Randomised Algorithms

Lecture 12: Spectral Graph Clustering

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

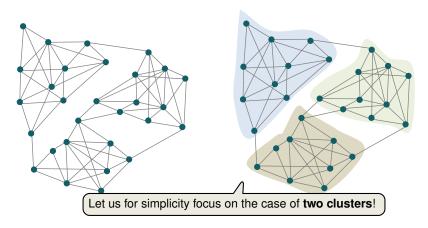
Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Appendix: Relating Spectrum to Mixing Times (non-examinable)

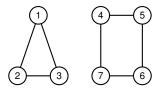
Graph Clustering

Partition the graph into **pieces (clusters)** so that vertices in the same piece have, on average, more connections among each other than with vertices in other clusters



Conductance

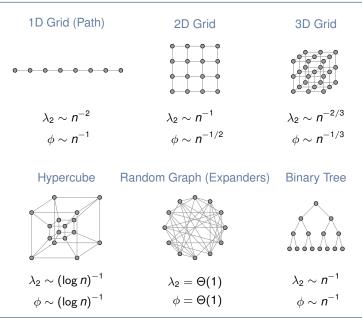
Conductance Let G = (V, E) be a *d*-regular and undirected graph and $\emptyset \neq S \subseteq V$. The conductance (edge expansion) of S is $\phi(S) := \frac{e(S, S^c)}{d \cdot |S|}$ Moreover, the conductance (edge expansion) of the graph G is $\phi(G) := \min_{S \subseteq V: \ 1 \le |S| \le n/2} \phi(S)$ NP-hard to compute! • $\phi(S) = \frac{5}{9}$ • $\phi(G) \in [0, 1]$ and $\phi(G) = 0$ iff G is disconnected 6 If G is a complete graph, then $e(S, V \setminus S) = |S| \cdot (n - |S|)$ and $\phi(G) \approx 1/2.$



 $\phi(G) = 0 \iff G \text{ is disconnected } \Leftrightarrow \lambda_2(G) = 0$

What is the relationship between $\phi(G)$ and $\lambda_2(G)$ for **connected** graphs?

λ_2 versus Conductance (2/2)



12. Clustering © T. Sauerwald

Conductance, Cheeger's Inequality and Spectral Clustering

Cheeger's inequality

Let *G* be a *d*-regular undirected graph and $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of its Laplacian matrix. Then,

$$rac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

Spectral Clustering:

- 1. Compute the eigenvector x corresponding to λ_2
- 2. Order the vertices so that $x_1 \leq x_2 \leq \cdots \leq x_n$ (embed *V* on \mathbb{R})
- 3. Try all n 1 sweep cuts of the form $(\{1, 2, ..., k\}, \{k + 1, ..., n\})$ and return the one with smallest conductance
- It returns cluster $S \subseteq V$ such that $\phi(S) \leq \sqrt{2\lambda_2} \leq 2\sqrt{\phi(G)}$
- no constant factor worst-case guarantee, but usually works well in practice (see examples later!)
- very fast: can be implemented in $O(|E| \log |E|)$ time

Proof of Cheeger's Inequality (non-examinable)

Proof (of the easy direction):
• By the Courant-Fischer Formula,

$$\lambda_{2} = \min_{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{x^{T} L x}{x^{T} x} = \frac{1}{d} \cdot \min_{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{\sum_{u \sim v} (x_{u} - x_{v})^{2}}{\sum_{u} x_{u}^{2}}.$$

• Let $S \subseteq V$ be the subset for which $\phi(G)$ is minimised. Define $y \in \mathbb{R}^n$ by:

$$y_u = \begin{cases} \frac{1}{|S|} & \text{if } u \in S, \\ -\frac{1}{|V \setminus S|} & \text{if } u \in V \setminus S. \end{cases}$$

• Since $y \perp 1$, it follows that

$$\begin{split} \lambda_2 &\leq \frac{1}{d} \cdot \frac{\sum_{u \sim v} (y_u - y_v)^2}{\sum_u y_u^2} = \frac{1}{d} \cdot \frac{|E(S, V \setminus S)| \cdot (\frac{1}{|S|} + \frac{1}{|V \setminus S|})^2}{\frac{1}{|S|} + \frac{1}{|V \setminus S|}} \\ &= \frac{1}{d} \cdot |E(S, V \setminus S)| \cdot \left(\frac{1}{|S|} + \frac{1}{|V \setminus S|}\right) \\ &\leq \frac{1}{d} \cdot \frac{2 \cdot |E(S, V \setminus S)|}{|S|} = 2 \cdot \phi(G). \quad \Box \end{split}$$

