Randomised Algorithms

Lecture 10: Approximation Algorithms: Set-Cover and MAX-CNF

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2024

Weighted Set Cover

MAX-CNF

Remarks:

- generalisation of the weighted Vertex-Cover problem
- models resource allocation problems

Question: Try to formulate the integer program and linear program of the weighted SET-COVER problem (solution on next slide!)

Setting up an Integer Program

0-1 Integer Progra	am]
minimize	$\sum_{\mathcal{S}\in\mathcal{F}} c(\mathcal{S}) y(\mathcal{S})$			
subject to	$\sum_{S\in\mathcal{F}:\ x\in S}y(S)$	≥ 1		for each $x \in X$
	<i>y</i> (<i>S</i>)	∈ {(0,1}	for each $oldsymbol{\mathcal{S}}\in\mathcal{F}$

Back to the Example

Randomised Rounding

Idea: Interpret the \overline{y} -values as probabilities for picking the respective set.

Randomised Rounding -

- Let $C \subseteq \mathcal{F}$ be a random set with each set *S* being included independently with probability $\overline{y}(S)$.
- More precisely, if y
 denotes the optimal solution of the LP, then we compute an integral solution y by:

$$y(S) = \begin{cases} 1 & ext{with probability } \overline{y}(S) \\ 0 & ext{otherwise.} \end{cases}$$
 for all $S \in \mathcal{F}$.

• Therefore, $\mathbf{E}[y(S)] = \overline{y}(S)$.

Randomised Rounding

Idea: Interpret the \overline{y} -values as probabilities for picking the respective set.

Lemma -

The expected cost satisfies

$$\mathsf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$$

■ The probability that an element *x* ∈ *X* is covered satisfies

$$\mathbf{P}\left[x\in\bigcup_{S\in\mathcal{C}}S\right]\geq 1-\frac{1}{e}.$$

Proof of Lemma

– Lemma

Let $C \subseteq F$ be a random subset with each set *S* being included independently with probability $\overline{y}(S)$.

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$.
- The probability that x is covered satisfies $P[x \in \bigcup_{S \in C} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set C

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S\in\mathcal{C}}c(S)\right] = \mathbf{E}\left[\sum_{S\in\mathcal{F}}\mathbf{1}_{S\in\mathcal{C}}\cdot c(S)\right]$$
$$= \sum_{S\in\mathcal{F}}\mathbf{P}[S\in\mathcal{C}]\cdot c(S) = \sum_{S\in\mathcal{F}}\overline{y}(S)\cdot c(S).$$

Step 2: The probability for an element to be (not) covered

$$\mathbf{P}[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \mathbf{P}[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - \overline{y}(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-\overline{y}(S)} \underbrace{\overline{y} \text{ solves the LP!}}_{= e^{-\sum_{S \in \mathcal{F}: \ x \in S} \overline{y}(S)} \leq e^{-1} \square$$

The Final Step

Lemma

Let $C \subseteq F$ be a random subset with each set *S* being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that *x* is covered satisfies $P[x \in \bigcup_{s \in C} S] \ge 1 \frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets C.

WEIGHTED SET COVER-LP(X, \mathcal{F}, c)

1: compute \overline{y} , an optimal solution to the linear program

2:
$$\mathcal{C} = \emptyset$$

- 3: repeat 2 ln n times
- 4: **for** each $S \in \mathcal{F}$
- 5: let $C = C \cup \{S\}$ with probability $\overline{y}(S)$
- 6: return \mathcal{C}

clearly runs in polynomial-time!

Analysis of WEIGHTED SET COVER-LP

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is 2 ln(n).

Proof:

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{a}$, so that

$$\mathbf{P}\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}$$

This implies for the event that all elements are covered:

$$\mathbf{P}[X = \bigcup_{S \in \mathcal{C}} S] = 1 - \mathbf{P}\left[\bigcup_{x \in X} \{x \notin \bigcup_{S \in \mathcal{C}} S\}\right]$$
$$\mathbf{P}[A \cup B] \leq \mathbf{P}[A] + \mathbf{P}[B] \geq 1 - \sum_{x \in X} \mathbf{P}[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio
 - By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S)$.
 - Linearity $\Rightarrow \mathbf{E}[c(\mathcal{C})] \le 2\ln(n) \cdot \sum_{S \in \mathcal{F}} c(S) \cdot \overline{y}(S) \le 2\ln(n) \cdot c(\mathcal{C}^*)$

Analysis of WEIGHTED SET COVER-LP

Typical Approach for Designing Approximation Algorithms based on LPs

[Exercise Question (9/10).10] gives a different perspective on the amplification procedure through non-linear randomised rounding.

Weighted Set Cover

MAX-CNF

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

- MAX-CNF Satisfiability (MAX-SAT)
- Given: CNF formula, e.g.: $(x_1 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Why study this generalised problem?

