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P E R F O R M A N C E  M E A S U R E M E N T  I S  one of the most 
important parts of software development. In academic 
research a thorough performance evaluation is 
considered essential for many publications to prove 
the value of a new idea. In industry, performance 
evaluation is necessary to maintain a high level of 
performance across the lifetime of a product. For 
example, cloud services promise to maintain particular 
performance levels; service providers must thus be able 
to detect when performance drops below acceptable 
levels and quickly identify and fix the problem. 

A good performance evaluation provides a deep 
understanding of a system’s behavior, quantifying 
not only the overall behavior but also its internal 
mechanisms and policies. It explains why a system 
behaves the way it does, what limits that behavior, 
and what problems must be addressed in order to 
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 key insights
 ˽ Performance measurement is less 

straightforward than it might seem; it is 
easy to believe results that are incorrect 
or misleading and overlook important 
system behaviors. 

 ˽ The key to good performance measurement 
is to make many more measurements 
besides the ones you think will be 
important; it is crucial to understand not 
just the system’s performance but also 
why it performs that way. 

 ˽ Performance measurement done well 
results in new discoveries about the 
system being measured and new intuition 
about system behavior for the person 
doing the measuring.
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improve the system. Done well, perfor-
mance evaluation exposes interesting 
system properties that were not obvi-
ous previously. It not only improves the 
quality of the system being measured 
but the developer’s intuition, resulting 
in better systems in the future. 

Unfortunately, there is no wide-
spread understanding or agreement as 
to how to measure performance. Per-
formance evaluation is rarely taught in 
computer science classes. And new fac-
ulty lack well-developed performance-
measurement skills, making it difficult 
for them to train their students. The 

only way to become expert is through 
trial and error. 

As a result, performance measure-
ment is often done poorly, even by ex-
perienced developers. For example, if 
you have written a conference paper on 
a software system, it probably unfolded 
like this: The system implementation 
took longer than expected, so perfor-
mance evaluation could not begin un-
til a week or two before the paper sub-
mission deadline. The first attempts 
to run benchmarks resulted in system 
crashes, so you spent the next week fix-
ing bugs. At this point the benchmarks 

ran, but the system’s performance was 
not much better than the comparison 
systems. You tried different experi-
ments, hoping to find one where the 
system looked good; this exposed yet 
more bugs that had to be fixed. Time 
was running out, so you stopped mea-
suring as soon as you found an experi-
ment that produced positive results. 
The paper focused on this experiment, 
omitting the results that were less fa-
vorable. There were a few things about 
these results that did not make com-
plete sense, but you did your best to 
come up with plausible explanations 
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ior is not the desired behavior. There 
may be bugs in the code that gathers 
metrics and processes them, as when, 
say, a clock is read at the wrong time 
or the 99th percentile is miscomputed. 
The system being measured may have 
functional bugs. And, finally, the sys-
tem may have performance bugs, so 
the measurements do not reflect the 
system’s true potential. 

I have been involved in dozens of 
performance-measurement projects 
and cannot recall a single one in which 
the first results were correct. In each 
case there were multiple problems 
from the list just outlined. Only after 
working through them all did my col-
leagues and I obtain measurements 
that were meaningful. 

Mistake 2: Guessing instead of 
measuring. The second common mis-
take is to draw conclusions about a 
system’s performance based on edu-
cated guesses, without measurements 
to back them up. For example, I found 
the following explanation in a paper 
I reviewed recently: “ ... throughput 
does not increase with the number of 
threads ... This is because the time tak-
en to traverse the relatively long linked 
list bounds server performance.” There 
was no indication that the authors 
had measured the actual length of the 
list or the time taken to traverse it, yet 
they stated their conclusion as fact. I 
frequently encounter unsubstantiated 
conclusions in papers; there were at 
least five other occurrences in the pa-
per with the quote. 

Educated guesses are often correct 
and play an important role in guiding 
performance measurement; see Rule 
3 (Use your intuition to ask questions, 
not answer them). However, engineers’ 
intuition about performance is not reli-
able. When my students and I designed 
our first log-structured file system,4 we 
were fairly certain that reference pat-
terns exhibiting locality would result 
in better performance than those with-
out locality. Fortunately, we decided to 
measure, to be sure. To our surprise, the 
workloads with locality behaved worse 
than those without. It took consider-
able analysis to understand this behav-
ior. The reasons were subtle, but they 
exposed important properties of the 
system and led us to a new policy for gar-
bage collection that improved the sys-
tem’s performance significantly. If we 

for them. There was not enough time 
to validate or double-check the num-
bers, and you could only hope there 
were not too many errors. 

