
74 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

P E R F O R M A N C E M E A S U R E M E N T I S one of the most
important parts of software development. In academic
research a thorough performance evaluation is
considered essential for many publications to prove
the value of a new idea. In industry, performance
evaluation is necessary to maintain a high level of
performance across the lifetime of a product. For
example, cloud services promise to maintain particular
performance levels; service providers must thus be able
to detect when performance drops below acceptable
levels and quickly identify and fix the problem.

A good performance evaluation provides a deep
understanding of a system’s behavior, quantifying
not only the overall behavior but also its internal
mechanisms and policies. It explains why a system
behaves the way it does, what limits that behavior,
and what problems must be addressed in order to

Always
Measure
One Level
Deeper

DOI:10.1145/3213770

Performance measurements often go wrong,
reporting surface-level results that are more
marketing than science.

BY JOHN OUSTERHOUT

 key insights
 ˽ Performance measurement is less

straightforward than it might seem; it is
easy to believe results that are incorrect
or misleading and overlook important
system behaviors.

 ˽ The key to good performance measurement
is to make many more measurements
besides the ones you think will be
important; it is crucial to understand not
just the system’s performance but also
why it performs that way.

 ˽ Performance measurement done well
results in new discoveries about the
system being measured and new intuition
about system behavior for the person
doing the measuring.

contributed articles

http://dx.doi.org/10.1145/3213770
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3213770&domain=pdf&date_stamp=2018-06-25

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 75

I
M

A
G

E
 B

Y
 V

E
R

S
U

S
 S

T
U

D
I

O

improve the system. Done well, perfor-
mance evaluation exposes interesting
system properties that were not obvi-
ous previously. It not only improves the
quality of the system being measured
but the developer’s intuition, resulting
in better systems in the future.

Unfortunately, there is no wide-
spread understanding or agreement as
to how to measure performance. Per-
formance evaluation is rarely taught in
computer science classes. And new fac-
ulty lack well-developed performance-
measurement skills, making it difficult
for them to train their students. The

only way to become expert is through
trial and error.

As a result, performance measure-
ment is often done poorly, even by ex-
perienced developers. For example, if
you have written a conference paper on
a software system, it probably unfolded
like this: The system implementation
took longer than expected, so perfor-
mance evaluation could not begin un-
til a week or two before the paper sub-
mission deadline. The first attempts
to run benchmarks resulted in system
crashes, so you spent the next week fix-
ing bugs. At this point the benchmarks

ran, but the system’s performance was
not much better than the comparison
systems. You tried different experi-
ments, hoping to find one where the
system looked good; this exposed yet
more bugs that had to be fixed. Time
was running out, so you stopped mea-
suring as soon as you found an experi-
ment that produced positive results.
The paper focused on this experiment,
omitting the results that were less fa-
vorable. There were a few things about
these results that did not make com-
plete sense, but you did your best to
come up with plausible explanations

76 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

contributed articles

ior is not the desired behavior. There
may be bugs in the code that gathers
metrics and processes them, as when,
say, a clock is read at the wrong time
or the 99th percentile is miscomputed.
The system being measured may have
functional bugs. And, finally, the sys-
tem may have performance bugs, so
the measurements do not reflect the
system’s true potential.

I have been involved in dozens of
performance-measurement projects
and cannot recall a single one in which
the first results were correct. In each
case there were multiple problems
from the list just outlined. Only after
working through them all did my col-
leagues and I obtain measurements
that were meaningful.

Mistake 2: Guessing instead of
measuring. The second common mis-
take is to draw conclusions about a
system’s performance based on edu-
cated guesses, without measurements
to back them up. For example, I found
the following explanation in a paper
I reviewed recently: “ ... throughput
does not increase with the number of
threads ... This is because the time tak-
en to traverse the relatively long linked
list bounds server performance.” There
was no indication that the authors
had measured the actual length of the
list or the time taken to traverse it, yet
they stated their conclusion as fact. I
frequently encounter unsubstantiated
conclusions in papers; there were at
least five other occurrences in the pa-
per with the quote.

Educated guesses are often correct
and play an important role in guiding
performance measurement; see Rule
3 (Use your intuition to ask questions,
not answer them). However, engineers’
intuition about performance is not reli-
able. When my students and I designed
our first log-structured file system,4 we
were fairly certain that reference pat-
terns exhibiting locality would result
in better performance than those with-
out locality. Fortunately, we decided to
measure, to be sure. To our surprise, the
workloads with locality behaved worse
than those without. It took consider-
able analysis to understand this behav-
ior. The reasons were subtle, but they
exposed important properties of the
system and led us to a new policy for gar-
bage collection that improved the sys-
tem’s performance significantly. If we

for them. There was not enough time
to validate or double-check the num-
bers, and you could only hope there
were not too many errors.

