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A b s t r a c t  

We analyzed the UNIX 4.2 BSD file system by recording 
user-level activity in trace files and writing programs to 
analyze the traces. The  tracer did not record individual 
read and write operations, yet still provided tight bounds 
on what information was accessed and when. The trace 
analysis shows that  the average file system bandwidth 
needed per user is low (a few hundred bytes per second). 
Most of the files accessed are open only a short t ime and 
are accessed sequentially. Most new information is deleted 
or overwri t ten within a few minutes of its creation. We 
also wrote a simulator that  uses the traces to predict the 
performance of caches for disk blocks. The moderate-sized 
caches used in UNIX reduce disk traffic for file blocks by 
about 50%, but larger caches (several megabytes) can 
eliminate 90% or more of all disk traffic. With those large 
caches, large block sizes (16 kbytes or more) result in the 
fewest disk accesses. 

1. I n t r o d u c t i o n  

This paper describes a series of measurements made 
on the UNIX 4.2 BSD file system [5,8]. Most of the work 
was done in a series of term projects for a graduate course 
in operat ing systems at the University of California at 
Berkeley. Our goal was to collect information that would 
be useful in designing a shared file system for a network of 
personal workstations. We were interested in such 
questions as: 

• How much network bandwidth is needed to support  a 
diskless workstation? 

• What  are typical file access patterns (and what 
protocols will support those patterns best)? 

• How should disk block caches be organized and 
managed? 
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• How much of a performance advantage do such 
caches provide? 

We were unable to find answers to these questions in 
the literature, so we decided to instrument the 4.2 BSD 
system to collect information about file accesses. In order 
to reduce the size of the trace files and the impact of the 
tracer on its host systems, we did not record individual 
read and write requests. The  information that  we did 
collect allowed us to deduce the exact ranges of bytes 
accessed, although the access times were less precise than 
they would have been if we had logged reads and writes. 
Section 3 of this paper discusses the tracing technique and 
Section 4 describes the three systems we traced. 

We wrote two programs to process the trace files: a 
reference pattern analyzer and a block cache simulator. 
Table  I summarizes the most important  results. Section 5 
discusses the reference pattern analysis. Some of the 
conclusions are: individual users make only occasional 
(though bursty) use of the file system, and they need very 
little bandwidth on average (only a few hundred bytes per 
second per active user); files are usually open only a short 
time, and they tend to be read or writ ten sequentially in 
their entirety; non-sequential access is rare; most of the 
files that  are accessed are short; and most new files have 

On average, about 300-600 bytes/second of file data  
are read or writ ten by each active user. 

About  70% of all file accesses are whole-file transfers, 
and about 50% of all bytes are transferred in whole- 
file transfers. 

75% of all files are open less than .5 second, and 90% 
are open less than 10 seconds. 

About  20-30% of all newly-written information is 
deleted within 30 seconds, and about 50% is deleted 
within 5 minutes. 

A 4-Mbyte cache of disk blocks eliminates between 
65% and 90% of all disk accesses for file data  
(depending on the write policy). 

For a 400-kbyte disk cache, a block size of 8 kbytes 
results in the fewest number of disk accesses for file 
data. For  a 4-Mbyte cache, a 16-kbyte block size is 
optimal. 

Tab l e  I. Selected results. 
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short lifetimes (only a few minutes). 

Section 6 describes the second part  of the analysis, a 
series of disk-block cache simulations based on the trace 
data. The main conclusions are that  even moderate-sized 
disk block caches such as those used in UNIX (a few 
hundred kilobytes) can reduce disk traffic for file blocks by 
about a factor of two. But larger caches of several 
megabytes perform much better, reducing disk traffic by 
as much as 90%. With large caches and the delayed-write 
policy described in Section 6, many files will not be writ ten 
to disk at all: they will be deleted or overwritten while 
still in the cache. Large block sizes (8 or 16 kbytes) 
combined with large caches result in the greatest 
reductions in disk I /O.  Even for relatively small caches, 
large block sizes are effective in reducing disk I/O. 

2. P r e v i o u s  W o r k  

There has been very little empirical data  published on 
file system usage or performance. This is probably due to 
the difficulty of obtaining trace data, and also to the large 
volume of data that  is likely to result. The published 
studies are limited in scope, and most deal with older 
operating systems. As a consequence, the results may not 
be applicable in planning future ~ystems. 