Measurements gathered this way 
are likely incomplete, misleading, or 
even erroneous. This article describes 
how to conduct performance measure-
ment well. I first discuss five mistakes 
that account for most of the problems 
with performance measurements, all 
of which occurred in the scenario I just 
outlined. I then spell out four rules to 
follow when evaluating performance. 
These rules will help you avoid the mis-
takes and produce high-quality perfor-
mance evaluations. Finally, I offer four 
suggestions about infrastructure to as-
sist in performance evaluation. 

The most important idea overall, as 
reflected in this article’s headline, is to 
dig beneath the surface, measuring the 
system in depth and detail from multiple 
angles to create a complete and accurate 
understanding of performance. 

Most Common Mistakes 
When performance measurements go 
wrong, it is usually due to five common 
mistakes: 

Mistake 1: Trusting the numbers. 
Engineers are easily fooled during 
performance measurements because 
measurement bugs are not obvious. 
Engineers are used to dealing with 
functional bugs, which tend to be no-
ticeable because they cause the system 
to crash or misbehave. If the system 
produces the desired behavior, it is 
probably working. Engineers tend to 
apply the same philosophy to perfor-
mance measurements; if performance 
numbers are being generated and the 
system is not crashing, they assume 
the numbers are correct. 

Performance-measurement code is 
just as likely to have bugs as any other 
code, but the bugs are less obvious. 
Most bugs in performance-measure-
ment code do not cause crashes or 
prevent numbers from appearing; they 
simply produce incorrect numbers. 
There is no easy way to tell from a num-
ber whether it is right or wrong, so engi-
neers tend to assume the numbers are 
indeed correct. This is a mistake. There 
are many ways for errors to creep into 
performance measurements. There 
may be bugs in the benchmarks or test 
applications, so the measured behav-

Performance 
measurements 
should be 
considered guilty 
until proven 
innocent. 
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ticular paper measured at the median. 
The results appeared favorable for the 
new proposal. My students reran the 
measurements for the new protocol 
and discovered its 99th-percentile la-
tency was significantly worse than the 
comparison protocols. We wondered if 
the paper’s authors had intentionally 
switched metrics to exaggerate the per-
formance of their protocol. 

Confirmation bias also affects how 
you present information. You are more 
likely to include results that support 
your hypothesis and downplay or omit 
results that are negative. For example, 
I frequently see claims in papers of the 
form: “XXX is up to 3.5x faster than 
YYY.” Such claims cherry-pick the best 
result to report and are misleading be-
cause they do not indicate what perfor-
mance can be expected in the common 
case. Statements like this belong in 
late-night TV commercials, not scien-
tific papers. 

If applied consciously, bias is intel-
lectually dishonest. Even if not applied 
consciously, it can cause results to be 
reported in a way that is more market-
ing than science; it sounds like you are 
trying to sell a product rather than un-
cover the truth about a system’s behav-
ior. Confirmation bias makes it more 
likely that results will be inaccurate 
(because you did not find bugs) or mis-
leading (because you did not present 
all relevant data). 

Mistake 5: Haste. The last mistake in 
performance evaluation is not allowing 
enough time. Engineers usually under-
estimate how long it takes to measure 
performance accurately, so they often 
carry out evaluations in a rush. When 
this happens, they will make mistakes 
and take shortcuts, leading to all the 
other mistakes. 

The time issue is particularly prob-
lematic when working under a dead-
line (such as for a conference publica-
tion). There is almost always a rush to 
meet the submission deadline. The 
system implementation always takes 
longer than expected, delaying the 
start of performance measurement; 
there is often only a week or two for 
evaluation before the submission 
deadline, resulting in a sloppy evalua-
tion. In principle, authors could keep 
working on the measurements while 
waiting for the paper to be reviewed, 
but in practice this rarely happens. In-

had trusted our initial guess, we would 
have missed an important opportunity 
for performance improvement. 

It is unsafe to base conclusions on 
intuition alone, yet engineers do it all 
the time. A common mistake is for an 
engineer to hypothesize that a particu-
lar data structure is too slow and then 
replace it with a new data structure the 
engineer believes will be faster. If the 
problem is not verified by measuring 
performance, there is a good chance 
the optimization will not improve per-
formance. The code change will simply 
waste a lot of time and probably intro-
duce unnecessary complexity. 