Measurements gathered this way
are likely incomplete, misleading, or
even erroneous. This article describes
how to conduct performance measure-
ment well. I first discuss five mistakes
that account for most of the problems
with performance measurements, all
of which occurred in the scenario I just
outlined. I then spell out four rules to
follow when evaluating performance.
These rules will help you avoid the mis-
takes and produce high-quality perfor-
mance evaluations. Finally, I offer four
suggestions about infrastructure to as-
sist in performance evaluation.

The most important idea overall, as
reflected in this article’s headline, is to
dig beneath the surface, measuring the
system in depth and detail from multiple
angles to create a complete and accurate
understanding of performance.

Most Common Mistakes
When performance measurements go
wrong, it is usually due to five common
mistakes:

Mistake 1: Trusting the numbers.
Engineers are easily fooled during
performance measurements because
measurement bugs are not obvious.
Engineers are used to dealing with
functional bugs, which tend to be no-
ticeable because they cause the system
to crash or misbehave. If the system
produces the desired behavior, it is
probably working. Engineers tend to
apply the same philosophy to perfor-
mance measurements; if performance
numbers are being generated and the
system is not crashing, they assume
the numbers are correct.

Performance-measurement code is
just as likely to have bugs as any other
code, but the bugs are less obvious.
Most bugs in performance-measure-
ment code do not cause crashes or
prevent numbers from appearing; they
simply produce incorrect numbers.
There is no easy way to tell from a num-
ber whether it is right or wrong, so engi-
neers tend to assume the numbers are
indeed correct. This is a mistake. There
are many ways for errors to creep into
performance measurements. There
may be bugs in the benchmarks or test
applications, so the measured behav-

Performance
measurements
should be
considered guilty
until proven
innocent.

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 77

contributed articles

ticular paper measured at the median.
The results appeared favorable for the
new proposal. My students reran the
measurements for the new protocol
and discovered its 99th-percentile la-
tency was significantly worse than the
comparison protocols. We wondered if
the paper’s authors had intentionally
switched metrics to exaggerate the per-
formance of their protocol.

Confirmation bias also affects how
you present information. You are more
likely to include results that support
your hypothesis and downplay or omit
results that are negative. For example,
I frequently see claims in papers of the
form: “XXX is up to 3.5x faster than
YYY.” Such claims cherry-pick the best
result to report and are misleading be-
cause they do not indicate what perfor-
mance can be expected in the common
case. Statements like this belong in
late-night TV commercials, not scien-
tific papers.

If applied consciously, bias is intel-
lectually dishonest. Even if not applied
consciously, it can cause results to be
reported in a way that is more market-
ing than science; it sounds like you are
trying to sell a product rather than un-
cover the truth about a system’s behav-
ior. Confirmation bias makes it more
likely that results will be inaccurate
(because you did not find bugs) or mis-
leading (because you did not present
all relevant data).

Mistake 5: Haste. The last mistake in
performance evaluation is not allowing
enough time. Engineers usually under-
estimate how long it takes to measure
performance accurately, so they often
carry out evaluations in a rush. When
this happens, they will make mistakes
and take shortcuts, leading to all the
other mistakes.

The time issue is particularly prob-
lematic when working under a dead-
line (such as for a conference publica-
tion). There is almost always a rush to
meet the submission deadline. The
system implementation always takes
longer than expected, delaying the
start of performance measurement;
there is often only a week or two for
evaluation before the submission
deadline, resulting in a sloppy evalua-
tion. In principle, authors could keep
working on the measurements while
waiting for the paper to be reviewed,
but in practice this rarely happens. In-

had trusted our initial guess, we would
have missed an important opportunity
for performance improvement.

It is unsafe to base conclusions on
intuition alone, yet engineers do it all
the time. A common mistake is for an
engineer to hypothesize that a particu-
lar data structure is too slow and then
replace it with a new data structure the
engineer believes will be faster. If the
problem is not verified by measuring
performance, there is a good chance
the optimization will not improve per-
formance. The code change will simply
waste a lot of time and probably intro-
duce unnecessary complexity.

When I find a guess presented as fact
and ask for justification, I sometimes
get this response: “What else could it
possibly be?” But this is a cop-out, sug-
gesting it is up to others to prove the
theory wrong and OK to make unsub-
stantiated claims until someone else
proves them false. In some cases the
person making the comment feels a
process of elimination had been used,
ruling out all possible alternatives. Un-
fortunately, a process of elimination
is not reliable in performance evalua-
tion, because it is not possible to know
with certainty that every possible cause
has been considered. Many factors can
influence performance, and the ulti-
mate cause of behavior is often some-
thing non-obvious, meaning a process
of elimination will not consider it. It
is unsafe to present an explanation as
fact unless measurements confirm the
specific behavior(s).

