
A Trace-Driven Analysis of the UNIX 4.2 BSD File Sys tem

John K. Ousterhout, Hervg Da Costa, David Harrison,
John A. Kunze, Mike Kupfer, and James G. Thompson

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

A b s t r a c t

We analyzed the UNIX 4.2 BSD file system by recording
user-level activity in trace files and writing programs to
analyze the traces. The tracer did not record individual
read and write operations, yet still provided tight bounds
on what information was accessed and when. The trace
analysis shows that the average file system bandwidth
needed per user is low (a few hundred bytes per second).
Most of the files accessed are open only a short t ime and
are accessed sequentially. Most new information is deleted
or overwri t ten within a few minutes of its creation. We
also wrote a simulator that uses the traces to predict the
performance of caches for disk blocks. The moderate-sized
caches used in UNIX reduce disk traffic for file blocks by
about 50%, but larger caches (several megabytes) can
eliminate 90% or more of all disk traffic. With those large
caches, large block sizes (16 kbytes or more) result in the
fewest disk accesses.

1. I n t r o d u c t i o n

This paper describes a series of measurements made
on the UNIX 4.2 BSD file system [5,8]. Most of the work
was done in a series of term projects for a graduate course
in operat ing systems at the University of California at
Berkeley. Our goal was to collect information that would
be useful in designing a shared file system for a network of
personal workstations. We were interested in such
questions as:

• How much network bandwidth is needed to support a
diskless workstation?

• What are typical file access patterns (and what
protocols will support those patterns best)?

• How should disk block caches be organized and
managed?

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM-0-89791-174-1-12 /85-0015 $00.75

• How much of a performance advantage do such
caches provide?

We were unable to find answers to these questions in
the literature, so we decided to instrument the 4.2 BSD
system to collect information about file accesses. In order
to reduce the size of the trace files and the impact of the
tracer on its host systems, we did not record individual
read and write requests. The information that we did
collect allowed us to deduce the exact ranges of bytes
accessed, although the access times were less precise than
they would have been if we had logged reads and writes.
Section 3 of this paper discusses the tracing technique and
Section 4 describes the three systems we traced.

We wrote two programs to process the trace files: a
reference pattern analyzer and a block cache simulator.
Table I summarizes the most important results. Section 5
discusses the reference pattern analysis. Some of the
conclusions are: individual users make only occasional
(though bursty) use of the file system, and they need very
little bandwidth on average (only a few hundred bytes per
second per active user); files are usually open only a short
time, and they tend to be read or writ ten sequentially in
their entirety; non-sequential access is rare; most of the
files that are accessed are short; and most new files have

On average, about 300-600 bytes/second of file data
are read or writ ten by each active user.

About 70% of all file accesses are whole-file transfers,
and about 50% of all bytes are transferred in whole-
file transfers.

75% of all files are open less than .5 second, and 90%
are open less than 10 seconds.

About 20-30% of all newly-written information is
deleted within 30 seconds, and about 50% is deleted
within 5 minutes.

A 4-Mbyte cache of disk blocks eliminates between
65% and 90% of all disk accesses for file data
(depending on the write policy).

For a 400-kbyte disk cache, a block size of 8 kbytes
results in the fewest number of disk accesses for file
data. For a 4-Mbyte cache, a 16-kbyte block size is
optimal.

Tab l e I. Selected results.

15

short lifetimes (only a few minutes).

Section 6 describes the second part of the analysis, a
series of disk-block cache simulations based on the trace
data. The main conclusions are that even moderate-sized
disk block caches such as those used in UNIX (a few
hundred kilobytes) can reduce disk traffic for file blocks by
about a factor of two. But larger caches of several
megabytes perform much better, reducing disk traffic by
as much as 90%. With large caches and the delayed-write
policy described in Section 6, many files will not be writ ten
to disk at all: they will be deleted or overwritten while
still in the cache. Large block sizes (8 or 16 kbytes)
combined with large caches result in the greatest
reductions in disk I /O. Even for relatively small caches,
large block sizes are effective in reducing disk I/O.

2. P r e v i o u s W o r k

There has been very little empirical data published on
file system usage or performance. This is probably due to
the difficulty of obtaining trace data, and also to the large
volume of data that is likely to result. The published
studies are limited in scope, and most deal with older
operating systems. As a consequence, the results may not
be applicable in planning future ~ystems.

For example, Smith studied the file access behavior of
IBM mainframes in order to predict the effects of
automatic file migration]11]. He only considered files used
by a particular interactive editor, which were mostly
program source files. The data were gathered as a series
of daily scans of the disk, so they do not include files
whose lifetimes were less than a day. In another study,
Porcar analyzed dynamic trace data for files in an IBM
batch environment [7]. He considered only shared files,
which accounted for less than 10% of all the files accessed
in his system. Satyanarayanan analyzed file sizes and
lifetimes on a PDP-10 system [10], but the study was made
statically by scanning the contents of disk storage at a
fixed point in time.