When I find a guess presented as fact 
and ask for justification, I sometimes 
get this response: “What else could it 
possibly be?” But this is a cop-out, sug-
gesting it is up to others to prove the 
theory wrong and OK to make unsub-
stantiated claims until someone else 
proves them false. In some cases the 
person making the comment feels a 
process of elimination had been used, 
ruling out all possible alternatives. Un-
fortunately, a process of elimination 
is not reliable in performance evalua-
tion, because it is not possible to know 
with certainty that every possible cause 
has been considered. Many factors can 
influence performance, and the ulti-
mate cause of behavior is often some-
thing non-obvious, meaning a process 
of elimination will not consider it. It 
is unsafe to present an explanation as 
fact unless measurements confirm the 
specific behavior(s). 

Mistake 3: Superficial measurements. 
Most performance measurements I 
see are superficial, measuring only the 
outermost visible behavior of a system 
(such as the overall running time of an 
application or the average latency of 
requests made to a server). These mea-
surements are essential, as they repre-
sent the bottom line by which a system 
is likely to be judged, but they are not 
sufficient. They leave many questions 
unanswered (such as “What are the 
limits that keep the system from per-
forming better?” and “Which of the im-
provements had the greatest impact on 
performance?”). In order to get a deep 
understanding of system performance, 
the internal behavior of a system must 
be measured, in addition to its top-lev-
el performance. 

Superficial measurements are often 

combined with Mistake 1 (Trusting 
the numbers) and Mistake 2 (Guessing 
instead of measuring); the engineers 
measure only top-level performance, 
assume the numbers are correct, and 
then invent underlying behaviors to 
explain the numbers. For example, I 
found the following claim in a paper I 
reviewed recently (system names ob-
scured to preserve author anonymity): 
“Unlike YYY, XXX observes close-to-
linear-throughput scaling with more 
publishers due to its lock-free resolu-
tion of write-write contentions.” The 
paper measured scaling, but there 
were no measurements of write-write 
contention, and systems XXX and YYY 
differed in many ways, so other expla-
nations were possible for the perfor-
mance difference. 

Mistake 4: Confirmation bias. Per-
formance measurement is rarely in-
different; when you measure perfor-
mance, you are probably hoping for 
a particular outcome. If you have just 
built a new system or improved an ex-
isting one, you probably hope the per-
formance measurements will show 
your ideas were good ones. If the mea-
surements turn out well, it increases 
the likelihood your paper will be ac-
cepted or your boss will be impressed. 

Unfortunately, such hope results 
in a phenomenon called “confirma-
tion bias.”1 Confirmation bias causes 
people to select and interpret data in 
a way that supports their hypotheses. 
For example, confirmation bias af-
fects your level of trust. When you see 
a result that supports your hypothesis, 
you are more likely to accept the result 
without question. In contrast, if a mea-
surement suggests your new approach 
is not performing well, you are more 
likely to dig deeper to understand ex-
actly what is happening and perhaps 
find a way to fix the problem. This 
means that an error in a positive result 
is less likely to be detected than is an 
error in a negative result. 

When choosing benchmarks, you 
are more likely to choose ones that pro-
duce the desired results and less likely 
to choose ones that show the weak-
nesses of your approach. For example, 
a recent paper described a new net-
work protocol and compared it to pre-
vious proposals. The previous propos-
als had all measured latency using the 
99th-percentile worst case, but this par-
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provements. You will encounter many 
things that do not make sense; in or-
der to resolve them, you will need to 
add new metrics and validate them. 
To get the best results, you must iter-
ate several times improving the met-
rics, measuring performance, and im-
proving the system. 

Rule 2: Never trust a number gen-
erated by a computer. Under Mistake 
2 (Guessing instead of measuring), 
I discussed how it is tempting to be-
lieve performance numbers, even 
though they are often wrong. The only 
way to eliminate this mistake is to dis-
trust every measurement until it has 
been carefully validated. Performance 
measurements should be considered 
guilty until proven innocent. When 
students come to me with measure-
ments, I often challenge them by ask-
ing: “Suppose I said I don’t believe 
these measurements. What can you say 
to convince me that they are correct?” 

The way to validate a measurement 
is to find different ways to measure the 
same thing:  

Take different measurements at the 
same level. For example, if you are 
measuring file-system throughput, do 
not measure just the throughput seen 
by a user application; also measure 
the throughput observed inside the 
operating system (such as at the file 
block cache). These measurements 
should match; 

Measure the system’s behavior at a 
lower level to break down the factors 
that determine performance, as I discuss 
later under Rule 4 (Always measure one 
level deeper); 

Make back-of-the-envelope calcula-
tions to see if the measurements are in the 
ballpark expected; and 

Run simulations and compare their 
results to measurements of the real im-
plementation. 