Mistake 3: Superficial measurements.
Most performance measurements I
see are superficial, measuring only the
outermost visible behavior of a system
(such as the overall running time of an
application or the average latency of
requests made to a server). These mea-
surements are essential, as they repre-
sent the bottom line by which a system
is likely to be judged, but they are not
sufficient. They leave many questions
unanswered (such as “What are the
limits that keep the system from per-
forming better?” and “Which of the im-
provements had the greatest impact on
performance?”). In order to get a deep
understanding of system performance,
the internal behavior of a system must
be measured, in addition to its top-lev-
el performance.

Superficial measurements are often

combined with Mistake 1 (Trusting
the numbers) and Mistake 2 (Guessing
instead of measuring); the engineers
measure only top-level performance,
assume the numbers are correct, and
then invent underlying behaviors to
explain the numbers. For example, I
found the following claim in a paper I
reviewed recently (system names ob-
scured to preserve author anonymity):
“Unlike YYY, XXX observes close-to-
linear-throughput scaling with more
publishers due to its lock-free resolu-
tion of write-write contentions.” The
paper measured scaling, but there
were no measurements of write-write
contention, and systems XXX and YYY
differed in many ways, so other expla-
nations were possible for the perfor-
mance difference.

Mistake 4: Confirmation bias. Per-
formance measurement is rarely in-
different; when you measure perfor-
mance, you are probably hoping for
a particular outcome. If you have just
built a new system or improved an ex-
isting one, you probably hope the per-
formance measurements will show
your ideas were good ones. If the mea-
surements turn out well, it increases
the likelihood your paper will be ac-
cepted or your boss will be impressed.

Unfortunately, such hope results
in a phenomenon called “confirma-
tion bias.”1 Confirmation bias causes
people to select and interpret data in
a way that supports their hypotheses.
For example, confirmation bias af-
fects your level of trust. When you see
a result that supports your hypothesis,
you are more likely to accept the result
without question. In contrast, if a mea-
surement suggests your new approach
is not performing well, you are more
likely to dig deeper to understand ex-
actly what is happening and perhaps
find a way to fix the problem. This
means that an error in a positive result
is less likely to be detected than is an
error in a negative result.

When choosing benchmarks, you
are more likely to choose ones that pro-
duce the desired results and less likely
to choose ones that show the weak-
nesses of your approach. For example,
a recent paper described a new net-
work protocol and compared it to pre-
vious proposals. The previous propos-
als had all measured latency using the
99th-percentile worst case, but this par-

78 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

contributed articles

provements. You will encounter many
things that do not make sense; in or-
der to resolve them, you will need to
add new metrics and validate them.
To get the best results, you must iter-
ate several times improving the met-
rics, measuring performance, and im-
proving the system.

Rule 2: Never trust a number gen-
erated by a computer. Under Mistake
2 (Guessing instead of measuring),
I discussed how it is tempting to be-
lieve performance numbers, even
though they are often wrong. The only
way to eliminate this mistake is to dis-
trust every measurement until it has
been carefully validated. Performance
measurements should be considered
guilty until proven innocent. When
students come to me with measure-
ments, I often challenge them by ask-
ing: “Suppose I said I don’t believe
these measurements. What can you say
to convince me that they are correct?”

The way to validate a measurement
is to find different ways to measure the
same thing:

Take different measurements at the
same level. For example, if you are
measuring file-system throughput, do
not measure just the throughput seen
by a user application; also measure
the throughput observed inside the
operating system (such as at the file
block cache). These measurements
should match;

Measure the system’s behavior at a
lower level to break down the factors
that determine performance, as I discuss
later under Rule 4 (Always measure one
level deeper);

Make back-of-the-envelope calcula-
tions to see if the measurements are in the
ballpark expected; and

Run simulations and compare their
results to measurements of the real im-
plementation.

As you begin collecting measure-
ments, compare them and be alert for
inconsistencies. There will almost al-
ways be things that do not make sense.
When something does not make com-
plete sense, stop and gather more data.
For example, in a recent measurement
of a new network transport protocol,
a benchmark indicated that a server
could handle no more than 600,000
packets per second. However, my col-
leagues and I had seen servers process
more than 900,000 packets per second

with other protocols and believed the
new protocol was at least as efficient as
the old ones. We decided to gather ad-
ditional data. As a result, we discovered
a bug in the flow-control mechanism
on the client side: clients were not
transmitting data fast enough to keep
the server fully loaded. Fixing the bug
improved performance to the level we
expected.