More recently, Smith used trace data from IBM
mainframes to predict the performance of disk caches [12];
his conclusions are similar to ours although he used
different trace information (physical disk addresses, no
information about files, transfer sizes or reading versus
writing). Two other recent studies contain UNIX
measurements that partially overlap ours: Lazowska et al.
analyzed block size tradeoffs and reported on the disk I /O
required per user [2], and Leffler et al. reported on the
effectiveness of current UNIX disk caches [4]. Sections 5
and 6 of this paper compare their results and ours.

3. Gather ing the D a t a

Our main concern in gathering file system trace
information was the volume of data. We wished to gather
data over several days to prevent temporary unusual
activity from biasing the results. If we had at tempted to
record all file-system activity, an enormous amount of data

would have been produced. For example, the traces for
Smith's cache study contained 1.5 gigabytes or more per
day [12]. We feared that the work involved in writing
such a trace file would have consumed a substantial
fraction of the CPU. It might have perturbed our results,
and it certainly would have made us unpopular with the
systems' users. In addition, the volume of data would
have been so great that we could only have traced a few
hours of activity before running out of space for the trace
files.

3.1. No Reads and W r i t e s

In order to reduce the volume of data, we decided to
record file-system-related events at a logical level rather
than a physical level, and not to record individual read
and write requests. Table II shows the events that were
logged. "Logical" level means that information was
recorded about files and ranges of bytes within files, not
about physical disk blocks. There is no information in the
traces about the locations of blocks on disk or the t iming
of actual disk I/Os. Furthermore, the traces do not
contain any information about disk accesses for paging, file
name lookup, or file descriptors (see Section 3.2 below).

Once we decided to gather information at a logical
level, we could take advantage of the fact that file reading

and writing in UNIX are implicitly sequential (a special
system call must be used to change the access position
within the file). This means that read and write events
need not be logged to determine which data were accessed.
We recorded the current access position in the file when it
was opened and closed, and also before and after each
repositioning operation. This information completely
identifies the areas of files that were read or written.

The drawback of the no-read-write approach is that it
reduces the accuracy of times in the system: the open,
close, and reposition events provide bounds on when bytes
were actually transferred, but these may be loose bounds if
open files are idle for long periods. In all of our analyses,
we "billed" each transfer at the time of the next close or

System Call Information Recorded

open and create time, open id, file id, user id,
file size

close time, open id, final position

seek (reposition within time, open id, previous
file) position, new position

unlink (delete file) time, file id

t runcate (shorten file) time, file id, new length

execve (load program) time, file id, user id, file size

Table H. The events recorded by the trace package.
Time is accurate to approximately 10 milliseconds.
Open id is a unique identifier assigned to each "open"
system call. It is used to avoid confusion between
concurrent accesses to the same file. File id is unique to
each file. User id identifies the account under which the
operation was invoked. Poeition is the current access
position in the file (i.e. the byte offset to/from which
data will be transferred next).

16

reposition event for the file. When analyzing concurrent
accesses to different files, the order in which we processed
the data transfers may not be the same as the order in
which reads and writes occurred.

We had two hypotheses about usage patterns that led
us to adopt the no-read-write approach in spite of its
potential inaccuracy. First, we thought that most file
system activity would be sequential, so that the no-read-
write approach would reduce the volume of trace data
substantially. Our experiences bear out this hypothesis.
Second, we thought that most files would only be open a
short time, so that the open and close events would
provide tight bounds on the access times. This hypothesis
is also supported by the data in Section 5.

After collecting the trace data we measured the
intervals between successive trace events for the same
open file. These bound the times when data transfers
actually occurred. 75% of the intervals were less than 0.5
second, 90% were less than 10 seconds, and 99% were less
than 30 seconds. The measurements in Sections 5 and 6
were averaged over intervals of at least 10 seconds and
often longer, so we do not believe that the time
imprecision biased our results very much. A later study
[13] suggests that no-read-write approach exaggerates
slightly the burstiness of the system. This makes our
performance numbers slightly pessimistic. For example,
[13] concludes that actual cache miss ratios will be 2-3%
lower than predicted by Section 6.

3.2. Missing Data

Our trace analyses consider both user- and system-
initiated file access, but they examine only the actual bytes
contained in files. We did not include paging activity, nor
did we include the overhead I/O activity needed to
interpret pathnames or to read and write file descriptors.
The paragraphs below discuss these other factors
individually. It appears that the other factors could result
in as much disk activity as the logical file accesses that we
measured in detail. Fortunately, the results presented in
this paper are independent of the other factors, with the
exception of the block cache simulations of Section 6.

The first "other factor" is paging activity, which
consists primarily of loading programs on demand from
disk files into main memory. Paging to and from
swapping store can also result in I/O activity but is rare in
4.2 BSD systems (see [2] and [6]). We estimated the effects
of paging by logging execve system calls and recording the
sizes of the files that were executed. The total number of
bytes in such files ranged from 1.2 to 2 times the total
number of bytes of logical file I/O, depending on the
system measured. However, the actual paging I/O was
probably less than this, for three reasons. First, UNIX
provides shared code segments and will not re-read code
pages if they are already in use by another process.
Second, program files may contain large amounts of
debugging information, which is never paged in. Third,
files are paged in on demand, which means some pages
may never be read. See Section 6 for an estimate of the
effect of program page-in oll disk block caches.