As you begin collecting measure-
ments, compare them and be alert for 
inconsistencies. There will almost al-
ways be things that do not make sense. 
When something does not make com-
plete sense, stop and gather more data. 
For example, in a recent measurement 
of a new network transport protocol, 
a benchmark indicated that a server 
could handle no more than 600,000 
packets per second. However, my col-
leagues and I had seen servers process 
more than 900,000 packets per second 

with other protocols and believed the 
new protocol was at least as efficient as 
the old ones. We decided to gather ad-
ditional data. As a result, we discovered 
a bug in the flow-control mechanism 
on the client side: clients were not 
transmitting data fast enough to keep 
the server fully loaded. Fixing the bug 
improved performance to the level we 
expected. 

Further analysis will sometimes 
show the unexpected behavior is 
correct, as in the log-structured file 
system example discussed under 
Mistake 2 (Guessing instead of mea-
suring); such situations are usually 
interesting, and you will learn some-
thing important as you resolve the 
contradiction. In my experience, ini-
tial performance measurements are 
always riddled with contradictions 
and things we don’t understand, and 
resolving them is always useful; either 
we fix a problem or we deepen our un-
derstanding of the system. 

Above all, do not tolerate anything 
you do not understand. Assume there 
are bugs and problems with every mea-
surement, and your job is to find and 
fix them. If you do not find problems, 
you should feel uneasy, because there 
are probably bugs you missed. Cur-
mudgeons make good performance 
evaluators because they trust nothing 
and enjoy finding problems. 

Rule 3: Use your intuition to ask 
questions, not to answer them. Intu-
ition is a wonderful thing. As you ac-
cumulate knowledge and experience 
in an area, you will start having gut-
level feelings about a system’s behav-
ior and how to handle certain prob-
lems. If used properly, such intuition 
can save significant time and effort. 
However, it is easy to become over-
confident and assume your intuition 
is infallible. This leads to Mistake 2 
(Guessing instead of measuring). 

The best way to use intuition is to 
identify promising areas for further ex-
ploration. For example, when looking 
over performance measurements, ask 
yourself if they make sense. How does 
the performance compare to what you 
expected? Does it seem too good to be 
true? Does the system scale more poor-
ly than you had hoped? Does a curve 
jump unexpectedly when you expected 
it to be smooth? Do some benchmarks 
exhibit behavior that is dramatically 

stead, they tell themselves: “Let’s not 
spend more time on the paper until we 
see whether it is accepted.” Once the 
paper is accepted, there are only a few 
weeks before the deadline for final pa-
pers, so there is yet another rush. 

Keys to High-Quality 
Performance Analysis 
Consider four rules that are likely to 
prevent the mistakes from the preced-
ing section and lead to trustworthy and 
informative evaluations: 

Rule 1: Allow lots of time. The first 
step toward high-quality performance 
measurements is to allow enough 
time. If you are measuring a non-trivial 
system, you should plan on at least two 
to three months. I tell my graduate stu-
dents to aim for a complete set of pre-
liminary measurements at least one 
month before the submission dead-
line; even this is barely enough time 
to find and fix problems with both the 
measurements and the system. 

Performance analysis is not an in-
stantaneous process like taking a pic-
ture of a finished artwork. It is a long 
and drawn-out process of confusion, 
discovery, and improvement. Perfor-
mance analysis goes through several 
phases, each of which can take any-
where from a few days to a few weeks. 
First, you must add instrumenta-
tion code to the system to record the 
desired metrics. You must then get 
benchmark applications running, ei-
ther by writing them or by download-
ing and installing existing programs. 
Running benchmarks will probably 
stress the system enough to expose 
bugs, and you will need to then track 
down and fix them. Eventually, the 
system will run well enough to start 
producing performance numbers. 
However, these numbers will almost 
certainly be wrong. The next step is 
to find and fix bugs in the measure-
ments. Once you have verified the ac-
curacy of the measurements, you will 
start to uncover problems with the sys-
tem itself. As you look over the perfor-
mance measurements, you will prob-
ably uncover additional functional 
bugs. Once they have been fixed, you 
can start analyzing the performance 
in depth. You will almost certainly 
discover opportunities to improve 
performance, and it is important to 
have enough time to make these im-
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tainly discover things that do not make 
sense; make additional measurements 
to resolve the contradictions. For ex-
ample, in a recent analysis of a distrib-
uted transaction processing system, 
deeper measurements by my students 
included network throughput and disk 
throughput. We were surprised to see 
that the network throughput was great-
er than the disk throughput; this did 
not make sense, since every byte had to 
pass through both the network and the 
disk. It turned out that the disk subsys-
tem had been configured with no limit 
on queue length; the disk was not keep-
ing up, and its output queue was grow-
ing without bound. Once the students 
set a limit on queue length, the rest of 
the system throttled itself to match the 
disk throughput. Unfortunately, this 
meant our initial measurements of 
overall throughput were too optimistic. 