For example, Smith studied the file access behavior of 
IBM mainframes in order to predict the effects of 
automatic file migration ]11]. He only considered files used 
by a particular interactive editor, which were mostly 
program source files. The data were gathered as a series 
of daily scans of the disk, so they do not include files 
whose lifetimes were less than a day. In another study, 
Porcar analyzed dynamic trace data  for files in an IBM 
batch environment  [7]. He considered only shared files, 
which accounted for less than 10% of all the files accessed 
in his system. Satyanarayanan analyzed file sizes and 
lifetimes on a PDP-10 system [10], but  the study was made 
statically by scanning the contents of disk storage at a 
fixed point in time. 

More recently, Smith used trace data  from IBM 
mainframes to predict the performance of disk caches [12]; 
his conclusions are similar to ours although he used 
different trace information (physical disk addresses, no 
information about files, transfer sizes or reading versus 
writing). Two other recent studies contain UNIX 
measurements that  partially overlap ours: Lazowska et al. 
analyzed block size tradeoffs and reported on the disk I /O 
required per user [2], and Leffler et al. reported on the 
effectiveness of current  UNIX disk caches [4]. Sections 5 
and 6 of this paper compare their results and ours. 

3. Gather ing  the  D a t a  

Our main concern in gathering file system trace 
information was the volume of data. We wished to gather 
data over several days to prevent temporary unusual  
activity from biasing the results. If we had at tempted to 
record all file-system activity, an enormous amount  of data 

would have been produced. For example, the traces for 
Smith's  cache study contained 1.5 gigabytes or more per 
day [12]. We feared that  the work involved in writing 
such a trace file would have consumed a substantial  
fraction of the CPU. It might have perturbed our results, 
and it certainly would have made us unpopular  with the 
systems' users. In addition, the volume of data would 
have been so great that  we could only have traced a few 
hours of activity before running out of space for the trace 
files. 

3.1.  No  Reads  and W r i t e s  

In order to reduce the volume of data, we decided to 
record file-system-related events at a logical level rather 
than a physical level, and not to record individual read 
and write requests. Table  II shows the events that  were 
logged. "Logical" level means that  information was 
recorded about files and ranges of bytes within files, not 
about physical disk blocks. There is no information in the 
traces about the locations of blocks on disk or the t iming 
of actual disk I/Os. Furthermore,  the traces do not 
contain any information about disk accesses for paging, file 
name lookup, or file descriptors (see Section 3.2 below). 

Once we decided to gather information at a logical 
level, we could take advantage of the fact that  file reading 

and writing in UNIX are implicitly sequential (a special 
system call must be used to change the access position 
within the file). This means that  read and write events 
need not be logged to determine which data were accessed. 
We recorded the current access position in the file when it 
was opened and closed, and also before and after each 
repositioning operation. This information completely 
identifies the areas of files that were read or written. 

The drawback of the no-read-write approach is that  it 
reduces the accuracy of times in the system: the open, 
close, and reposition events provide bounds on when bytes 
were actually transferred, but  these may be loose bounds if 
open files are idle for long periods. In all of our analyses, 
we "billed" each transfer at the time of the next close or 

System Call Information Recorded 

open and create time, open id, file id, user id, 
file size 

close time, open id, final position 

seek (reposition within time, open id, previous 
file) position, new position 

unlink (delete file) time, file id 

t runcate  (shorten file) time, file id, new length 

execve (load program) time, file id, user id, file size 

Table H. The events recorded by the trace package. 
Time is accurate to approximately 10 milliseconds. 
Open id is a unique identifier assigned to each "open" 
system call. It is used to avoid confusion between 
concurrent accesses to the same file. File id is unique to 
each file. User id identifies the account under which the 
operation was invoked. Poeition is the current access 
position in the file (i.e. the byte offset to/from which 
data will be transferred next). 
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reposition event for the file. When analyzing concurrent 
accesses to different files, the order in which we processed 
the data transfers may not be the same as the order in 
which reads and writes occurred. 

