Dependent types

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Origins
The Curry-Howard correspondence

Correspondence between simply-typed language and propositional logics:

\[A \to B \simeq A \supset B \] (functions and implications)
\[A \times B \simeq A \land B \] (products and conjunctions)
\[A + B \simeq A \land B \] (sums and disjunctions)

Correspondence between dependently-typed languages and predicate logics:

\[(x : A) \to B \simeq \forall (x : A).B \] (functions and universal quantification)
\[\Sigma (x : A).B \simeq \exists A \land B \] (dependent pairs and existential quantification)

How should we start to design a dependently-typed language?
Foundation for constructive mathematics (Martin-Löf Type Theory)
Lambda calculus with fancy types (Calculus of Constructions)
With dependent types we can form **types from terms**. Parameterise B by a term of type A:

$$(x : A) \rightarrow B(x)$$

Key Q: when are two types equal? (essential for type checking!)

Is $B((\lambda x. x)Nat)$ equal to $B(Nat)$?

Determining equality typically requires **normalization** (i.e. computation).

(Separate question: what equalities can we **prove**?)
Inductive families
Inductive families support **indexing data types by terms**:

- **an inductive family, Vect:**

  ```{-#context#-}
  data Vect : Nat → Type → Type where
  Nil  : Vect Z a
  _∷:_ : a → Vect n a → Vect (S n) a
  {-#closed#-}
  ```

- **a function _++_ over Vect:**

  ```{-#context#-}
  _++_ : Vect m a → Vect n a → Vect (m + n) a
  _++_ Nil  ys = ys
  _++_ (x :: xs) ys = x :: (xs ++ ys)
  {-#closed#-}
  ```

- **the full type of _++_:**

  ```{-#context#-}
  _++_ : {a : Type} → {m : Nat} → {n : Nat} → Vect m a → Vect n a → Vect (m + n) a
  {-#closed#-}
  ```
Matching on one value may reveal something about another.

Example:

\[\text{_++_} : \text{Vect } m \, a \rightarrow \text{Vect } n \, a \rightarrow \text{Vect } (m + n) \, a\]
\[\text{_++_} \quad \text{Nil } \, ys = ys\]
\[\text{_++_} \quad (x :: xs) \, ys = x :: (xs ++ ys)\]

1. Matching the first vector tells us that \(m\) is \(Z\)
2. \(\text{Vect } (Z + n) \, a \leadsto \text{Vect } n \, a\)
3. so \(ys\) has the appropriate type in the first branch

Example:

\[\text{zip} : \text{Vect } n \, a \rightarrow \text{Vect } n \, b \rightarrow \text{Vect } n \, (a,b)\]
\[\text{zip } \quad \text{Nil } \, ys = ?\]

1. Matching the first vector tells us that \(n\) is \(Z\)
2. so the type of \(ys\) is \(\text{Vect } Z \, b\)
3. and so \(\text{Nil}\) is the only possible constructor for \(ys\)
Ideally: all functions terminate. (Why?)

Problem: termination is undecidable, so we must approximate syntactically

Question: what to do with functions that are not structurally decreasing?

structurally decreasing:

```haskell
length : [a] → Int
length [] = 0
length (x:xs) = 1 + length xs
```

not (obviously) structurally decreasing:

```haskell
quicksort :: [N] → [N]
quicksort [] = []
quicksort (x:xs) = quicksort (filter (< x) xs) ++
x : quicksort (filter (>= x) xs).
```
Problem: computationally-unnecessary code in elaborated programs

Idea: infer which parts can be erased to improve run-time performance

Inductive families and erasure

```plaintext
vector append: 
_++_ : Vect m a → Vect n a → Vect (m + n) a 
_++_ Nil ys = ys 
_++_ (x :: xs) ys = x :: (xs ++ ys)
```

vector append, elaborated:

```plaintext
_++_ : (a : Type) → (m : Nat) → (n : Nat) → Vect m a → Vect n a → Vect (m + n) a 
_++_ a Z n Nil ys = ys 
_++_ a (S k) n ((::) a k x xs) ys = 
    (::) a (k+n) x (_++_ a k n xs ys)
```
Reading
Chapter 2
Pattern Matching