Measuring deeper will also indicate 
whether you are getting the best possi-
ble performance and, if not, how to im-
prove it. Use deeper measurements to 
find out what is limiting performance. 
Try to identify the smallest elements 
that have the greatest impact on overall 
performance. For example, if the over-
all metric is latency, measure the indi-
vidual latencies of components along 
the critical path; typically, there will be a 
few components that account for most 
of the overall latency. You can then fo-
cus on optimizing those components. 

In recent measurements of a new 
network transport, one of my students 
found that round-trip tail latency was 
higher than our simulations had pre-
dicted. The student measured software 
latency in detail on both the sending 
and the receiving machines but found 
nothing that could account for the 
high tail latency. At this point we were 
about to conclude that the delays must 
be caused by the network switch. What 
else could it be? This would have been 
Mistake 2 (Guessing instead of measur-
ing). Before giving up, we decided to dig  
deeper and measure precise timings 
for each individual packet. The mea-
surements surprised us, showing that 
outlier delays were not isolated events. 
Delay tended to build up over a series of 
packets, affecting all of the packets from 
a single sender over a relatively long 
time interval, including packets for dif-
ferent destinations. This was a crucial 
clue. After several additional measure-

different from others? Consider any-
thing that does not match your intu-
ition a red flag and investigate it, as de-
scribed in Rule 2 (Never trust a number 
generated by a computer). Intuition 
can be very helpful in identifying prob-
lems. 

Intuition is great for directing atten-
tion but not reliable enough to make 
decisions on it alone. Intuition should 
always be validated with data before 
making decisions or claims. If your in-
tuition suggests why a particular result 
is occurring, follow it up with measure-
ments that prove or disprove the intu-
ition. Draw conclusions based on the 
measurements, not the intuition, and 
include some of the measured data in 
the conclusion, so others know it is not 
just a guess. 

If you continually form intuitions 
and then test them you will gain knowl-
edge that helps you form better intu-
ition in the future. Every false intuition 
means there was something you did 
not fully understand; in the process 
of testing it and discovering why it is 
false, you will learn something useful. 

Rule 4: Always measure one level 
deeper. If you want to understand the 
performance of a system at a particular 
level, you must measure not just that 
level but also the next level deeper. That 
is, measure the underlying factors that 
contribute to the performance at the 
higher level. If you are measuring over-
all latency for remote procedure calls, 
you could measure deeper by break-
ing down that latency, determining 
how much time is spent in the client 
machine, how much time is spent in the 
network, and how much time is spent on 
the server. You could also measure where 
time is spent on the client and server. If 
you are measuring the overall throughput 
of a system, the system probably con-
sists of a pipeline containing several 
components. Measure the utilization 
of each component (the fraction of time 
that component is busy). At least one 
component should be 100% utilized; if 
not, it should be possible to achieve a 
higher throughput. 

Measuring deeper is the best way 
to validate top-level measurements 
and uncover bugs. Once you have col-
lected some deeper measurements, ask 
yourself whether they seem consistent 
with the top-level measurements and 
with each other. You will almost cer-

Curmudgeons make 
good performance 
evaluators because 
they trust nothing 
and enjoy finding 
problems. 
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minating. Once you look at the results, 
you will almost certainly find things that 
do not make sense; from this point on, 
track down and resolve everything that 
does not make perfect sense. Along the 
way you will discover other surprises; 
track them down as well. Over time, you 
will develop intuition about what kinds 
of deeper measurements are most likely 
to be fruitful. 

Measuring deeper is the single most 
important ingredient for high-quality 
performance measurement. Focusing 
on this one rule will prevent most of 
the mistakes anyone could potentially 
make. For example, in order to make 
deeper measurements you will have to 
allocate extra time. Measuring deeper 
will expose bugs and inconsistencies, 
so you will not accidentally trust bogus 
data. Most of the suggestions under 
Rule 2 (Never trust a number generated 
by a computer) are actually examples of 
measuring deeper. You will never need 
to guess the reasons for performance, 
since you will have actual data. Your 
measurements will not be superficial. 
Finally, you are less likely to be derailed 
by subconscious bias, since the deeper 
measurements will expose weakness-
es, as well as strengths. 