We had two hypotheses about usage patterns that led 
us to adopt the no-read-write approach in spite of its 
potential inaccuracy. First, we thought that most file 
system activity would be sequential, so that the no-read- 
write approach would reduce the volume of trace data 
substantially. Our experiences bear out this hypothesis. 
Second, we thought that most files would only be open a 
short time, so that the open and close events would 
provide tight bounds on the access times. This hypothesis 
is also supported by the data in Section 5. 

After collecting the trace data we measured the 
intervals between successive trace events for the same 
open file. These bound the times when data transfers 
actually occurred. 75% of the intervals were less than 0.5 
second, 90% were less than 10 seconds, and 99% were less 
than 30 seconds. The measurements in Sections 5 and 6 
were averaged over intervals of at least 10 seconds and 
often longer, so we do not believe that the time 
imprecision biased our results very much. A later study 
[13] suggests that no-read-write approach exaggerates 
slightly the burstiness of the system. This makes our 
performance numbers slightly pessimistic. For example, 
[13] concludes that actual cache miss ratios will be 2-3% 
lower than predicted by Section 6. 

3.2. Missing Data 

Our trace analyses consider both user- and system- 
initiated file access, but they examine only the actual bytes 
contained in files. We did not include paging activity, nor 
did we include the overhead I/O activity needed to 
interpret pathnames or to read and write file descriptors. 
The paragraphs below discuss these other factors 
individually. It appears that the other factors could result 
in as much disk activity as the logical file accesses that we 
measured in detail. Fortunately, the results presented in 
this paper are independent of the other factors, with the 
exception of the block cache simulations of Section 6. 

The first "other factor" is paging activity, which 
consists primarily of loading programs on demand from 
disk files into main memory. Paging to and from 
swapping store can also result in I/O activity but is rare in 
4.2 BSD systems (see [2] and [6]). We estimated the effects 
of paging by logging execve  system calls and recording the 
sizes of the files that were executed. The total number of 
bytes in such files ranged from 1.2 to 2 times the total 
number of bytes of logical file I/O, depending on the 
system measured. However, the actual paging I/O was 
probably less than this, for three reasons. First, UNIX 
provides shared code segments and will not re-read code 
pages if they are already in use by another process. 
Second, program files may contain large amounts of 
debugging information, which is never paged in. Third, 
files are paged in on demand, which means some pages 
may never be read. See Section 6 for an estimate of the 
effect of program page-in oll disk block caches. 

The second additional source of disk I/O consists of 
file descriptors (i-nodes), which map logical file blocks to 
disk blocks. UNIX maintains a main-memory cache for 
the i-nodes of all open files and many recently-used ones. 
We were not able to measure the effectiveness of this 
cache. In the (unlikely) worst case, i-node transfers could 
result in more disk I/O than the actual file blocks (for 
example, access to a small file might consist of reading the 
i-node on file open, reading or writing one file block, then 
writing the i-node on file close). 

The third additional source of disk I/O is the 
directories that must be examined when opening files. 
This results in a minimum of two block accesses for each 
element in a file's pathname (one for the directory's 
descriptor and one for the contents of the directory). 
However, 4.2 BSD contains a directory cache to hold 
recently-used entries. Leffter et al. report that the 
directory cache achieves an 85% hit ratio [4]. 

4. The Traced Systems  

We collected trace data on three different systems, all 
timeshared VAX-II/780s in the Department of Electrical 
Engineering and Computer Sciences at U.C. Berkeley. 
The machines' names are "Ucbarpa", "Ucbernie", and 

Trace A5 E3 C4 
Duration (hours) 
Number of trace records 
Size of trace file {Mbytes) 
Total data transferred 
to/from files (Mbytes) 
create events 
open events 
close events 
seek events 
unlink events 
truncate events 
execve 

38,142 
320,065 
358,191 
185,709 
37,780 

1,485 
60,712 

79.4 
1,017,464 

26 

1220 

(3.8%) 
(31.9%) 
(35.7%} 
(18.5%) 
(3.8%) 
(0.1%) 
(6.1%) 

65.7 
921,526 

23 

1196 

37,172 
280,579 
317,763 
169,714 
36,517 

2,070 
64,732 

72.5 
733,403 

18 

1030 

(4.1%) 29,462 
(30.9%) 203,613 
{35.0%) 233,078 
(18.7%) 189,245 

(4.0%) 28,373 
(0.2%} 1,115 
(7.1%) 37,704 

(4.1%) 
{28.2%) 
(32.3%) 
(26.2%) 
(3.9%) 
(0.1%) 
(5.2%) 

