of  $f(X_1, ..., X_n)$  around its mean by the so-called **Method of Bounded Differences**.

#### **Method of Bounded Differences**

A function f is called Lipschitz with parameters  $\mathbf{c} = (c_1, \dots, c_n)$  if for all  $i = 1, 2, \dots, n$ ,

$$|f(x_1, x_2, \ldots, x_{i-1}, \mathbf{X}_i, x_{i+1}, \ldots, x_n) - f(x_1, x_2, \ldots, x_{i-1}, \widetilde{\mathbf{X}}_i, x_{i+1}, \ldots, x_n)| \leq c_i,$$

where  $x_i$  and  $\tilde{x}_i$  are in the domain of the *i*-th coordinate.

McDiarmid's inequality

Let  $X_1, ..., X_n$  be independent random variables. Let f be Lipschitz with parameters  $\mathbf{c} = (c_1, ..., c_n)$ . Let  $X = f(X_1, ..., X_n)$ . Then for any t > 0,

$$\mathbf{P}[X \ge \mu + t] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right),\,$$

and

$$\mathbf{P}[X \le \mu - t] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).$$

- Notice the similarity with Hoeffding's inequality! [Exercise 2/3.14]
- The proof is omitted here (it requires the concept of martingales).

#### **Outline**

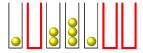
Application 2: Randomised QuickSort

**Extensions of Chernoff Bounds** 

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)

## Application 3: Balls into Bins (again...)

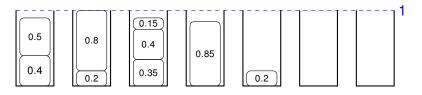


- Consider again *m* balls assigned uniformly at random into *n* bins.
- Enumerate the balls from 1 to m. Ball i is assigned to a random bin  $X_i$
- Let Z be the number of empty bins (after assigning the m balls)
- $Z = Z(X_1, ..., X_m)$  and Z is Lipschitz with  $\mathbf{c} = (1, ..., 1)$  (If we move one ball to another bin, number of empty bins changes by  $\leq 1$ .)
- By McDiarmid's inequality, for any  $t \ge 0$ ,

$$P[|Z - E[Z]| > t] \le 2 \cdot e^{-2t^2/m}$$

This is a decent bound, but for some values of m it is far from tight and stronger bounds are possible through a refined analysis.

## **Application 4: Bin Packing**



- We are given *n* items of sizes in the unit interval [0, 1]
- We want to pack those items into the fewest number of unit-capacity bins
- Suppose the item sizes  $X_i$  are independent random variables in [0, 1]
- Let  $B = B(X_1, ..., X_n)$  be the optimal number of bins
- The Lipschitz conditions holds with c = (1, ..., 1). Why?
- Therefore

$$P[|B - E[B]| \ge t] \le 2 \cdot e^{-2t^2/n}$$

This is a typical example where proving concentration is much easier than calculating (or estimating) the expectation!

#### **Outline**

Application 2: Randomised QuickSort

**Extensions of Chernoff Bounds** 

Applications of Method of Bounded Differences

Appendix: More on Moment Generating Functions (non-examinable)

## **Moment Generating Functions (non-examinable)**

Moment-Generating Function -

The moment-generating function of a random variable X is

$$\mathit{M}_{\mathit{X}}(t) = \mathbf{E}\left[\,e^{t\mathit{X}}\,
ight], \qquad \text{where } t \in \mathbb{R}.$$

Using power series of e and differentiating shows that  $M_X(t)$  encapsulates all moments of X.

Lemma

- 1. If X and Y are two r.v.'s with  $M_X(t) = M_Y(t)$  for all  $t \in (-\delta, +\delta)$  for some  $\delta > 0$ , then the distributions X and Y are identical.
- 2. If X and Y are independent random variables, then

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t).$$

Proof of 2:

$$M_{X+Y}(t) = \mathbf{E} \left[ e^{t(X+Y)} \right] = \mathbf{E} \left[ e^{tX} \cdot e^{tY} \right] \stackrel{(!)}{=} \mathbf{E} \left[ e^{tX} \right] \cdot \mathbf{E} \left[ e^{tY} \right] = M_X(t) M_Y(t) \quad \Box$$