The second additional source of disk I/O consists of
file descriptors (i-nodes), which map logical file blocks to
disk blocks. UNIX maintains a main-memory cache for
the i-nodes of all open files and many recently-used ones.
We were not able to measure the effectiveness of this
cache. In the (unlikely) worst case, i-node transfers could
result in more disk I/O than the actual file blocks (for
example, access to a small file might consist of reading the
i-node on file open, reading or writing one file block, then
writing the i-node on file close).

The third additional source of disk I/O is the
directories that must be examined when opening files.
This results in a minimum of two block accesses for each
element in a file's pathname (one for the directory's
descriptor and one for the contents of the directory).
However, 4.2 BSD contains a directory cache to hold
recently-used entries. Leffter et al. report that the
directory cache achieves an 85% hit ratio [4].

4. The Traced Systems

We collected trace data on three different systems, all
timeshared VAX-II/780s in the Department of Electrical
Engineering and Computer Sciences at U.C. Berkeley.
The machines' names are "Ucbarpa", "Ucbernie", and

Trace A5 E3 C4
Duration (hours)
Number of trace records
Size of trace file {Mbytes)
Total data transferred
to/from files (Mbytes)
create events
open events
close events
seek events
unlink events
truncate events
execve

38,142
320,065
358,191
185,709
37,780

1,485
60,712

79.4
1,017,464

26

1220

(3.8%)
(31.9%)
(35.7%}
(18.5%)
(3.8%)
(0.1%)
(6.1%)

65.7
921,526

23

1196

37,172
280,579
317,763
169,714
36,517

2,070
64,732

72.5
733,403

18

1030

(4.1%) 29,462
(30.9%) 203,613
{35.0%) 233,078
(18.7%) 189,245

(4.0%) 28,373
(0.2%} 1,115
(7.1%) 37,704

(4.1%)
{28.2%)
(32.3%)
(26.2%)
(3.9%)
(0.1%)
(5.2%)

Table llI. Overall statistics for the three traces. The percentages are expressed as fractions of
a]J events in that trace.

17

"Ucbcad", and the traces we used for analysis are called
"A5", "E3", and "C4", respectively. Ucbarpa and
Ucbernie are both used primarily by graduate students
alid staff for program development and document
formatting. Ucbernie supl>orts a substantial a lnount of
secretarial and administrative work. Ucbarpa has 4
Mbytes of primary memory and Ucbernie has 8 Mbytes.
The third machine, Ucbcad, is used primarily by electrical
engineering graduate students to run computer-aided
design tools for integrated circuits. Circuit simulators,
layout editors, design-rule checkers, and circuit extractors
are commonly-used programs on this machine. Ucbead
has 16 Mbytes of primary memory. We included Ucbead
in the analysis to see if CAD programs would show
different file system behavior from program development
and word-processing programs. The results in Sections 5
and 6 show little difference between the three machines.

Table III gives summary information about the three
traces. Each was gathered over a period of 2-3 days
during the busiest part of the work week. During the peak
hours of the day, about 2-3 files were opened per second,
on average. For the A5 and E3 traces, the UNIX load
average was typically 5-10 during the afternoon, with a
few dozen users active at any given time. For the C4
trace the load average rarely exceeded 2 or 3, with around
ten active users at a time. About 5000-6000 bytes of trace
data per minute were collected, on average. Although the
worst-case rate was somewhat higher than this, there was
no noticeable degradation in the performance of the
systems while the traces were being gathered.

5. How the Fi le S y s t e m is Used

Our trace analysis was divided up into two parts.
The first part contains measurements of current UNLX file
system usage. They are presented in this section under
three general categories: system activity (how much the

file system is used), access patterns (sequentiality, dynamic
file sizes, and open times), and file lifetimes. The second
part of the analysis, examining the effectiveness of disk
block caches, is presented in Section 6.

5.1. S y s t e m A c t i v i t y

The first set of measurements concerns overall system
activity in terms of users, active files, and bytes
transferred; see Table IV. The most interesting
measurement for us is the throughput per active user. We
consider a user to be active if he or she has any file system
activity in a ten-minute interval. Averaged over ten-
minute intervals, active users tend to transfer only a few
hundred bytes of file data per second. If only ten-second
intervals are considered, users active in these intervals
tend to have much higher transfer rates (a few kilobytes
per second per user) but there are fewer active users. In
[2] Lazowska et al. reported about 4 kbytes of I /O per
second per active user. This is somewhat higher than our
figure, but their measurement includes additional overhead
not present in our analysis, such as paging I /O and
directory searches, and was measured for a single user at a
time of heavy usage.

