
ProgC Programming Exercise 2023/24

Getting started

In this exercise you are required to understand, modify and write code in C and C++ and to link
the two languages together. You will also gain a little exposure to low-level networking primitives,
which will be a useful foundation for the networking course.

Please be aware that work submitted for Assessed Exercises must be entirely your own work and
that publishing or otherwise sharing answers to exercises risks you being penalised for “academic
misconduct” if someone plagiarises your work.

To start this exercise, you will need a starter pack, that you can fetch from your tick page, which
is a private webpage that you access with your own personal URL. Details of how to find your tick
page will be on the course web page. Your supervisor and DoS can also view your tick page. Your
submission, ticking and viva status can also be read from your tick page, which will be updated
within 48 hours of a submission. You may resubmit as many times as you like, but you must have
made a substantially correct submission by the deadline for this Assessed Exercise.

As well as this exercise sheet, the starter pack should contain the following files:

server.c client.c rfc0791.txt rfc0793.txt

message1 message2 message3 message4

Important: You should avoid the use of any compiler-specific features in the exercise. Code written
for this exercise should conform to ISO9899:2011 (“C11”) or ISO14882:2011 (“C++11”) and use
only standard libraries. The code should compile and run correctly using gcc or g++ as available
on MCS Linux. Your code should not generate any warnings, even with all warnings turned on; in
other words

gcc -std=c11 -Wall --pedantic sourcefile.c

or
g++ -std=c++11 -Wall --pedantic sourcefile.cc

should produce no warnings for all source files you submit.

Exercise – Part 1

The exercise starter pack contains two computer programs written in C. The first program,
server.c transmits data and the second program, client.c receives data. There are a few mis-
takes in these programs which prevent the code from compiling or functioning correctly. Do the
following:

1. Describe in fewer than 100 words the intended functionality of the two programs server.c
and client.c. Write this description into the file answers.txt. The format of this file should
be plain ASCII text or UTF-8 (hence it should not be in unicode, rtf, pdf, word etc.).

1



2. Find and list three programming errors in the code. (There could in fact be more than
three errors, but you only need to document three.) Modify the code to correct the errors.
Compile and execute the code with suitable test data. (Hint: Use a port number above 1024
to avoid running as root and the IP address 127.0.0.1 (called localhost) can be used as the
IP address if you want to run both the client and server components on the same machine.)
A brief description of the three errors should be appended to the file answers.txt. Your
corrected code should be saved into server1.c and client1.c.

3. While server1.c is running on port 2080, type localhost:2080/tuesdaynightteaclub into the
address bar of a browser running on the same computer. Add a final, short paragraph in
answers.txt that explains how the request is being served and how the browser is interpreting
the response.

Exercise – Part 2

A computer scientist writes a packet inspector to record every bit of data sent by (a corrected
version of) server.c on machine A and received by (a corrected version of) client.c on machine
B. The recorded data contains all the TCP/IP packets and includes the TCP and IP headers in
network byte order together with the actual message payload.

The files rfc0791.txt and rfc0793.txt contain the specification of IP and TCP headers respec-
tively. Your attention is drawn in particular to the layout, in bytes, of the contents of the header
files as expressed in these documents. For convenience, the layouts are also shown in the Appendix.

The computer scientist invokes the server program on machine A and the client program on machine
B once, and generates a log file of all the packets sent between the two machines. The log file contains
the raw packet data in the order in which the packets were transmitted on machine A. Therefore
the first packet is at the start of the file, and this is immediately followed by data from the second
packet, and so on.

An example log file is message1. Your next task is to write a C program to read in any log file in
this format and determine the following facts:

• The IP addresses of machines A and B (source and destination)

• The value of the first IP packet’s header size field (IHL – IP header length)

• The length of the first IP packet in bytes (total length)

• The value of the first TCP packet’s header size field (data offset)

• The total number of IP packets in the trace

If you find it easiest, your program can initially be written as one C file. But if so, before submission
it should be split into two separately compiled files called pcolparse.c and summary.c. You must
also write pcolparse.h, which contain declarations, but no definitions, to be #include’d by both
C files. The purpose of pcolparse is to parse IP protocol packets, encapsulating details of their
layout. Moreover, pcolparse.c and pcolparse.h must be coded in a style such that the object
file pcolparse.o and pcolparse.h itself can be reused, without change, in Part 3 of this Exercise.

