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Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically.

But often: simple algorithm at the cost of a sophisticated analysis!

“... If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms I would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”
- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.

What if I (initially) don’t care about randomised algorithms?
Many of the techniques in this course (Markov Chains, Concentration of
Measure, Spectral Theory) are very relevant to other popular areas of
research and employment such as Data Science and Machine Learning.
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Some stuff you should know...

In this course we will assume some basic knowledge of probability:

random variable

computing expectations and variances

notions of independence

“general” idea of how to compute probabilities (manipulating, counting
and estimating)

You should also be familiar with basic computer science, mathematics
knowledge such as:

graphs

basic algorithms (sorting, graph algorithms etc.)

matrices, norms and vectors
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Textbooks

(?) Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis, Cambridge
University Press, 2nd edition, 2017
David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms, Cambridge University Press, 2011

Cormen, T.H., Leiserson, C.D., Rivest, R.L. and Stein, C. Introduction to
Algorithms. MIT Press (3rd ed.), 2009
(We will adopt some of the labels (e.g., Theorem 35.6) from this book in
Lectures 6-10)
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1 Introduction (Lecture)
Intro to Randomised Algorithms; Logistics; Recap of Probability; Examples.

Lectures 2-5 focus on probabilistic tools and techniques.

2–3 Concentration (Lectures)
Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and
Applications; Extensions: Hoeffding’s Inequality and Method of Bounded Differences;
Applications.

4 Markov Chains and Mixing Times (Lecture)
Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to
Stationary Distribution; Variation Distance and Mixing Time

5 Hitting Times and Application to 2-SAT (Lecture)
Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting
Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT
Algorithm

Lectures 6-8 introduce linear programming, a (mostly) deterministic but
very powerful technique to solve various optimisation problems.

6–7 Linear Programming (Lectures)
Introduction to Linear Programming, Applications, Standard and Slack Forms, Simplex
Algorithm, Finding an Initial Solution, Fundamental Theorem of Linear Programming

8 Travelling Salesman Problem (Interactive Demo)
Hardness of the general TSP problem, Formulating TSP as an integer program; Classical
TSP instance from 1954; Branch & Bound Technique to solve integer programs using
linear programs
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We then see how we can efficiently combine linear programming with
randomised techniques, in particular, rounding:

9–10 Randomised Approximation Algorithms (Lectures)
MAX-3-CNF and Guessing, Vertex-Cover and Deterministic Rounding of Linear Program,
Set-Cover and Randomised Rounding, Concluding Example: MAX-CNF and Hybrid
Algorithm

Lectures 11-12 cover a more advanced topic with ML flavour:

11–12 Spectral Graph Theory and Spectral Clustering (Lectures)
Eigenvalues, Eigenvectors and Spectrum; Visualising Graphs; Expansion; Cheeger’s
Inequality; Clustering and Examples; Analysing Mixing Times
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Recap: Probability Space

In probability theory we wish to evaluate the likelihood of certain results from
an experiment. The setting of this is the probability space (Ω,Σ,P).

The Sample Space Ω contains all the possible outcomes ω1, ω2, . . .
of the experiment.

The Event Space Σ is the power-set of Ω containing events, which
are combinations of outcomes (subsets of Ω including ∅ and Ω).
The Probability Measure P is a function from Σ to R satisfying

(i) 0 ≤ P [ E ] ≤ 1, for all E ∈ Σ
(ii) P [ Ω ] = 1
(iii) If E1, E2, . . . ∈ Σ are pairwise disjoint (Ei ∩ Ej = ∅ for all i 6= j) then

P

[ ∞⋃
i=1

Ei

]
=
∞∑
i=1

P [ Ei ] .

Components of the Probability Space (Ω,Σ,P)
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Recap: Random Variables

A random variable X on (Ω,Σ,P) is a function X : Ω→ R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

The number of heads in three coin flips X1,X2,X3 ∈ {0, 1} is:

X1 + X2 + X3

The indicator random variable 1E of an event E ∈ Σ given by

1E(ω) =

{
1 if ω ∈ E
0 otherwise.

For the indicator random variable 1E we have E [ 1E ] = P [ E ].

The number of sixes of two dice throws X1,X2 ∈ {1, 2, . . . , 6} is

1X1=6 + 1X2=6

Examples of random variables
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Recap: Boole’s Inequality (Union Bound)

Let E1, . . . , En be a collection of events in Σ. Then

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P [ Ei ] .

Union Bound

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1Ei be the random variable that takes value 1 if Ei holds, 0 otherwise

2. E [ 1Ei ] = P [ Ei ] (Check this)

3. It is clear that 1⋃n
i=1 Ei

≤
∑n

i=1 1Ei (Check this)

4. Taking expectation completes the proof.
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A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,Sc) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This problem will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6
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A Randomised Algorithm for MAX-CUT (2/2)
RANDMAXCUT(G)

1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RANDMAXCUT(G) gives a 2-approximation using time O(n).
Proposition More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear often in this course!