The low average throughput per user suggests that a
network-based file system using a single 10 Mbit /second
network can support many hundreds of users without
overloading the network. Transfer rates tended to be
relatively bursty in our measurements, with rates as high
as 100 kbytes/sec recorded for some users in some
intervals, but even so a 10 Mbit /second network could
support several such bursts simultaneously without
difficulty.

5.2. Fi le Access P a t t e r n s

Table V contains our measurements of sequentiality,
which confirm the widely-held belief that file access is
highly sequential. More than 90% of all files are processed

A5 E3 C4

Average throughput (bytes/sec. 4200 5080 3940
over life of trace)

Total number of different users
over life of-trace 137 331 I69

i
Greatest number of active users

29 44 20 in a 10 minute interval

Average number of active users
11.7 (4- 5.8) 18.7 (4- 10.1) 7.4 {4-4.1) (over 10 minute intervals)

Average throughput per active user
370 {4- 290) 280 (4- 190) 570 (4-760) (bytes/sec. over 10 minute intervals)

Average number of active users
2.5 (4- 1.5) 3.3 (4- 2.0) 1.7 (4-1.1)

(over 10 second intervals) I
Average throughput per active user I

1490 (4- 10000) 1380 (4- 4100) i 1790 (4- 7400) (bytes/sec. over 10 second intervals)

Table IV. Some measurements of system activity. The numbers in parentheses are standard
deviations. A user is active in an interval if there are any trace events for that user in the
interval. For example, the lower-right entry in the table means that if a user was active in a 10-
second interval, he/she requested 1790 bytes of file data per second during that interval, on
average.

18

sequentially, and more than two thirds of file accesses are
whole-file transfers. Of those accesses that are not whole-
file transfers, most consist of a single reposition to a
particular position in the file, followed by a transfer of
data to or from that position without any additional
repositioning. This mode of operation is used, for
example, to append new messages onto existing mailbox
files.

Figure 1 measures the lengths of sequential runs in
two ways. Figure l(a) shows that most sequential runs are
short, rarely more than a few kbytes in length. This is
because most files are short (see below); there simply isn't
much" data to transfer. On the other hand, Figure l(b)
shows that long sequential runs account for much of the
data transferred: 30% of all bytes are read or written in
sequential runs of 25 kbytes or more.

Figure 2 shows the dynamic distribution of file
accesses by size at close. Most of the files accessed are
short. Short files are used extensively in UNIX for
directories, command files, memos, circuit description
decks, C definition files, etc. The figure also shows that a
few very large administrative files account for almost 20%
of all file accesses. These files are each around 1 Mbyte in
size and are used for network tables, a log of all logins,

I00

80,

Percent 60,
of

R u n s 4 0 ,

0

100.

8 0 ,

P e r c e n t 60,
of

Bytes 40,

20.

0

- - - A 5

- - E 3

.......... C4

• • w i I

2 4 6 8 I0
Kilobytes Transferred

(a)

.~ ~ ~ .:.Z.-:.-~ --~"~"-~ "

- - E3
~ c4

25 50 75 100
Kilobytes Transferred

(b)

Figure 1. Cumulative distributions of the lengths of
sequential runs (number of bytes transferred before
repositioning or closing the file). Figure (a) is weighted
by number of runs: about 70.-75% of all sequential runs
were less than 4000 bytes in length. Jumps occur at
1024 bytes and 4096 bytes because user-level I/O
routines round up transfers to these sizes. Figure (b) is
weighted by the number of bytes transferred: about 30-
40% of all bytes were transferred in runs longer than
25000 bytes.

Whole-file read transfers
(% of all read-only accesses)

A5
168,127
(69%)

E3
131,408
(63%)

Whole-file write transfers 78,542 67,340
(% of all write-only accesses) (82%) (81%)

Data transferred in 664 592
whole-file transfers (Mbytes) (54%) (49%)

Sequential read-only accesses 221,136 189,734
(% of all read-only accesses) (92%) (91%)

Sequential write-only accesses 92,954 79,847
(% of all write-only accesses) (97%) (96%)

Sequential read-write accesses 4215 5459
(% of all read-write accesses) (19%) (21%)

Data transferred 801 804
sequentially (Mbytes) (66%) (67%)

C4
93,469
(70%)

60,363
(85%)

547
(53%)

122,557
(93%)

76,425
(98%)

8163
(35%)

703
(68%)

Tab l e V. Data tends to be transferred sequentially.
Whole-file transfers were those where the file was read
or written sequentially from beginning to end.
Sequential accesses include whole-file transfers plus
those where there was an initial reposition operation
before any bytes were transferred. Only files opened for
read-write access showed significant non-sequential use.

I00,

8oi

Percent 601
of

Files 401

2oi

O"

- - - A 5

- - E3
........... C4

50 100 150 200
File Size (kbytes)

(a)

100•

80.
Percent •

of 60•
By tes "

Transferred ~0'

20.