Further analysis will sometimes
show the unexpected behavior is
correct, as in the log-structured file
system example discussed under
Mistake 2 (Guessing instead of mea-
suring); such situations are usually
interesting, and you will learn some-
thing important as you resolve the
contradiction. In my experience, ini-
tial performance measurements are
always riddled with contradictions
and things we don’t understand, and
resolving them is always useful; either
we fix a problem or we deepen our un-
derstanding of the system.

Above all, do not tolerate anything
you do not understand. Assume there
are bugs and problems with every mea-
surement, and your job is to find and
fix them. If you do not find problems,
you should feel uneasy, because there
are probably bugs you missed. Cur-
mudgeons make good performance
evaluators because they trust nothing
and enjoy finding problems.

Rule 3: Use your intuition to ask
questions, not to answer them. Intu-
ition is a wonderful thing. As you ac-
cumulate knowledge and experience
in an area, you will start having gut-
level feelings about a system’s behav-
ior and how to handle certain prob-
lems. If used properly, such intuition
can save significant time and effort.
However, it is easy to become over-
confident and assume your intuition
is infallible. This leads to Mistake 2
(Guessing instead of measuring).

The best way to use intuition is to
identify promising areas for further ex-
ploration. For example, when looking
over performance measurements, ask
yourself if they make sense. How does
the performance compare to what you
expected? Does it seem too good to be
true? Does the system scale more poor-
ly than you had hoped? Does a curve
jump unexpectedly when you expected
it to be smooth? Do some benchmarks
exhibit behavior that is dramatically

stead, they tell themselves: “Let’s not
spend more time on the paper until we
see whether it is accepted.” Once the
paper is accepted, there are only a few
weeks before the deadline for final pa-
pers, so there is yet another rush.

Keys to High-Quality
Performance Analysis
Consider four rules that are likely to
prevent the mistakes from the preced-
ing section and lead to trustworthy and
informative evaluations:

Rule 1: Allow lots of time. The first
step toward high-quality performance
measurements is to allow enough
time. If you are measuring a non-trivial
system, you should plan on at least two
to three months. I tell my graduate stu-
dents to aim for a complete set of pre-
liminary measurements at least one
month before the submission dead-
line; even this is barely enough time
to find and fix problems with both the
measurements and the system.

Performance analysis is not an in-
stantaneous process like taking a pic-
ture of a finished artwork. It is a long
and drawn-out process of confusion,
discovery, and improvement. Perfor-
mance analysis goes through several
phases, each of which can take any-
where from a few days to a few weeks.
First, you must add instrumenta-
tion code to the system to record the
desired metrics. You must then get
benchmark applications running, ei-
ther by writing them or by download-
ing and installing existing programs.
Running benchmarks will probably
stress the system enough to expose
bugs, and you will need to then track
down and fix them. Eventually, the
system will run well enough to start
producing performance numbers.
However, these numbers will almost
certainly be wrong. The next step is
to find and fix bugs in the measure-
ments. Once you have verified the ac-
curacy of the measurements, you will
start to uncover problems with the sys-
tem itself. As you look over the perfor-
mance measurements, you will prob-
ably uncover additional functional
bugs. Once they have been fixed, you
can start analyzing the performance
in depth. You will almost certainly
discover opportunities to improve
performance, and it is important to
have enough time to make these im-

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 79

contributed articles

tainly discover things that do not make
sense; make additional measurements
to resolve the contradictions. For ex-
ample, in a recent analysis of a distrib-
uted transaction processing system,
deeper measurements by my students
included network throughput and disk
throughput. We were surprised to see
that the network throughput was great-
er than the disk throughput; this did
not make sense, since every byte had to
pass through both the network and the
disk. It turned out that the disk subsys-
tem had been configured with no limit
on queue length; the disk was not keep-
ing up, and its output queue was grow-
ing without bound. Once the students
set a limit on queue length, the rest of
the system throttled itself to match the
disk throughput. Unfortunately, this
meant our initial measurements of
overall throughput were too optimistic.

Measuring deeper will also indicate
whether you are getting the best possi-
ble performance and, if not, how to im-
prove it. Use deeper measurements to
find out what is limiting performance.
Try to identify the smallest elements
that have the greatest impact on overall
performance. For example, if the over-
all metric is latency, measure the indi-
vidual latencies of components along
the critical path; typically, there will be a
few components that account for most
of the overall latency. You can then fo-
cus on optimizing those components.