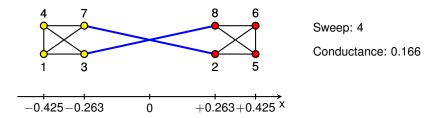
Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Appendix: Relating Spectrum to Mixing Times (non-examinable)

Illustration on a small Example

$$\begin{split} \lambda_2 &= 1 - \sqrt{5}/3 \approx 0.25 \\ \nu &= \left(-0.425, +0.263, -0.263, -0.425, +0.425, +0.425, -0.263, +0.263\right)^{T} \end{split}$$



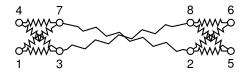
Physical Interpretation of the Minimisation Problem

- For each edge $\{u, v\} \in E(G)$, add spring between pins at x_u and x_v
- The potential energy at each spring is $(x_u x_v)^2$
- Courant-Fisher characterisation:

$$\lambda_2 = \min_{\substack{x \in \mathbb{R}^n \setminus \{0\}\\x \perp 1}} \frac{x^T \mathsf{L} x}{x^T x} = \frac{1}{d} \cdot \min_{\substack{x \in \mathbb{R}^n\\\|\|x\|_2^2 = 1, x \perp 1}} (x_u - x_v)^2$$

- In our example, we found out that $\lambda_2\approx 0.25$
- The eigenvector x on the last slide is normalised (i.e., $||x||_2^2 = 1$). Hence,

$$\lambda_2 = \frac{1}{3} \cdot \left((x_1 - x_3)^2 + (x_1 - x_4)^2 + (x_1 - x_7)^2 + \dots + (x_6 - x_8)^2 \right) \approx 0.25$$



Let us now look at an example of a non-regular graph!

The (normalised) Laplacian matrix of G = (V, E, w) is the *n* by *n* matrix

$$L = I - D^{-1/2} A D^{-1/2}$$

where **D** is a diagonal $n \times n$ matrix such that $\mathbf{D}_{uu} = deg(u) = \sum_{v: \{u,v\} \in E} w(u,v)$, and **A** is the weighted adjacency matrix of *G*.

•
$$\mathbf{L}_{uv} = -\frac{w(u,v)}{\sqrt{d_u d_v}}$$
 for $u \neq v$

- L is symmetric
- If G is d-regular, $\mathbf{L} = \mathbf{I} \frac{1}{d} \cdot \mathbf{A}$.

Conductance and Spectral Clustering (General Version)

Conductance (General Version) Let G = (V, E, w) and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of S is $\phi(S) := \frac{w(S, S^c)}{\min\{\operatorname{vol}(S), \operatorname{vol}(S^c)\}},$ where $w(S, S^c) := \sum_{u \in S, v \in S^c} w(u, v)$ and $\operatorname{vol}(S) := \sum_{u \in S} d(u)$. Moreover, the conductance (edge expansion) of G is $\phi(G) := \min_{\emptyset \neq S \subsetneq V} \phi(S).$

Spectral Clustering (General Version):

- 1. Compute the eigenvector *x* corresponding to λ_2 and $y = \mathbf{D}^{-1/2} x$.
- 2. Order the vertices so that $y_1 \leq y_2 \leq \cdots \leq y_n$ (embed *V* on \mathbb{R})
- 3. Try all n 1 sweep cuts of the form $(\{1, 2, ..., k\}, \{k + 1, ..., n\})$ and return the one with smallest conductance

Stochastic Block Model and 1D-Embedding

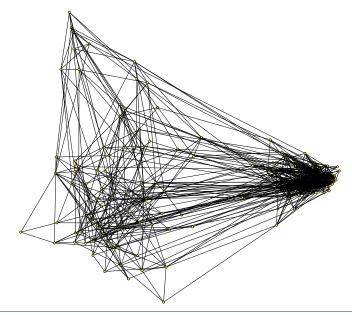
Stochastic Block Model

$$G = (V, E)$$
 with clusters $S_1, S_2 \subseteq V, 0 \le q
 $\mathbf{P}[\{u, v\} \in E] = \begin{cases} p & \text{if } u, v \in S_i, \\ q & \text{if } u \in S_i, v \in S_j, i \ne j. \end{cases}$$