0

- - - A5

50 100 150 200
File Size {kbytes)

(b)
Figure 2. Dynamic distribution of file sizes, measured
when files were closed. Figure (a) is a cumulative
distribution weighted by number of files. 80% of all file
accesses were to files less than I0 kbytes long; most of
the remaining 20% were to a few very large
administrative flies. Figure (b) is also cumulative but is
weighted by number of bytes transferred (only about
30% of all bytes were transferred to or from files less
than 10 kbytes long).

19

and other information. They are typically accessed by
positioning within the file and then reading or writing a
small amount of data.

The file sizes shown in Figure 2 are much smaller
than those measured for IBM systems in [71 and [11]. We
believe that this difference is due to the better support
provided in UNIX for short files, including hierarchical
directories and block-based disk allocation instead of
track-based allocation. Satyanarayanan 's file-size
measurements are roughly comparable to ours (about 50%
of all his files were less than 2500 bytes), even though his
measurements were made statically and his system did not
support hierarchical directories [10]. The measurements of
Lazowska et. al. are also very similar to ours [2].

Our last measurement of access patterns is displayed
in Figure 3. It shows that most files are open only a short
time: programs tend to open files, read or write their
contents, then close the files again very quickly. This
measurement is consistent with our previous observations:
if most files are short, and most are accessed as whole-file
transfers, then it shouldn' t take very long to complete
most of the accesses. On the other hand, there are a few
files that stay open for long periods of time, such as
temporary files used by the text editor•

5 . 3 . F i l e L i f e t i m e s

Both Satyanarayanan [10] and Smith [11] have
published measurements of file lifetimes {the intervals
between when files are wri t ten and they are overwri t ten or
deleted; this is actually the lifetime of the file's data, not
necessarily the lifetime of the file). In both cases the
measurements were made by sampling the "last-modified"
a n d " las t -examined" times of files on a disk, so they
describe only long-term behavior (a few days or months).
We used our trace data to study file lifetimes over much
shorter intervals.

Figure 4 shows the results, which are surprising in
two respects. First of all, most file lifetimes are very short:
80°~ of all new files are deleted or overwri t ten within
about 3 minutes of creation. The second unusual
characteristic of the data is the large concentration of
lifetimes around 3 minutes• 30-40v~ of all new- files have
lifetimes between 179 and 181 seconds• This concentration
is due to network daemons that update each of about 20

1 0 0

80

P e r c e n t 60
of

Files 40

20

0

/] - - - A5
- - E3
.......... C4

w i | | i | | w • |

.2 .4 . .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
Open Time (seconds)

F i g u r e 3. Distribution of times that files were open.
This is a cumulative distribution. For example, about
70-80% of all files were open less than .5 second.

host status files every three minutes. This feature is
peculiar to 4.2 BSD. However, even disregarding the files
with lifetimes around 3 minutes, 50-60% of the remaining
files have lifetimes less than 3 minutes and 30-40% of all
new information (counted by bytes) is overwri t ten within 3

minutes•
The results in Figure 4 were quite surprising to us,

but can be accounted for by temporary files. For example,
in program development the compiler generates an
assembler file which is deleted as soon as it has been
translated to machine code. In a CAD environment, a
circuit s imulator generates output listings that are
examined and then deleted before the next simulation run.
In a word-processing environment, printer spool files can
account for some of the short lifetimes.

Figure 4 includes only data writ ten to new files: files
that did not exist before or that were t runcated to zero
length after being opened. Although this includes most of
the data writ ten (refer back to Table V), it does n o t

include information writ ten to the middle or end of a n

existing file. Section 6 contains another lifetime
measurement that is more inclusive but reaches about the
same conclusion.

6 . B l o c k C a c h e S i m u l a t i o n s

In considering various designs for a network filing
system, one of the most interesting possible areas of
change is the cache of disk blocks. The UNIX file system

100.

80. ~ ~ = ~ ~ '~] ~ - -

P e r c e n t 60,
of . _ _ - - - A5

Files 40. ~ j - - - - E3
• • C4

20.

0 ' • w • i ,

1 0 0 200 300 400 500
Lifetime (seconds)

100,

80.
Percent "

or 60.
By tes "

Created 40.

60O

- - - A 5

- - E 3

. C 4

/ " " ~. ,..~- - ~

20. "

0 | ! | • i i

0 100 200 300 400 500 600
S e c o n d s

F i g u r e 4. Cumulative distributions of file lifetimes.
Figure (a) is weighted by number of files (about 80% of
all new files were deleted or completely overwritten in
less than 200 seconds). Figure (b) is weighted by the
size of the file (files deleted or overwritten in less than
200 seconds accounted for about 40% of all data written
to new files). The large jumps at 180 seconds are due to
network status d a e m o n s .

20

uses about 10% of main memory (200-400 kbytes) for a
c a c h e of recently-used disk blocks. This cache is
maintained in a least-recently-used fashion and results in a
substantial reduction in the number of disk operations.