- Allowing arbitrary clause lengths makes the problem more interesting (we will see that simply guessing is not the best!)
- a nice concluding example where we can practice previously learned approaches

Approach 1: Guessing the Assignment

Proof:

- First statement as in the proof of Theorem 35.6. For clause *i* not to be satisfied, all ℓ occurring variables must be set to a specific value.
- As before, let $Y := \sum_{i=1}^{m} Y_i$ be the number of satisfied clauses. Then,

$$\mathbf{E}[\mathbf{Y}] = \mathbf{E}\left[\sum_{i=1}^{m} \mathbf{Y}_i\right] = \sum_{i=1}^{m} \mathbf{E}[\mathbf{Y}_i] \ge \sum_{i=1}^{m} \frac{1}{2} = \frac{1}{2} \cdot m. \qquad \Box$$

Approach 2: Guessing with a "Hunch" (Randomised Rounding)

- In the corresponding LP each $\in \{0, 1\}$ is replaced by $\in [0, 1]$
- Let $(\overline{y}, \overline{z})$ be the optimal solution of the LP
- Obtain an integer solution y through randomised rounding of \overline{y}

Analysis of Randomised Rounding

- Lemma

For any clause *i* of length ℓ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

Proof of Lemma (1/2):

- Assume w.l.o.g. all literals in clause *i* appear non-negated (otherwise replace every occurrence of x_i by x̄_i in the whole formula)
- Further, by relabelling assume $C_i = (x_1 \vee \cdots \vee x_\ell)$

$$\Rightarrow \mathbf{P}[\text{clause } i \text{ is satisfied}] = 1 - \prod_{j=1}^{\ell} \mathbf{P}[y_j \text{ is false }] = 1 - \prod_{j=1}^{\ell} (1 - \overline{y}_j)$$
Arithmetic vs. geometric mean:
$$\frac{a_1 + \dots + a_k}{k} \ge \sqrt[k]{a_1 \times \dots \times a_k}.$$

$$\geq 1 - \left(\frac{\sum_{j=1}^{\ell} (1 - \overline{y}_j)}{\ell}\right)^{\ell}$$

$$= 1 - \left(1 - \frac{\sum_{j=1}^{\ell} \overline{y}_j}{\ell}\right)^{\ell} \ge 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}.$$

Analysis of Randomised Rounding

– Lemma

For any clause *i* of length ℓ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

Proof of Lemma (2/2):

So far we have shown:

$$\mathbf{P}[\text{clause } i \text{ is satisfied }] \geq 1 - \left(1 - \frac{\overline{z}_i}{\ell}\right)^{\ell}$$

• For any $\ell \ge 1$, define $g(z) := 1 - (1 - \frac{z}{\ell})^{\ell}$. This is a concave function with g(0) = 0 and $g(1) = 1 - (1 - \frac{1}{\ell})^{\ell} =: \beta_{\ell}$. $\Rightarrow \quad g(z) \ge \beta_{\ell} \cdot z$ for any $z \in [0, 1]$ $1 - (1 - \frac{1}{3})^3 = - - \frac{1}{\ell}$ • Therefore, **P** [clause *i* is satisfied] $\ge \beta_{\ell} \cdot \overline{z}_i$.

Analysis of Randomised Rounding

- Lemma

For any clause *i* of length ℓ ,

$$\mathbf{P}[\text{clause } i \text{ is satisfied}] \geq \left(1 - \left(1 - \frac{1}{\ell}\right)^{\ell}\right) \cdot \overline{z}_i.$$

Theorem

Randomised Rounding yields a 1/(1 - 1/e) \approx 1.5820 randomised approximation algorithm for MAX-CNF.

Proof of Theorem:

- For any clause i = 1, 2, ..., m, let ℓ_i be the corresponding length.
- Then the expected number of satisfied clauses is:

$$\mathbf{E}[Y] = \sum_{i=1}^{m} \mathbf{E}[Y_i] \ge \sum_{i=1}^{m} \left(1 - \left(1 - \frac{1}{\ell_i}\right)^{\ell_i}\right) \cdot \overline{z}_i \ge \sum_{i=1}^{m} \left(1 - \frac{1}{e}\right) \cdot \overline{z}_i \ge \left(1 - \frac{1}{e}\right) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e}) \cdot \mathsf{OPT}$$

$$(I - \frac{1}{e})$$

- Approach 1 (Guessing) achieves better guarantee on longer clauses
- Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(φ , *n*, *m*) is a randomised 4/3-approx. algorithm.

Proof:

- It suffices to prove that clause *i* is satisfied with probability at least $3/4 \cdot \overline{z}_i$
- For any clause *i* of length ℓ :
 - Algorithm 1 satisfies it with probability $1 2^{-\ell} = \alpha_{\ell} \ge \alpha_{\ell} \cdot \overline{z}_{i}$.
 - Algorithm 2 satisfies it with probability $\beta_{\ell} \cdot \overline{z}_i$.
 - HYBRID-MAX-CNF(φ , *n*, *m*) satisfies it with probability $\frac{1}{2} \cdot \alpha_{\ell} \cdot \overline{z}_i + \frac{1}{2} \cdot \beta_{\ell} \cdot \overline{z}_i$.
- Note $\frac{\alpha_{\ell}+\beta_{\ell}}{2} = 3/4$ for $\ell \in \{1,2\}$, and for $\ell \geq 3$, $\frac{\alpha_{\ell}+\beta_{\ell}}{2} \geq 3/4$ (see figure)
- \Rightarrow HYBRID-MAX-CNF(φ , *n*, *m*) satisfies it with prob. at least $3/4 \cdot \overline{z}_i$

Summary

- Since $\alpha_2 = \beta_2 = 3/4$, we cannot achieve a better approximation ratio than 4/3 by combining Algorithm 1 & 2 in a different way
- The 4/3-approximation algorithm can be easily derandomised
 - Idea: use the conditional expectation trick for both Algorithm 1 & 2 and output the better solution
- The 4/3-approximation algorithm applies unchanged to a weighted version of MAX-CNF, where each clause has a non-negative weight
- Even MAX-2-CNF (every clause has length 2) is NP-hard!