Measurement Infrastructure 
Making good performance measure-
ments takes time, so it is worth creating 
infrastructure to help you work more 
efficiently. The infrastructure will easily 
pay for itself by the time the measure-
ment project is finished. Furthermore, 
performance measurements tend to be 
run repeatedly, making infrastructure 
even more valuable. In a cloud service 
provider, for example, measurements 
must be made continuously in order to 
maintain contractual service levels. In a 
research project, the full suite of perfor-
mance measurements will be run sev-
eral times (such as before submission, 
after the paper is accepted, and again 
during the writing of a Ph.D. disserta-
tion). It is important to have infrastruc-
ture that makes it easy to rerun tests. 

Automate measurements. It 
should be possible to type a single 
command line that invokes the full 
suite of measurements, including 
not just top-level measurements but 
also the deeper measurements. Each 
run should produce a large amount of 
performance data in an easy-to-read 

ments, the student discovered that long 
queues were building up in the sender’s 
network interface due to a software bug. 
The transport included code to estimate 
the queue length and prevent queue 
buildup, but there was a bug in the es-
timator caused by underflow of an un-
signed integer. The underflow was easy 
to fix, at which point tail latency dropped 
dramatically. Not only did this process 
improve the system’s performance, it 
taught us an important lesson about the 
risks of unsigned integers. 

Another way to measure deeper is 
to consider more detail. Instead of just 
looking at average values, graph the en-
tire distribution and noodle over the 
shape to see if it provides useful infor-
mation. Then look at some of the raw 
data samples to see if there are patterns. 
In one measurement of RPC latency, a 
student found that the average latency 
was higher than we expected. The laten-
cy was not intolerably high, and it would 
have been easy to simply accept this 
level of performance. Fortunately, the 
student decided to graph the times for 
individual RPCs. It turned out the data 
was bimodal, whereby every other RPC 
completed quickly, but the intervening 
ones were all significantly slower. With 
this information, the student tracked 
down and fixed a configuration error 
that eliminated all of the slow times. In 
this case, the average value was not a 
good indicator of system behavior. 

The examples in this article may 
seem so esoteric that they must be 
outliers, but they are not. Every per-
formance measurement project I have 
seen has had multiple such examples, 
which are extremely subtle, difficult to 
track down, and defy all intuition, until 
suddenly a simple explanation appears 
(such as unsigned integer underflow). 
Deeper measurements almost always 
produce substantial performance im-
provement, important discoveries 
about system behavior, or both.

Do not spend a lot of time agoniz-
ing over which deeper measurements 
to make. If the top-level measurements 
contain contradictions or things that 
are surprising, start with measurements 
that could help resolve them. Or pick 
measurements that will identify per-
formance bottlenecks. If nothing else, 
choose a few metrics that are most ob-
vious and easiest to collect, even if you 
are not sure they will be particularly illu-

It can be as fancy 
as an interactive 
webpage or as 
simple as a text file, 
but a dashboard 
is essential for 
any nontrivial 
measurement 
effort.
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performance information is constantly 
available. For online services that run 
continuously, the dashboard should 
take the form of a webpage that can 
be displayed at any time. For applica-
tions that are run manually, it is con-
venient to have a command-line switch 
that will cause performance metrics 
to be recorded during execution and 
dumped when the application finishes. 

One simple-yet-effective technique 
is to define a collection of counters that 
accumulate statistics (such as number 
of invocations of each externally visible 
request type and number of network 
bytes transmitted and received). Incre-
menting a counter is computationally 
inexpensive enough that a system can 
include a large number of them with-
out hurting its performance. Make it 
easy to define new counters and read 
out all existing counters. For long-run-
ning services, it should be possible to 
sample the counters at regular inter-
vals, and the dashboard should display 
historical trends for the counters. 

Presentation matters. If you want 
to analyze performance in depth, mea-
surements must be displayed in a way 
that exposes a lot of detail and allows 
it to be understood easily. In addition, 
the presentation must clarify the things 

form. It should also be easy to invoke 
a single benchmark by itself or vary 
the parameters for a benchmark. Also 
useful is a tool that can compare two 
sets of output to identify nontrivial 
changes in performance. 

Create a dashboard. A dashboard is 
a display that shows all performance 
measurements from a particular run 
of a particular benchmark or from a 
deployed system. If you have been mea-
suring deeply, the dashboard can eas-
ily show hundreds of measurements. A 
good dashboard brings together a lot 
of data in one place and makes it easy 
to examine performance from many 
angles. It can be as fancy as an interac-
tive webpage or as simple as a text file, 
but a dashboard is essential for any 
nontrivial measurement effort. 