For a network filing system with dedicated file servers
it seems reasonable to use almost all of the servers'
memory for disk caches; this could result in caches of
eight megabytes or more with today's memory technology,
and perhaps 32 or 64 megabytes in a few years. Although
the general benefits of block caches are already well-
known, there were a number of questions we wished to
answer:

• How do the benefits scale with the size of the cache?

* How should the cache be organized to maximize its
effectiveness?

• Can large block caches be used without risking large
information losses on server crashes?

6 . 1 . T h e C a c h e S i m u l a t o r

In order to answer these questions we wrote a
program to simulate the behavior of various kinds of
caches, using the trace data to drive the simulations. As
mentioned in Section 3, the trace data contains only
approximate timing information, which could conceivably
have biased the results of a simulation. Fortunately, the
inaccuracy in the trace times (a few seconds) is small in
comparison to typical cache lifetimes (a few minutes to a
few hours), so we doubt that it had much affect on the
results. For the measurements below the three traces
produced nearly indistinguishable results; only the results
from the A5 trace are reported.

In each of the simulations, the disk cache consisted of
a number of fixed-size blocks used to hold portions of files.
We used a least-recently-used algorithm for cache
replacement. When the trace indicated that a range of
bytes in a file was read or written, the range was first
divided up into one or more block accesses. For each
block access, the simulator checked to see if the block was
in the cache. If so, it was used from the cache. If not,
then the block was added to the cache, replacing the block
that had not been accessed for the longest time.

In evaluating the different caches, our principal metric
was the miss ratio, which is the ratio of disk I /O

operations to logical block accesses. The smaller the miss
ratio, the better. Disk accesses occurred in two ways in
the simulations. First, a disk access was necessary each
time a block was referenced that wasn't in the cache,
unless the block was about to be overwritten in its
entirety. Second, disk accesses were necessary to write
modified blocks back from the cache to disk. We
experimented with several different write policies, which
are discussed below.

In computing block accesses, we assumed that
programs made requests in units of the cache block size,
rather than as several smaller requests. In practice,
though, some programs make smaller requests than these,
resulting in lower miss ratios than we have reported (there
will be many more block accesses for the same amount of
data, but about the same number of disk I/Os).

6 . 2 . C a c h e S i z e a n d W r i t e P o l i c y

The simulations varied in three respects: cache size,
write policy, and block size. Figure 5 and Table VI show
the effect of varying the cache size and write policy with a
block size of 4096 bytes (the most common size in 4.2 BSD
UNIX systems). We tried four different write policies in
the simulations. The first write policy is write-through:
each time a block is modified in the cache, a disk access is
used to write the block through to disk. Write-through is
attractive because it ensures that the disk always contains
an up-to-date copy of each block. Unfortunately, about
one third of all block accesses were writes, so the miss
ratio was never lower than about 30%.

The caches were most effective with the policy we call
delayed-write (this policy is sometimes referred to as
"copy-back" or "write-back"). The delayed-write policy
waits to write a block to disk until the block is about to be
ejected from the cache. This resulted in much better
performance for large caches. With a cache size of 16
megabytes, miss ratios less than 10% occurred. The
improvement occurred because about 75% of the newly-
written blocks were overwritten or their files were deleted
before the blocks were ejected from the cache; these blocks
were never written to disk at all.

Unfortunately, a delayed-write policy may not be
practical because some blocks could reside in the cache a
long time before they are written to disk. For example,

lOO

Miss 60 .
Ratio .

(percent) 40
.... " ~ - ~ Write-Through

. " 30 Sec Flush
20 , - " 5 Min Flush

Delayed Write

0

0 1 2 3 4
Cache Size (Mbytes)

F i g u r e 5 . C a c h e miss ra t io as a f u n c t i o n of cache s ize and wr i t e pol icy , us ing the A5 t r a c e w i t h
a c a c h e b lock s ize of 4096 bytes .

21

Write-
Cache Size

Through

390 kbytes 57.6%
(UNIX)
1 Mbyte 45.1%

2 Mbytes 39.7%

4 Mbytes 36.5%

8 Mbytes 34.7%

16 Mbytes 33.5%

30 sec 5 min Delayed
Flush Flush Write

40.2% 45.0% 43.1%

36.6% 30.1% 25.0%

31.2% 24.3% 17.7%

28.0% 21.2% 13.5%

26.2% 19.3% 11.2%

25.0% 18.1% 0.6%

T a b l e VI. A tabular representation of the data from
Figure 5 (miss ratio as a function of cache size and write
policy for the A5 trace with 4090-byte cache blocks).