In recent measurements of a new
network transport, one of my students
found that round-trip tail latency was
higher than our simulations had pre-
dicted. The student measured software
latency in detail on both the sending
and the receiving machines but found
nothing that could account for the
high tail latency. At this point we were
about to conclude that the delays must
be caused by the network switch. What
else could it be? This would have been
Mistake 2 (Guessing instead of measur-
ing). Before giving up, we decided to dig
deeper and measure precise timings
for each individual packet. The mea-
surements surprised us, showing that
outlier delays were not isolated events.
Delay tended to build up over a series of
packets, affecting all of the packets from
a single sender over a relatively long
time interval, including packets for dif-
ferent destinations. This was a crucial
clue. After several additional measure-

different from others? Consider any-
thing that does not match your intu-
ition a red flag and investigate it, as de-
scribed in Rule 2 (Never trust a number
generated by a computer). Intuition
can be very helpful in identifying prob-
lems.

Intuition is great for directing atten-
tion but not reliable enough to make
decisions on it alone. Intuition should
always be validated with data before
making decisions or claims. If your in-
tuition suggests why a particular result
is occurring, follow it up with measure-
ments that prove or disprove the intu-
ition. Draw conclusions based on the
measurements, not the intuition, and
include some of the measured data in
the conclusion, so others know it is not
just a guess.

If you continually form intuitions
and then test them you will gain knowl-
edge that helps you form better intu-
ition in the future. Every false intuition
means there was something you did
not fully understand; in the process
of testing it and discovering why it is
false, you will learn something useful.

Rule 4: Always measure one level
deeper. If you want to understand the
performance of a system at a particular
level, you must measure not just that
level but also the next level deeper. That
is, measure the underlying factors that
contribute to the performance at the
higher level. If you are measuring over-
all latency for remote procedure calls,
you could measure deeper by break-
ing down that latency, determining
how much time is spent in the client
machine, how much time is spent in the
network, and how much time is spent on
the server. You could also measure where
time is spent on the client and server. If
you are measuring the overall throughput
of a system, the system probably con-
sists of a pipeline containing several
components. Measure the utilization
of each component (the fraction of time
that component is busy). At least one
component should be 100% utilized; if
not, it should be possible to achieve a
higher throughput.

Measuring deeper is the best way
to validate top-level measurements
and uncover bugs. Once you have col-
lected some deeper measurements, ask
yourself whether they seem consistent
with the top-level measurements and
with each other. You will almost cer-

Curmudgeons make
good performance
evaluators because
they trust nothing
and enjoy finding
problems.

80 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

contributed articles

minating. Once you look at the results,
you will almost certainly find things that
do not make sense; from this point on,
track down and resolve everything that
does not make perfect sense. Along the
way you will discover other surprises;
track them down as well. Over time, you
will develop intuition about what kinds
of deeper measurements are most likely
to be fruitful.

Measuring deeper is the single most
important ingredient for high-quality
performance measurement. Focusing
on this one rule will prevent most of
the mistakes anyone could potentially
make. For example, in order to make
deeper measurements you will have to
allocate extra time. Measuring deeper
will expose bugs and inconsistencies,
so you will not accidentally trust bogus
data. Most of the suggestions under
Rule 2 (Never trust a number generated
by a computer) are actually examples of
measuring deeper. You will never need
to guess the reasons for performance,
since you will have actual data. Your
measurements will not be superficial.
Finally, you are less likely to be derailed
by subconscious bias, since the deeper
measurements will expose weakness-
es, as well as strengths.

Measurement Infrastructure
Making good performance measure-
ments takes time, so it is worth creating
infrastructure to help you work more
efficiently. The infrastructure will easily
pay for itself by the time the measure-
ment project is finished. Furthermore,
performance measurements tend to be
run repeatedly, making infrastructure
even more valuable. In a cloud service
provider, for example, measurements
must be made continuously in order to
maintain contractual service levels. In a
research project, the full suite of perfor-
mance measurements will be run sev-
eral times (such as before submission,
after the paper is accepted, and again
during the writing of a Ph.D. disserta-
tion). It is important to have infrastruc-
ture that makes it easy to rerun tests.

Automate measurements. It
should be possible to type a single
command line that invokes the full
suite of measurements, including
not just top-level measurements but
also the deeper measurements. Each
run should produce a large amount of
performance data in an easy-to-read

ments, the student discovered that long
queues were building up in the sender’s
network interface due to a software bug.
The transport included code to estimate
the queue length and prevent queue
buildup, but there was a bug in the es-
timator caused by underflow of an un-
signed integer. The underflow was easy
to fix, at which point tail latency dropped
dramatically. Not only did this process
improve the system’s performance, it
taught us an important lesson about the
risks of unsigned integers.