Here: • $|S_1| = 80,$ $|S_2| = 120$ • p = 0.08• q = 0.01

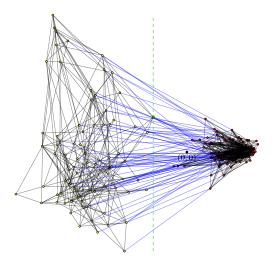
Number of V	erti	ice	s: 200
Number of E	dges	3:	919
Eigenvalue	1	:	-1.1968431479565368e-16
Eigenvalue	2	:	0.1543784937248489
Eigenvalue	3	:	0.37049909753568877
Eigenvalue	4	:	0.39770640242147404
Eigenvalue	5	:	0.4316114413430584
Eigenvalue	6	:	0.44379221120189777
Eigenvalue	7	:	0.4564011652684181
Eigenvalue	8	:	0.4632911204500282
Eigenvalue	9	:	0.474638606357877
Eigenvalue	10	:	0.4814019607292904

Drawing the 2D-Embedding

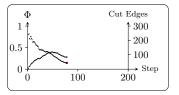


Best Solution found by Spectral Clustering

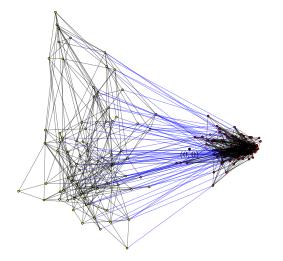
For the complete animation, see the full slides.



- Step: 78
- Threshold: -0.0336
- Partition Sizes: 78/122
- Cut Edges: 84
- \bullet Conductance: 0.1448



Clustering induced by Blocks



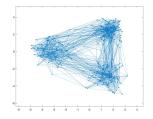
- Step: –
- Threshold: –
- Partition Sizes: 80/120
- Cut Edges: 88
- Conductance: 0.1486

Additional Example: Stochastic Block Models with 3 Clusters

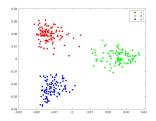
Graph
$$G = (V, E)$$
 with clusters
 $S_1, S_2, S_3 \subseteq V; \quad 0 \le q
$$\mathbf{P}[\{u, v\} \in E] = \begin{cases} p & u, v \in S_i \\ q & u \in S_i, v \in S_j, i \ne j \end{cases}$$

$$|V| = 300, |S_i| = 100$$

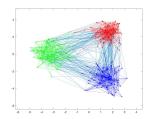
$$p = 0.08, q = 0.01$$$



Spectral embedding



Output of Spectral Clustering

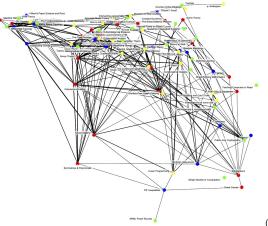


- If k is unknown:
 - small λ_k means there exist k sparsely connected subsets in the graph (recall: λ₁ = ... = λ_k = 0 means there are k connected components)
 - large λ_{k+1} means all these *k* subsets have "good" inner-connectivity properties (cannot be divided further)

 \Rightarrow choose smallest $k \ge 2$ so that the spectral gap $\lambda_{k+1} - \lambda_k$ is "large"

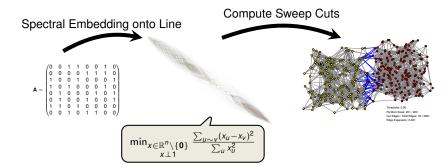
- In the latter example $\lambda = \{0, 0.20, 0.22, 0.43, 0.45, ...\} \implies k = 3.$
- In the former example $\lambda = \{0, 0.15, 0.37, 0.40, 0.43, ...\} \implies k = 2.$
- For k = 2 use sweep-cut extract clusters. For k ≥ 3 use embedding in k-dimensional space and apply k-means (geometric clustering)

Another Example



(many thanks to Kalina Jasinska)

- nodes represent math topics taught within 4 weeks of a Mathcamp
- node colours represent to the week in which they thought
- teachers were asked to assign weights in 0 10 indicating how closely related two classes are