Block No 400 Kbyte
Size Cache Cache
1 kbytes
2 kbytes
4 kbytes
8 kbytes
16 kbytes
32 kbytes

1,432,179
925,934
623,573
527,634
481,052
461,976

562,492
365,806
268,864
259,941
280,068
307,002

2 Mbyte 4 Mbyte 8 Mbyte
Cache Cache Cache

280,056 227,299 194,724
165,312 129,654 110,309
110,182 8 4 , 1 6 4 69,651
90,539 6 5 , 3 0 2 51,635

103,223 6 3 , 3 3 0 47,626
156,523 8 2 , 3 5 0 51,883

Table VII. A tabular representation of the data
from Figure 6 (disk I/O's as a function of cache size
and block size). The first column gives the total
number of block accesses for each block size.

we found that with a 4 Mbyte cache, about 20% of all
blocks stay in the cache longer than 20 minutes. System
crashes could cause large amouhts of information to be
lost. We tried two write policies that were intermediate
between write-through and delayed-write. We call these
flush-back policies. With a flush-back policy the cache is
scanned at regular intervals: any blocks that have been
modified since the last scan are written to disk. If the
flush interval becomes very small then flush-back is
equivalent to write-through; if the flush interval becomes
very large then flush-back is equivalent to delayed-write.

Figure 5 shows two different flush-back intervals: 30
seconds and 5 minutes. For large caches, a 30-second
flush-back policy reduces the number of I/Os by about
25c~ and a 5-minute flush-back policy reduces the number
of I/Os by about 50%. This means that about 25% of
newly-written blocks are overwritten or deleted within 30
seconds and about 50% are overwritten or deleted within
5 minutes. These data provide another measurement of
the lifetime of information in files, and are similar to the
results of Figure 4.

6.3 . B l o c k S i z e

We also evaluated the effectiveness of different block
sizes. The original UNLL~ system used 512-byte blocks, but
the block size has grown since then to 1024 bytes in
AT&T's System V [1] and 4096 bytes in most 4.2 BSD

systems. Figure 6 and Table VII show the results of
varying the block size and cache size. For a 4-Mbyte
cache, a block size of 16 kbytes reduces disk accesses by
about 25% over a @kbyte block size and by a factor of 3
over l-kbyte blocks. Even for a cache size of 400 kbytes,
an 8-kbyte block size results in about 10% fewer disk I/Os
than a 4-kbyte block size and 60% fewer I/Os than a 1-
kbyte block size. This conclusion is similar .to the one
reached by Lazowska et. al. in [2]. For smaller caches,
larger block sizes are less beneficial because they result in
fewer blocks in the cache; most of the cache space is
wasted since short files only occupy the first portions of
their blocks.

Although large blocks are attractive for a cache, they
may result in wasted space on disk due to internal
fragmentation. Fortunately a scheme like the one in 4.2
BSD, which uses multiple block sizes on disk to avoid
wasted space for small files, works well in conjunction with
a fixed-block-size cache.

6 .4 . C o m p a r i s o n s

Typical 4.2 BSD systems run with disk block caches
containing about 100-200 blocks of different sizes, with a
total cache size of about 400 kbytes. The sync system call
is typically invoked every 30 seconds to flush the cache.
According to our simulations, this combination of cache
size and write policy should reduce disk accesses by about

Disk
I/Os

(xl000)

500

400

300

200

I00

0

0

j

i i l s i

4 8 12 16 20
Block Size (K)

• 400 KB Cache

i

24

.._. 2 MB Cache

4 MB Cache
• 8 MB Cache

i !

28 32

Figure 8. Disk traffic as a function of block size and cache size, for the A5 trace using the
delayed-write policy. Large block sizes work well for small caches, but they work even better for
large caches. For very large block sizes, the curves turn up because the cache has too few blocks
to function effectively as a cache.

22

a factor of two. However, Leffler et al. report a measured
cache miss ratio of only about 15% [4]. There are two
explanations for the discrepancy. First, there are many
programs that make I/O requests in units smaller than the
cache block size; this inflates the number of logical I/Os
and reduces the miss ratio. Second, the measurements in
[4] include block accesses for paging, directories, and file
descriptors, which we did not consider.

We ran a crude test to verify the hypothesis that
paging accesses also exhibit high locality. The trace data
include information about which files were executed as
programs; we simulated paging activity by forcing a
whole-file read to each program file at the time the
program was executed. We did not attempt to simulate
page-out activity, since [2] and [6] indicate that it rarely
happens. As Figure 7 shows, the simulated paging resulted
in degraded performance for small cache sizes (the large
program files increased the total working set of file
information), but improved miss ratios for large cache
sizes. This implies that the locality of program accesses is
at least as great as that of file data.

From this evidence we think that our miss ratio
estimates are likely to be upper bounds; the real benefits
of caches should be even better than our figures suggest.

7 . D o t h e R e s u l t s G e n e r a l i z e ?

A few of our results, such as the large number of files
with lifetimes around 3 minutes, are peculiar to 4.2 BSD.
However, we think that most of the conclusions will apply
across a wide range of personal workstations and
timesharing systems. We also think that the results will
apply to operating systems other than UNIX. For
example, Smith's disk cache study reaches conclusions
similar to ours [12], even though his study used IBM
mainframes and was based on physical disk blocks rather
than logical file accesses. Rodriguez-Rosell determined in
[9] that database systems also exhibit sequential access
patterns.

The generality of our conclusions is also supported by
the similarity of the results for the three different traces.
The results are similar in all three traces, even though one

1 0 0 .