Table llI. Overall statistics for the three traces. The percentages are expressed as fractions of 
a]J events in that trace. 
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"Ucbcad", and the traces we used for analysis are called 
"A5", "E3", and "C4", respectively. Ucbarpa and 
Ucbernie are both used primarily by graduate students 
alid staff for program development and document 
formatting. Ucbernie supl>orts a substantial  a lnount  of 
secretarial and administrative work. Ucbarpa has 4 
Mbytes of primary memory and Ucbernie has 8 Mbytes. 
The third machine, Ucbcad, is used primarily by electrical 
engineering graduate students to run computer-aided 
design tools for integrated circuits. Circuit simulators, 
layout editors, design-rule checkers, and circuit extractors 
are commonly-used programs on this machine. Ucbead 
has 16 Mbytes of primary memory. We included Ucbead 
in the analysis to see if CAD programs would show 
different file system behavior from program development 
and word-processing programs. The results in Sections 5 
and 6 show little difference between the three machines. 

Table III gives summary information about the three 
traces. Each was gathered over a period of 2-3 days 
during the busiest part of the work week. During the peak 
hours of the day, about 2-3 files were opened per second, 
on average. For the A5 and E3 traces, the UNIX load 
average was typically 5-10 during the afternoon, with a 
few dozen users active at any given time. For the C4 
trace the load average rarely exceeded 2 or 3, with around 
ten active users at a time. About  5000-6000 bytes of trace 
data per minute  were collected, on average. Although the 
worst-case rate was somewhat higher than this, there was 
no noticeable degradation in the performance of the 
systems while the traces were being gathered. 

5. How the  Fi le  S y s t e m  is Used 

Our trace analysis was divided up into two parts. 
The first part contains measurements of current UNLX file 
system usage. They are presented in this section under 
three general categories: system activity (how much the 

file system is used), access patterns (sequentiality, dynamic 
file sizes, and open times), and file lifetimes. The second 
part of the analysis, examining the effectiveness of disk 
block caches, is presented in Section 6. 

5.1.  S y s t e m  A c t i v i t y  

The first set of measurements concerns overall system 
activity in terms of users, active files, and bytes 
transferred; see Table  IV. The most interesting 
measurement  for us is the throughput  per active user. We 
consider a user to be active if he or she has any file system 
activity in a ten-minute  interval. Averaged over ten- 
minute  intervals, active users tend to transfer only a few 
hundred bytes of file data  per second. If only ten-second 
intervals are considered, users active in these intervals 
tend to have much higher transfer rates (a few kilobytes 
per second per user) but  there are fewer active users. In 
[2] Lazowska et al. reported about 4 kbytes of I /O  per 
second per active user. This is somewhat higher than our 
figure, but  their measurement  includes additional overhead 
not present in our analysis, such as paging I /O  and 
directory searches, and was measured for a single user at a 
time of heavy usage. 

The low average throughput  per user suggests that  a 
network-based file system using a single 10 Mbit /second 
network can support  many hundreds of users without 
overloading the network. Transfer rates tended to be 
relatively bursty in our measurements,  with rates as high 
as 100 kbytes/sec recorded for some users in some 
intervals, but  even so a 10 Mbit /second network could 
support several such bursts simultaneously without 
difficulty. 

5.2.  Fi le  Access  P a t t e r n s  

Table  V contains our measurements of sequentiality, 
which confirm the widely-held belief that  file access is 
highly sequential. More than 90% of all files are processed 

A5 E3 C4 

Average throughput  (bytes/sec. 4200 5080 3940 
over life of trace) 

Total  number  of different users 
over life of-trace 137 331 I69 

i 
Greatest  number  of active users 

29 44 20 in a 10 minute  interval 

Average number  of active users 
11.7 (4- 5.8) 18.7 (4- 10.1) 7.4 {4-4.1) (over 10 minute  intervals) 

Average throughput  per active user 
370 {4- 290) 280 (4- 190) 570 (4-760) (bytes/sec. over 10 minute  intervals) 

Average number  of active users 
2.5 (4- 1.5) 3.3 (4- 2.0) 1.7 (4-1.1) 