In a simply typed setting pattern matching is a convenient mechanism for analysing the structure of values, and it is one of the strong points of popular functional languages such as ML and Haskell. In the presence of dependent types the scrutinee of a pattern match may appear in the goal type. Hence, pattern matching will instantiate the goal with the different patterns. When we introduce inductively defined families of datatypes [Dyb94], pattern matching becomes even more powerful. Consider, for instance, the simple datatype of natural numbers \texttt{Nat} and its inductively defined ordering relation \texttt{\leq}:

\begin{verbatim}
data Nat : Set where
 zero : Nat
 suc : Nat \to Nat

data \texttt{\leq} : Nat \to Nat \to Set where
 leqZero : \forall n. zero \leq n
 leqSuc : \forall n m. n \leq m \to suc n \leq suc m
\end{verbatim}

The major source of difficulty when moving from simply typed pattern matching to pattern matching over inductive families is that pattern matching on one value yields information about other values. This makes case-expressions unsuitable for pattern matching. In the example of the types above, given an element \(p : n \leq m \) for some \(n \) and \(m \), when pattern matching on \(p \), \(n \) and \(m \) will be instantiated. In other words, when pattern matching on elements of a family, not only the goal type is instantiated, but also the context. Consider the problem of proving transitivity of \(\leq \):

\begin{verbatim}
trans : \forall k m n. k \leq m \to m \leq n \to k \leq n
\end{verbatim}

\[1\]Names containing underscores can be used as operators where the arguments go in place of the underscores. Hence, \(x \leq y \) is equivalent to \(\texttt{\leq} _{(x, y)} \).
Abstract

We introduce a simple functional language _foetus_ (lambda calculus with tuples, constructors and pattern matching) supplied with a termination checker. This checker tries to find a well-founded structural order on the parameters on the given function to prove termination. The components of the check algorithm are: function call extraction out of the program text, call graph completion and finding a lexical order for the function parameters. The HTML version of this paper contains many ready-to-run Web-based examples.

1 Introduction

Since the very beginning of informatics the problem of termination has been of special interest, for it is part of the problem of program verification for instance. Because the halting problem is undecidable, there is no method that can prove or disprove termination of all programs, but for several systems termination checkers have been developed. We have focused on functional programs and designed the simple language _foetus_, for which we have implemented a termination prover. _foetus_ is a simplification of MuTTI (Munich Type Theory Implementation) based on partial Type Theory (ala Martin

“We introduce a simple functional language _foetus_ (lambda calculus with tuples, constructors and pattern matching) supplied with a termination checker. This checker tries to find a well-founded structural order on the parameters on the given function to prove termination […]

“To prove the termination of a functional program there has to be a well founded order on the product of the function parameters such that the arguments in each recursive call are smaller than the corresponding input regarding this order.”
Some parts of dependently typed programs constitute evidence of their type-correctness and, once checked, are unnecessary for execution. These parts can easily become asymptotically larger than the remaining runtime-useful computation, which can cause normally linear-time programs run in exponential time, or worse. We should not make programs run slower by just describing them more precisely.

Current dependently typed systems do not erase such computation satisfactorily. By modelling erasure indirectly through type universes or irrelevance, they impose the limitations of these means to erasure. Some useless computation then cannot be erased and idiomatic programs remain asymptotically sub-optimal.

In this paper, we explain why we need erasure, that it is different from other concepts like irrelevance, and propose a dependently typed calculus with pattern matching with erasure annotations to model it. We show that erasure in well-typed programs is sound in that it commutes with reduction. Assuming the Church-Rosser property, erasure furthermore preserves convertibility in general.

We also give an erasure inference algorithm for erasure-unannotated or partially annotated programs and prove it sound, complete, and optimal with respect to the typing rules of the calculus.

Finally, we show that this erasure method is effective in that it can not only recover the expected asymptotic complexity in compiled programs at run time, but it can also shorten compilation times.
Types
How do compilers for dependently typed languages make use of types?

Termination
Is there a connection between erasure and accessibility predicates?

Efficiency
Are dependent types an impediment or an aid to efficiency?

Decidability
What undecidable questions arise in compilation with dependent types?

Usability
Do dependent types aid or impede usability?
Are inductive families an improvement over “recursive families”?