80.

60-
Percent

40 "'~",., • Page-in simulated

\ "', - - - - Page-in ignored
"h

0 , n , . ' | '

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Cache Size (MB)

Figure 7. Miss ratios [4096.-byte blocks, delayed write,
trace A5) with paging behavior approximate(! by forcing
a whole-file read of each program that is executed.

of the traces (C3) was for a substantially different
application domain than the other two (computer-aided
design as opposed to program development).

8 . C o n c l u s i o n s

Our trace analysis of the 4.2 BSD file system has
three important overall results. First, it shows that
individual users don't use very much file data on average.
This suggests that network bandwidth will not be a
limiting factor in building network filesystems. Second,
the analysis shows that most file data is deleted or
replaced within a few minutes of creation. This is a key
reason for the success of large disk block caches. The
third overall result is that very large disk caches (many
megabytes) with very large blocks (16 kbytes) result in
very large reductions in disk I/O, and that occasional
flush-backs provide safety against crashes without
destroying the benefits of the large caches. As memory
sizes approach 100 megabytes, we think that disk caches
will become so effective that the whole role of magnetic
disks comes into question: could write-once optical disks
provide the same level of backup protection for less cost?

Our results also confirm several suppositions of
operating system folklore: most files accessed are short,
though long files account for a large fraction of the da£a
transferred; accesses tend to be highly sequential; and file
system activity is bursty.

Our final conclusion is that as block sizes become
larger and disk block caches become more and more
effective, I/O for things other than file data (paging,
directories, and file descriptors) begins to play a larger role
in determining overall file system performance. It appears
from our data that more than half of all disk block
references could come from these "other" accesses. There
are indications that the other accesses can also be handled
efficiently by caching, but more work is needed to
understand their importance and to evaluate mechanisms
for dealing with them.

9 . A c k n o w l e d g e m e n t s

We owe special thanks to Ik)b llenry, Mike Karels,
Brad Krebs, and Richard Newton for allowing us Io gather
tile trace data on their machines and for assisting us in
installing all instrmnented version of the kernel. Tile
kernel modifications were based on a Master's project by
Tibor Lukac [3]. Luis Felipe Cabrcra, Alan Smith, and tile
SOSP program committee provided helpful comments on
early drafts <>f the paper. This work was supported in
part. by the l)efeuse Advance<t Research Projects Agency
under Contract No. N00039-8,5-R-0269 and in part by tile
Nat tonal Science Foundation u n(ler grant 1';CS-8351961.

10. References

[1] Feder, J. "The Evolution of UNIX System
Performance." Bell Laboratories Technical Journal,
Vol. 63, No. 8, October 1984, pp. 1791-1814.

[2] Lazowska, E.D. et al. File Access Performance of
Diskless Workstations. Technical Report 84-06-01,
Depar.tment of Computer Science, University of
Washington, June 1984.

[3] Lukae, T. "A UNIX File System Logical I/O Trace
Package." M.S. Report, U.C. Berkeley, 1984.

[4] McKusick, M.K., Karels, M., and Leflter, S.
"Performance Improvements and Functional
Enhancements in 4.3 BSD." Proceedings of the 1985
Usenix Summer Conference, Portland, Oregon, June
1985, pp. 519-531.

[5] McKusick, M.K., Joy, W.N., Lefller, S.J., and Fabry,
R.S. "A Fast File System for UNIX." ACM
Transactions on Computer Systems, Vol. 2, No. 3,
August 1984, pp. 181-197.

[6] Nelson, M.N. and Duffy, J.A. Feasibility of Network
Paging and a Page Server Design. Term project, CS
262, Department of EECS, University of California,
Berkeley, May 1984.

[7] Porcar, J.M. File Migration in Distributed
Computer Systems. Ph.D. Dissertation, University of
California, Berkeley, July 1982.

[8] Ritchie, D.M. and Thompson, K. "The UNIX Time-
Sharing System." Communications of the ACM, Vol.
17, No. 7, July 1974, pp. 365-375.

[9] Rodriguez-Rosell, J. "Empirical Data Reference
Behavior- in Data Base Systems." IEEE Computer ,
November 1976, pp. 9-13.

[10] Satyanarayanan, M. "A Study of File Sizes and
Functional Lifetimes." Proc 8th Symposium on
Operating Systems Principles, 1981, pp. 96-108.

[11] Smith, A.J. "Analysis of Long Term File Reference
Patterns for Application to File Migration
Algorithms." IEEE Transactions on Software
Engineering. Vol. SE-7, No. 4, July, 1981, pp. 403-
417.

[12] Smith, A.J. "Disk Cache - - Miss Ratio Analysis and
Design Considerations." ACM Transactions on
Computer Systems, August 1985, pp. 161-203.

[13] Thompson, J. "File Deletion in The UNIX System:
Its Impact of File System Design and Analysis." CS
266 term project, Department of EECS, University of
California, Berkeley, April 1985.

24