Later: learn stronger tools that imply concentration around the expectation!
Proof:

We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc) ] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}


=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc ] = 2
∑
{u,v}∈E

P [ u ∈ S ] · P
[

v ∈ Sc ] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, the proof is complete.
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Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

Coupon Collector Problem

This is a very important example in the design and analysis of randomised algorithms.

Example Sequence for n = 8: 7, 6, 3, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 X

Exercise ( [Ex. 1.11] )

1. Prove it takes n
∑n

k=1
1
k ≈ n log n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
n log n + cn boxes to collect all n coupons is ≤ e−c .

Hint: It is useful to remember that 1 − x ≤ e−x for all x

In this course: log n = ln n
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Concentration Inequalities

Concentration refers to the phenomena where random variables are very
close to their mean

This is very useful in randomised algorithms as it ensures an almost
deterministic behaviour
It gives us the best of two worlds:

1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim
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Chernoff Bounds: A Tool for Concentration (1952)

Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables

random variables can be discrete (or continuous)

usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebyshev’s inequality (see example)

easy to apply, but requires independence
have found various applications in:

Randomised Algorithms
Statistics
Random Projections and Dimensionality Reduction
Learning Theory (e.g., PAC-learning)
...

Hermann Chernoff (1923-)

(1 + δ)µ(1 − δ)µ µ
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Recap: Markov and Chebyshev

If X is a non-negative random variable, then for any a > 0,

P [ X ≥ a ] ≤ E [ X ] /a.

Markov’s Inequality

If X is a random variable, then for any a > 0,

P [ |X − E [ X ] | ≥ a ] ≤ V [ X ] /a2.

Chebyshev’s Inequality

Let f : R→ [0,∞) and increasing, then f (X ) ≥ 0, and thus

P [ X ≥ a ] ≤ P [ f (X ) ≥ f (a) ] ≤ E [ f (X ) ] /f (a).

Similarly, if g : R→ [0,∞) and decreasing, then g(X ) ≥ 0, and thus

P [ X ≤ a ] ≤ P [ g(X ) ≥ g(a) ] ≤ E [ g(X ) ] /g(a).

Chebyshev’s inequality (or Markov) can be obtained by
chosing f (X ) := (X − µ)2 (or f (X ) := X , respectively).
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From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random
variable. Can we keep going?

Yes!

We can consider the first, second, third and more moments! That is the basic
idea behind the Chernoff Bounds

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 21



Our First Chernoff Bound

Suppose X1, . . . ,Xn are independent Bernoulli random variables with
parameter pi . Let X = X1 + . . .+ Xn and µ = E [ X ] =

∑n
i=1 pi . Then, for

any δ > 0 it holds that

P [ X ≥ (1 + δ)µ ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
. (F)

This implies that for any t > µ,

P [ X ≥ t ] ≤ e−µ
(eµ

t

)t
.

Chernoff Bounds (General Form, Upper Tail)

While (F) is one of the easiest (and most generic) Chernoff
bounds to derive, the bound is complicated and hard to apply...
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Example: Coin Flips (1/3)

Consider throwing a fair coin n times and count the total number of heads

Xi ∈ {0, 1}, X =
∑n

i=1 Xi and E [ X ] = n · 1/2 = n/2

The Chernoff Bound gives for any δ > 0,

P [ X ≥ (1 + δ)(n/2) ] ≤
[

eδ

(1 + δ)(1+δ)

]n/2

.

The above expression equals 1 only for δ = 0, and then it gives a value
strictly less than 1 (check this!)

⇒ The inequality is exponential in n, (for fixed δ) which is much better than
Chebyshev’s inequality.

What about a concrete value of n, say n = 100?
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Example: Coin Flips (2/3)

0 10 20 30 40 50 60 70 80 90 100

0.00

0.02

0.04

0.06

0.08

0.10

x

P [ Bin(100, 1/2) = x ]
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Example: Coin Flips (3/3)

Consider n = 100 independent coin flips. We wish to find an upper bound on
the probability that the number of heads is greater or equal than 75.

Markov’s inequality: E [ X ] = 100/2 = 50.

P [ X ≥ 3/2 · E [ X ] ] ≤ 2/3 = 0.666.

Chebyshev’s inequality: V [ X ] =
∑100

i=1 V [ Xi ] = 100 · (1/2)2 = 25.

P [ |X − µ| ≥ t ] ≤ V [ X ]

t2 ,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

Chernoff bound: setting δ = 1/2 gives

P [ X ≥ 3/2 · E [ X ] ] ≤
(

e1/2

(3/2)3/2

)50

= 0.004472.

Remark: The exact probability is 0.00000028 . . .

Chernoff bound yields a much better result (but needs independence!)

1. Introduction © T. Sauerwald Introduction to Chernoff Bounds 25


	Introduction
	Topics and Syllabus
	A (Very) Brief Reminder of Probability Theory
	Basic Examples
	Introduction to Chernoff Bounds