Figure 1 shows approximately one-
third of a dashboard my students cre-
ated to analyze the performance of 
crash recovery in a distributed storage 
system.3 In this benchmark, one of the 
system’s storage servers has crashed, 
and several other servers (“recovery 
masters”) reconstruct the lost data by 
reading copies stored on a collection of 
backup servers. This sample illustrates 
several important features of dash-
boards. Any dashboard should start 
with a summary section, giving the 
most important metric(s)—total recov-
ery time in this case—and the param-
eters that controlled the benchmark. 
Each of the remaining sections digs 
deeper into one specific aspect of the 
performance. For example, “Recovery 
Master Time” analyzes where the re-
covery masters spent their time during 
recovery, showing CPU time for each 
component as both an absolute time 
and a percentage of total recovery time; 
the percentages help identify bottle-
necks. It was important for the storage 
system being analyzed to make effi-
cient use of the network during recov-
ery, so we added a separate section to 
analyze network throughput for each 
of the servers, as well as for the clus-
ter as a whole. Most measurements in 
the dashboard show averages across a 
group of servers, but in several cases 
the worst-case server is also shown. 
The dashboard also has a special sec-
tion showing the worst-case perfor-
mance in several categories, making it 
possible to see whether outliers are af-
fecting overall performance. 

You should create a simple dash-
board as soon as you start making mea-
surements; initially, it will include just 
the benchmark parameters and a few 
overall metrics. Every time you think of 
a new question to answer or a deeper 
measurement to take, add more data 
to the dashboard. Never remove met-
rics from the dashboard, even if you 
think you will never need them again. 
You probably will. 

If you make a change and perfor-
mance suddenly degrades, you can 
scan the dashboard for metrics that 
have changed significantly. The dash-
board might indicate that, for exam-
ple, the network is now overloaded or 
the fraction of time waiting for incom-
ing segments suddenly increased. You 
can maintain a “good” dashboard for 
comparing with later dashboards and 
record dashboards at regular time in-
tervals to track performance over long 
periods of time. A dashboard serves 
a purpose for performance measure-
ment similar to that of unit tests for 
functional testing—providing a de-
tailed analysis and making it easy to 
detect regressions. 

Do not remove the instrumentation. 
Leave as much instrumentation as 
possible in the system at all times, so 

Figure 1. Excerpt from the dashboard used to evaluate crash recovery in a large-scale 
main memory storage system.3 

=== Summary === 
Recovery time:                                    2.58 s 
Failure detection time:                           0.32 s 
Recovery + detection time:                        2.90 s 
Masters:                                         73 
Backups:                                        146 
Total nodes:                                     73 
Replicas:                                         3 
Objects per master:                          592950 
Object size:                                   1055.81 bytes 
Total recovery segment entries:            43685317 
Total live object space:                      43584 MB 
Total recovery segment space w/ overhead:     43713 MB 
 
=== Recovery Master Time === 
Total (90.5% of recovery time):               2333.64 ms avg / 2533.71 ms max /  100.00% avg 
Waiting for incoming segments:                 766.78 ms avg /  924.04 ms max /   32.86% avg 
Inside recoverSegment:                        1283.48 ms avg / 1657.36 ms max /   55.00% avg 
Final log sync time:                            21.20 ms avg /   50.85 ms max /    0.91% avg 
Removing tombstones:                             0.00 ms avg /    0.00 ms max /    0.00% avg 
Other:                                         262.18 ms avg /  673.43 ms max /   10.17% avg 
 
=== Network Utilization === 
Aggregate:                                     994.43 Gb/s avg /    54.49% 
Master in:                                       4.57 Gb/s avg /    333.82 Gb/s total 
Master out:                                      6.35 Gb/s avg /    463.59 Gb/s total 
Master out during replication:                   7.61 Gb/s avg /    555.87 Gb/s total 
Master out during log sync:                     12.06 Gb/s avg /    880.42 Gb/s total 
Backup in:                                       3.63 Gb/s avg /    530.01 Gb/s total 
Backup out:                                      3.63 Gb/s avg /    529.98 Gb/s total 
 
=== Slowest Servers === 
Backup opens, writes:                         rc26 / 729.2 ms 
Stalled reading segs from backups:            rc21 / 924.0 ms 
Reading from disk:                            rc29 / 170.3 MB/s 
Writing to disk:                              rc23 /  71.3 MB/s 
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ing data clearly from the start (such as 
with graphs rather than tables). Do not 
waste time with displays that are dif-
ficult to understand. Making graphs 
takes little time once you have learned 
how to use the tools, and you can reuse 
old scripts for new graphs. Consider 
clarity even when printing raw data, 
because you will occasionally want to 
look at it. Arrange the data in neat col-
umns with labels, and use appropriate 
units (such as microseconds), rather 
than, say, “1.04e-07.” 