- Given any graph (adjacency matrix)
- Graph Spectrum (computable in poly-time)
 - \u03c6₂ (relates to connectivity)
 - λ_n (relates to bipartiteness)

- Cheeger's Inequality
 - relates \(\lambda_2\) to conductance
 - unbounded approximation ratio
 - effective in practice

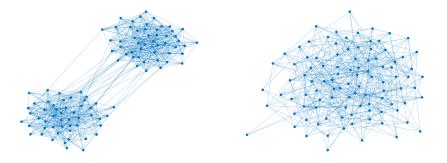
Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Appendix: Relating Spectrum to Mixing Times (non-examinable)

Relation between Clustering and Mixing (non-examinable)

- Which graph has a "cluster-structure"?
- Which graph mixes faster?



Convergence of Random Walk (non-examinable)

Recall: If the underlying graph *G* is connected, undirected and *d*-regular, then the random walk converges towards the stationary distribution $\pi = (1/n, ..., 1/n)$, which satisfies $\pi \mathbf{P} = \pi$.

Here all vector multiplications (including eigenvectors) will always be from the left!

Lemma

Consider a lazy random walk on a connected, undirected and *d*-regular graph. Then for any initial distribution x,

$$\left\| \mathbf{x}\mathbf{P}^{t} - \pi \right\|_{2} \leq \lambda^{t},$$

with $1 = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n$ as eigenvalues and $\lambda := \max\{|\lambda_2|, |\lambda_n|\}.$ \Rightarrow This implies for $t = \mathcal{O}(\frac{\log n}{\log(1/\lambda)}) = \mathcal{O}(\frac{\log n}{1-\lambda}),$ $\|x\mathbf{P}^t - \pi\|_{tv} \le \frac{1}{4}.$ due to laziness, $\lambda_n \ge 0$

Proof of Lemma (non-examinable)

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi$, v_2 , ..., v_n :

$$x=\sum_{i=1}^n \alpha_i v_i.$$

Since x is a probability vector and all $v_i \ge 2$ are orthogonal to π , $\alpha_1 = 1$.

$$\Rightarrow \| x \mathbf{P} - \pi \|_{2}^{2} = \left\| \left(\sum_{i=1}^{n} \alpha_{i} v_{i} \right) \mathbf{P} - \pi \right\|_{2}^{2}$$

$$= \left\| \pi + \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} - \pi \right\|_{2}^{2}$$

$$= \left\| \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} - \pi \right\|_{2}^{2}$$
since the v_{i} 's are orthogonal
$$= \sum_{i=2}^{n} \| \alpha_{i} \lambda_{i} v_{i} \|_{2}^{2}$$
since the v_{i} 's are orthogonal
$$\leq \lambda^{2} \sum_{i=2}^{n} \| \alpha_{i} v_{i} \|_{2}^{2} = \lambda^{2} \left\| \sum_{i=2}^{n} \alpha_{i} v_{i} \right\|_{2}^{2} = \lambda^{2} \| x - \pi \|_{2}^{2}$$

$$= \text{Hence } \| x \mathbf{P}^{t} - \pi \|_{2}^{2} \leq \lambda^{2t} \cdot \| x - \pi \|_{2}^{2} \leq \lambda^{2t} \cdot 1.$$

$$= \| x - \pi \|_{2}^{2} = \| x \|_{2}^{2} = \| x \|_{2}^{2} \leq 1$$

Fan R.K. Chung. Graph Theory in the Information Age. Notices of the AMS, vol. 57, no. 6, pages 726–732, 2010.
Fan R.K. Chung. <u>Spectral Graph Theory</u> . Volume 92 of CBMS Regional Conference Series in Mathematics, 1997.
S. Hoory, N. Linial and A. Widgerson. Expander Graphs and their Applications. Bulletin of the AMS, vol. 43, no. 4, pages 439–561, 2006.
Daniel Spielman. Chapter 16, <u>Spectral Graph Theory</u> Combinatorial Scientific Computing, 2010.
Luca Trevisan. Lectures Notes on Graph Partitioning, Expanders and Spectral Methods, 2017. https://lucatrevisan.github.io/books/expanders-2016.pdf

Thank you and Best Wishes for the Exam!