Another way to measure deeper is
to consider more detail. Instead of just
looking at average values, graph the en-
tire distribution and noodle over the
shape to see if it provides useful infor-
mation. Then look at some of the raw
data samples to see if there are patterns.
In one measurement of RPC latency, a
student found that the average latency
was higher than we expected. The laten-
cy was not intolerably high, and it would
have been easy to simply accept this
level of performance. Fortunately, the
student decided to graph the times for
individual RPCs. It turned out the data
was bimodal, whereby every other RPC
completed quickly, but the intervening
ones were all significantly slower. With
this information, the student tracked
down and fixed a configuration error
that eliminated all of the slow times. In
this case, the average value was not a
good indicator of system behavior.

The examples in this article may
seem so esoteric that they must be
outliers, but they are not. Every per-
formance measurement project I have
seen has had multiple such examples,
which are extremely subtle, difficult to
track down, and defy all intuition, until
suddenly a simple explanation appears
(such as unsigned integer underflow).
Deeper measurements almost always
produce substantial performance im-
provement, important discoveries
about system behavior, or both.

Do not spend a lot of time agoniz-
ing over which deeper measurements
to make. If the top-level measurements
contain contradictions or things that
are surprising, start with measurements
that could help resolve them. Or pick
measurements that will identify per-
formance bottlenecks. If nothing else,
choose a few metrics that are most ob-
vious and easiest to collect, even if you
are not sure they will be particularly illu-

It can be as fancy
as an interactive
webpage or as
simple as a text file,
but a dashboard
is essential for
any nontrivial
measurement
effort.

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 81

contributed articles

performance information is constantly
available. For online services that run
continuously, the dashboard should
take the form of a webpage that can
be displayed at any time. For applica-
tions that are run manually, it is con-
venient to have a command-line switch
that will cause performance metrics
to be recorded during execution and
dumped when the application finishes.

One simple-yet-effective technique
is to define a collection of counters that
accumulate statistics (such as number
of invocations of each externally visible
request type and number of network
bytes transmitted and received). Incre-
menting a counter is computationally
inexpensive enough that a system can
include a large number of them with-
out hurting its performance. Make it
easy to define new counters and read
out all existing counters. For long-run-
ning services, it should be possible to
sample the counters at regular inter-
vals, and the dashboard should display
historical trends for the counters.

Presentation matters. If you want
to analyze performance in depth, mea-
surements must be displayed in a way
that exposes a lot of detail and allows
it to be understood easily. In addition,
the presentation must clarify the things

form. It should also be easy to invoke
a single benchmark by itself or vary
the parameters for a benchmark. Also
useful is a tool that can compare two
sets of output to identify nontrivial
changes in performance.

Create a dashboard. A dashboard is
a display that shows all performance
measurements from a particular run
of a particular benchmark or from a
deployed system. If you have been mea-
suring deeply, the dashboard can eas-
ily show hundreds of measurements. A
good dashboard brings together a lot
of data in one place and makes it easy
to examine performance from many
angles. It can be as fancy as an interac-
tive webpage or as simple as a text file,
but a dashboard is essential for any
nontrivial measurement effort.

Figure 1 shows approximately one-
third of a dashboard my students cre-
ated to analyze the performance of
crash recovery in a distributed storage
system.3 In this benchmark, one of the
system’s storage servers has crashed,
and several other servers (“recovery
masters”) reconstruct the lost data by
reading copies stored on a collection of
backup servers. This sample illustrates
several important features of dash-
boards. Any dashboard should start
with a summary section, giving the
most important metric(s)—total recov-
ery time in this case—and the param-
eters that controlled the benchmark.
Each of the remaining sections digs
deeper into one specific aspect of the
performance. For example, “Recovery
Master Time” analyzes where the re-
covery masters spent their time during
recovery, showing CPU time for each
component as both an absolute time
and a percentage of total recovery time;
the percentages help identify bottle-
necks. It was important for the storage
system being analyzed to make effi-
cient use of the network during recov-
ery, so we added a separate section to
analyze network throughput for each
of the servers, as well as for the clus-
ter as a whole. Most measurements in
the dashboard show averages across a
group of servers, but in several cases
the worst-case server is also shown.
The dashboard also has a special sec-
tion showing the worst-case perfor-
mance in several categories, making it
possible to see whether outliers are af-
fecting overall performance.

You should create a simple dash-
board as soon as you start making mea-
surements; initially, it will include just
the benchmark parameters and a few
overall metrics. Every time you think of
a new question to answer or a deeper
measurement to take, add more data
to the dashboard. Never remove met-
rics from the dashboard, even if you
think you will never need them again.
You probably will.

If you make a change and perfor-
mance suddenly degrades, you can
scan the dashboard for metrics that
have changed significantly. The dash-
board might indicate that, for exam-
ple, the network is now overloaded or
the fraction of time waiting for incom-
ing segments suddenly increased. You
can maintain a “good” dashboard for
comparing with later dashboards and
record dashboards at regular time in-
tervals to track performance over long
periods of time. A dashboard serves
a purpose for performance measure-
ment similar to that of unit tests for
functional testing—providing a de-
tailed analysis and making it easy to
detect regressions.