2



Your program should output the above details in the same order as shown above by printing to
stdout on a single line, using spaces to separate the fields. For example, if the IP addresses of
machines A and B are 192.168.1.1 and 192.168.1.2, the header length field value is 6, the length
of the IP packet is 52 bytes, the value in the TCP header length is 5, and the total number of
packets in the trace is 20, your program should output:

192.168.1.1 192.168.1.2 6 52 5 20

Ordering the four messages provided in the starter pack by filename, run the summary program on
the each (using a shell script or otherwise) to create a four-line file called outputs.txt.

Exercise – Part 3

Your final task is to write a second program, this time in C++, that removes the IP and TCP headers
from any log file conforming to the format described above and extracts the data transmitted from
machine A to machine B. The source code for this program should be saved in extract.cc.

Your program must use your pcolparse files as a library (i.e. #include your pcolparse.h and
be linked with a pcolparse.o file resulting from C compilation of pcolparse.c). Note that
pcolparse.h will need to be written carefully to be usable both by summary.c and extract.cc as
the extern "C" form of C++ is not valid C.

To demonstrate linking between C and C++, your files should compile correctly using the pattern
exhibited by following three commands:

$ gcc -g -c pcolparse.c

$ gcc -g -o summary summary.c pcolparse.o

$ g++ -g -o extract extract.cc pcolparse.o

Your extract program should take two arguments on the command line, and open and read log
data from the filename passed as the first argument, and write data into a file whose name will be
passed as the second argument. Your program should print an error message if a file with the name
of the first argument does not exist. Your program should overwrite the data in any file with the
same name as the second argument, or create a file of this name if it does not exist. For example,
if an executable form of your program was called extract then the following execution
$ ./extract message1 message1.txt

will extract the data held in message1 and write it into the file message1.txt.

Use your program to do the following:

• Extract the data from message1 and save this data into a new file called message1.txt. View
this image Does the message make sense? (If not, you probably need to debug your code!)

• Extract the data from message2 and save this data into a new file called message2.jpg. By
using a web-browser or otherwise, view this image. What does the image show? (If you
cannot view the image you probably need to debug your code!)

3



• (Optional) Decipher the contents of message3 and message4 and report your findings to
student-admin@cl.cam.ac.uk to claim a prize if you are amongst the first few.

4



Submission

By the end of this tick you should have generated the following files: (No core files, temporary files,
or Makefiles. All of these files and only these files to be submitted, please.)

answers.txt AND outputs.txt

client1.c AND server1.c

pcolparse.c AND pcolparse.h AND summary.c

extract.cc

message1.txt

message2.jpg

Once you have correctly completed the exercise you should make a new ZIP file of a folder
called ‘tick’ that contains these files. This ZIP file must be named CC++2324-<crsid>.zip, e.g.
CC++2324-djg11.zip. To submit your tick, send email having ‘subject’ field of ‘CC++Tick-2324-
submission’ and containing the ZIP file as an attachment, to:

c-tick@cl.cam.ac.uk

You must send this email before the tick deadline. Marking is semi-automatic, so folder and
filenames must be correct, but it may take up to two working days before you see a response.
Resubmissions will be encouraged if there is anything wrong, but the submission before the deadline
must be ‘substantially correct’. A randomly selected group of candidates will be required to attend
viva voce examinations of about 5 minutes duration. Do not copy files from someone else’s starter
pack since your files may be watermarked or have slightly different content.

(C) DJG, AM November 2023.

5



Appendix

RFC 791 (http://www.ietf.org/rfc/rfc0791.txt) specifies the layout of packets in the IP Pro-
tocol. You may need to read portions of this document in order to complete this exercise. Of
particular interest is the position and size of the fields in the IP header:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| IHL |Type of Service| Total Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Identification |Flags| Fragment Offset |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time to Live | Protocol | Header Checksum |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RFC 793 (http://www.ietf.org/rfc/rfc793.html) specifies the layout of packets using the TCP
protocol. You may need to read portions of this document in order to complete this exercise. Of
particular interest is the position and size of the key fields in the TCP header:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port | Destination Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Acknowledgment Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Data | |U|A|P|R|S|F| |

| Offset| Reserved |R|C|S|S|Y|I| Window |

| | |G|K|H|T|N|N| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Checksum | Urgent Pointer |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Options | Padding |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| data |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Note: it is possible to model these structures in C either as a byte array or as a struct. Both
representations have advantages and disadvantages.

6