Figure 2 and Figure 3 show how the 
organization of a graph can have a big 
effect on how easy (or difficult) it is to 
visualize performance data. In Figure 
2 my students and I aimed to under-
stand tail latency (99.9th or 99.99th per-
centile worst-case performance) for 
write requests in the RAMCloud stor-

age system. A traditional cumulative 
distribution function (CDF) like the 
one in Figure 2a emphasizes the mean 
value but makes it difficult to see tail 
latency. When we switched to a reverse 
cumulative distribution function with 
log-scale axes (see Figure 2b) the com-
plete tail became visible, all the way out 
to the slowest of 100 million total sam-
ples. Figure 2b made it easy to see fea-
tures worthy of additional study (such 
as the “shoulders” at approximately 
70 µs and 1 ms); additional measure-
ments showed the shoulder at 1 ms 
was caused by interference from con-
current garbage collection. If we had 
only considered a few discreet mea-
surements of tail latency we might not 
have noticed these features. 

Figure 3 arose during development 
of a new network transport protocol. My 
students and I wanted to understand 
the effect of a particular parameter set-
ting on the delivery time for messages 
of different size in a given workload. 
The first question we had to address 
in graphing the data was what metric 
to display. Displaying the absolute de-
livery times for messages would not be 
very useful, since it would not be obvi-
ous whether a particular time is good. 
Furthermore, comparisons between 
messages of different lengths would 
not be meaningful, as longer messages 
inherently take more time to deliver. 
Instead, we displayed slowdown, the 
actual delivery time for a message di-
vided by the best possible time for mes-
sages of that size. This choice made it 
easy to see whether a particular time is 
indeed good; 1.0 is perfect, 2.0 means 
the message took twice as long as nec-
essary, and so on. Slowdown also made 
it possible to compare measurements 
for messages of different length, since 
slowdown takes into account the inher-
ent cost for each length. 

The second question was the choice 
of the x-axis. An obvious choice would 
have been a linear x-axis, as in Figure 
3a. However, the vast majority of mes-
sages is very small, so almost all the 
messages are bunched together at the 
left edge of that graph. A log-scale x-ax-
is (see Figure 3b) makes it easier to see 
the small messages but still does not 
indicate how many messages were af-
fected by each value of the parameter. 
To address this problem, we rescaled 
the x-axis to match the distribution of 

that are most important. Think of this 
as feeding your intuition. The way to 
discover interesting things is to absorb 
a lot of information and let your intu-
ition go to work, identifying patterns, 
contradictions, and things that seem 
like they might be significant. You can 
then explore them in more detail. 

When students bring their first 
measurements to me, the measure-
ments are often in a barely compre-
hensible form (such as unaligned 
comma-separated values), telling me 
they did not want to spend time on a 
nice graph until they knew what data 
is important. However, the early phase 
of analysis, where you are trying to fig-
ure out what is happening and why, is 
when it is most important for informa-
tion to be presented clearly. It is worth 
getting in the habit of always present-

Figure 2. Two different ways to display tail latency: (a) a traditional CDF with linear axes; 
and (b) a complementary CDF (each y-value is the fraction of samples greater than the cor-
responding x-value) with log-scale axes. 
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message lengths (see Figure 3c); the 
x-axis is labeled with message size but 
is linear in number of messages, with 
each of the 10 tickmarks correspond-
ing to 10% of all messages. With this 
view of the data it became easy to see 
that the parameter matters, as it affect-
ed approximately 70% of all messages 
in the experiment (those smaller than 
approximately 5 Kbytes). 

Figure 3c includes more informa-
tion than the other graphs; in addi-
tion to displaying slowdown, it also 
displays the CDF of message sizes via 
the x-axis labels. As a result it is easy to 
see that messages in this workload are 
mostly short; 60% of all messages re-
quire no more than 960 bytes. Figure 
3c makes it clear that Figure 3a and 
Figure 3b are misleading. 

Conclusion 
The keys to good performance evalu-
ation are a keen eye for things that do 
not make sense and a willingness to 
measure from many different angles. 
This takes more time than the quick and 
shallow measurements that are common 
today but provides a deeper and more ac-
curate understanding of the system be-
ing measured. In addition, if you apply 
the scientific method, making and test-
ing hypotheses, you will improve your 
intuition about systems. This will result 
in both better designs and better perfor-
mance measurements in the future. 
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Figure 3. Each figure displays 99th-percentile slowdown (delivery time for messages  
of a given size, divided by the best possible time for messages of that size) as a function  
of message size in a given workload: (a) x-axis is linear; (b) x-axis is logarithmic; and  
(c) x-axis is scaled to match the CDF of message lengths. Different curves correspond  
to different settings of the “unscheduled bytes” parameter. 
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