Do not remove the instrumentation.
Leave as much instrumentation as
possible in the system at all times, so

Figure 1. Excerpt from the dashboard used to evaluate crash recovery in a large-scale
main memory storage system.3

=== Summary ===
Recovery time: 2.58 s
Failure detection time: 0.32 s
Recovery + detection time: 2.90 s
Masters: 73
Backups: 146
Total nodes: 73
Replicas: 3
Objects per master: 592950
Object size: 1055.81 bytes
Total recovery segment entries: 43685317
Total live object space: 43584 MB
Total recovery segment space w/ overhead: 43713 MB

=== Recovery Master Time ===
Total (90.5% of recovery time): 2333.64 ms avg / 2533.71 ms max / 100.00% avg
Waiting for incoming segments: 766.78 ms avg / 924.04 ms max / 32.86% avg
Inside recoverSegment: 1283.48 ms avg / 1657.36 ms max / 55.00% avg
Final log sync time: 21.20 ms avg / 50.85 ms max / 0.91% avg
Removing tombstones: 0.00 ms avg / 0.00 ms max / 0.00% avg
Other: 262.18 ms avg / 673.43 ms max / 10.17% avg

=== Network Utilization ===
Aggregate: 994.43 Gb/s avg / 54.49%
Master in: 4.57 Gb/s avg / 333.82 Gb/s total
Master out: 6.35 Gb/s avg / 463.59 Gb/s total
Master out during replication: 7.61 Gb/s avg / 555.87 Gb/s total
Master out during log sync: 12.06 Gb/s avg / 880.42 Gb/s total
Backup in: 3.63 Gb/s avg / 530.01 Gb/s total
Backup out: 3.63 Gb/s avg / 529.98 Gb/s total

=== Slowest Servers ===
Backup opens, writes: rc26 / 729.2 ms
Stalled reading segs from backups: rc21 / 924.0 ms
Reading from disk: rc29 / 170.3 MB/s
Writing to disk: rc23 / 71.3 MB/s

82 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

contributed articles

ing data clearly from the start (such as
with graphs rather than tables). Do not
waste time with displays that are dif-
ficult to understand. Making graphs
takes little time once you have learned
how to use the tools, and you can reuse
old scripts for new graphs. Consider
clarity even when printing raw data,
because you will occasionally want to
look at it. Arrange the data in neat col-
umns with labels, and use appropriate
units (such as microseconds), rather
than, say, “1.04e-07.”

Figure 2 and Figure 3 show how the
organization of a graph can have a big
effect on how easy (or difficult) it is to
visualize performance data. In Figure
2 my students and I aimed to under-
stand tail latency (99.9th or 99.99th per-
centile worst-case performance) for
write requests in the RAMCloud stor-

age system. A traditional cumulative
distribution function (CDF) like the
one in Figure 2a emphasizes the mean
value but makes it difficult to see tail
latency. When we switched to a reverse
cumulative distribution function with
log-scale axes (see Figure 2b) the com-
plete tail became visible, all the way out
to the slowest of 100 million total sam-
ples. Figure 2b made it easy to see fea-
tures worthy of additional study (such
as the “shoulders” at approximately
70 µs and 1 ms); additional measure-
ments showed the shoulder at 1 ms
was caused by interference from con-
current garbage collection. If we had
only considered a few discreet mea-
surements of tail latency we might not
have noticed these features.

Figure 3 arose during development
of a new network transport protocol. My
students and I wanted to understand
the effect of a particular parameter set-
ting on the delivery time for messages
of different size in a given workload.
The first question we had to address
in graphing the data was what metric
to display. Displaying the absolute de-
livery times for messages would not be
very useful, since it would not be obvi-
ous whether a particular time is good.
Furthermore, comparisons between
messages of different lengths would
not be meaningful, as longer messages
inherently take more time to deliver.
Instead, we displayed slowdown, the
actual delivery time for a message di-
vided by the best possible time for mes-
sages of that size. This choice made it
easy to see whether a particular time is
indeed good; 1.0 is perfect, 2.0 means
the message took twice as long as nec-
essary, and so on. Slowdown also made
it possible to compare measurements
for messages of different length, since
slowdown takes into account the inher-
ent cost for each length.

The second question was the choice
of the x-axis. An obvious choice would
have been a linear x-axis, as in Figure
3a. However, the vast majority of mes-
sages is very small, so almost all the
messages are bunched together at the
left edge of that graph. A log-scale x-ax-
is (see Figure 3b) makes it easier to see
the small messages but still does not
indicate how many messages were af-
fected by each value of the parameter.
To address this problem, we rescaled
the x-axis to match the distribution of

that are most important. Think of this
as feeding your intuition. The way to
discover interesting things is to absorb
a lot of information and let your intu-
ition go to work, identifying patterns,
contradictions, and things that seem
like they might be significant. You can
then explore them in more detail.

When students bring their first
measurements to me, the measure-
ments are often in a barely compre-
hensible form (such as unaligned
comma-separated values), telling me
they did not want to spend time on a
nice graph until they knew what data
is important. However, the early phase
of analysis, where you are trying to fig-
ure out what is happening and why, is
when it is most important for informa-
tion to be presented clearly. It is worth
getting in the habit of always present-

Figure 2. Two different ways to display tail latency: (a) a traditional CDF with linear axes;
and (b) a complementary CDF (each y-value is the fraction of samples greater than the cor-
responding x-value) with log-scale axes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
 o

f
W

ri
te

s
F

ra
ct

io
n

 o
f

W
ri

te
s

Latency (Microseconds)

Latency (Microseconds)

(a)

(b)

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 10 100 1000 10,000

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 83

contributed articles

message lengths (see Figure 3c); the
x-axis is labeled with message size but
is linear in number of messages, with
each of the 10 tickmarks correspond-
ing to 10% of all messages. With this
view of the data it became easy to see
that the parameter matters, as it affect-
ed approximately 70% of all messages
in the experiment (those smaller than
approximately 5 Kbytes).

Figure 3c includes more informa-
tion than the other graphs; in addi-
tion to displaying slowdown, it also
displays the CDF of message sizes via
the x-axis labels. As a result it is easy to
see that messages in this workload are
mostly short; 60% of all messages re-
quire no more than 960 bytes. Figure
3c makes it clear that Figure 3a and
Figure 3b are misleading.

Conclusion
The keys to good performance evalu-
ation are a keen eye for things that do
not make sense and a willingness to
measure from many different angles.
This takes more time than the quick and
shallow measurements that are common
today but provides a deeper and more ac-
curate understanding of the system be-
ing measured. In addition, if you apply
the scientific method, making and test-
ing hypotheses, you will improve your
intuition about systems. This will result
in both better designs and better perfor-
mance measurements in the future.

Acknowledgments
This article benefited from comments
and suggestions from Jonathan Elli-
thorpe, Collin Lee, Yilong Li, Behnam
Montazeri, Seojin Park, Henry Qin,
Stephen Yang, and the anonymous
Communications reviewers.

References
1. Nickerson, R.S. Confirmation bias: A ubiquitous

phenomenon in many guises. Review of General
Psychology 2, 2 (June 1998), 175–220.

2. Ousterhout, J. A Philosophy of Software Design.
Yaknyam Press, Palo Alto, CA, 2018.

3. Ousterhout, J., Gopalan, A., Gupta, A., Kejriwal, A.,
Lee, C., Montazeri, B., Ongaro, D., Park, S.J., Qin,
H., Rosenblum, M. et al. The RAMCloud storage
system. ACM Transactions on Computer Systems
33, 3 (Aug. 2015), 7.

4. Rosenblum, M. and Ousterhout, J.K. The design
and implementation of a log-structured file system.
ACM Transactions on Computer Systems 10, 1 (Feb.
1992), 26–52.

John Ousterhout (ouster@cs.stanford.edu) is the Bosack
Lerner Professor of Computer Science at Stanford
University, Stanford, CA, USA.

© 2018 ACM 0001-0782/18/7 $15.00

Figure 3. Each figure displays 99th-percentile slowdown (delivery time for messages
of a given size, divided by the best possible time for messages of that size) as a function
of message size in a given workload: (a) x-axis is linear; (b) x-axis is logarithmic; and
(c) x-axis is scaled to match the CDF of message lengths. Different curves correspond
to different settings of the “unscheduled bytes” parameter.

2

0 1 2 3 4 5 6 7 8 9 10

4

6

8

10

Message Size (Megabytes)
(a)

(b)

(c)

9
9

%
 S

lo
w

d
ow

n

Unscheduled Bytes
1 500 1000 9328 (RTTbytes) 18656 (2 x RTTbytes)

2

4

6

8

10

1e+02 4e+02 1e+03 4e+03 1e+04 4e+04 1e+05 3e+05 1e+06 3e+06 1e+07

Message Size (Bytes)

9
9

%
 S

lo
w

d
ow

n

1

2

3

4

5

10

15

313 371 491 561 646 960 4582 48609 120373 1e+07

Message Size (Bytes)

9
9

%
 S

lo
w

d
ow

n
 (

L
og

 S
ca

le
)