(over 10 second intervals) I 
Average throughput per active user I 

1490 (4- 10000) 1380 (4- 4100) i 1790 (4- 7400) (bytes/sec. over 10 second intervals) 

Table IV. Some measurements of system activity. The numbers in parentheses are standard 
deviations. A user is active in an interval if there are any trace events for that user in the 
interval. For example, the lower-right entry in the table means that if a user was active in a 10- 
second interval, he/she requested 1790 bytes of file data per second during that interval, on 
average. 
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sequentially, and more than two thirds of file accesses are 
whole-file transfers. Of those accesses that  are not whole- 
file transfers, most consist of a single reposition to a 
particular position in the file, followed by a transfer of 
data to or from that  position without any additional 
repositioning. This mode of operation is used, for 
example, to append new messages onto existing mailbox 
files. 

Figure 1 measures the lengths of sequential runs in 
two ways. Figure l(a) shows that  most sequential runs are 
short, rarely more than a few kbytes in length. This is 
because most files are short (see below); there simply isn't  
much" data to transfer. On the other hand, Figure l(b) 
shows that  long sequential runs account for much of the 
data transferred: 30% of all bytes are read or written in 
sequential runs of 25 kbytes or more. 

Figure 2 shows the dynamic distribution of file 
accesses by size at close. Most of the files accessed are 
short. Short files are used extensively in UNIX for 
directories, command files, memos, circuit description 
decks, C definition files, etc. The figure also shows that  a 
few very large administrative files account for almost 20% 
of all file accesses. These files are each around 1 Mbyte in 
size and are used for network tables, a log of all logins, 
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Kilobytes Transferred 

(b) 

Figure  1. Cumulative distributions of the lengths of 
sequential runs (number of bytes transferred before 
repositioning or closing the file). Figure (a) is weighted 
by number of runs: about 70.-75% of all sequential runs 
were less than 4000 bytes in length. Jumps occur at 
1024 bytes and 4096 bytes because user-level I/O 
routines round up transfers to these sizes. Figure (b) is 
weighted by the number of bytes transferred: about 30- 
40% of all bytes were transferred in runs longer than 
25000 bytes. 

Whole-file read transfers 
(% of all read-only accesses) 

A5 
168,127 
(69%) 

E3 
131,408 
(63%) 

Whole-file write transfers 78,542 67,340 
(% of all write-only accesses) (82%) (81%) 

Data transferred in 664 592 
whole-file transfers (Mbytes) (54%) (49%) 

Sequential read-only accesses 221,136 189,734 
(% of all read-only accesses) (92%) (91%) 

Sequential write-only accesses 92,954 79,847 
(% of all write-only accesses) (97%) (96%) 

Sequential read-write accesses 4215 5459 
(% of all read-write accesses) (19%) (21%) 

Data transferred 801 804 
sequentially (Mbytes) (66%) (67%) 

C4 
93,469 
(70%) 

60,363 
(85%) 

547 
(53%) 

122,557 
(93%) 

76,425 
(98%) 

8163 
(35%) 

703 
(68%) 

Tab l e  V. Data tends to be transferred sequentially. 
Whole-file transfers were those where the file was read 
or written sequentially from beginning to end. 
Sequential accesses include whole-file transfers plus 
those where there was an initial reposition operation 
before any bytes were transferred. Only files opened for 
read-write access showed significant non-sequential use. 
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of 60• 
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(b) 
Figure  2. Dynamic distribution of file sizes, measured 
when files were closed. Figure (a) is a cumulative 
distribution weighted by number of files. 80% of all file 
accesses were to files less than I0 kbytes long; most of 
the remaining 20% were to a few very large 
administrative flies. Figure (b) is also cumulative but is 
weighted by number of bytes transferred (only about 
30% of all bytes were transferred to or from files less 
than 10 kbytes long). 
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and other  information. They are typically accessed by 
positioning within the file and then reading or writing a 
small amount  of data. 

The  file sizes shown in Figure 2 are much smaller 
than those measured for IBM systems in [71 and [11]. We 
believe that  this difference is due to the better support  
provided in UNIX for short files, including hierarchical 
directories and block-based disk allocation instead of 
track-based allocation. Satyanarayanan 's  file-size 
measurements  are roughly comparable to ours (about 50% 
of all his files were less than 2500 bytes), even though his 
measurements  were made statically and his system did not 
support  hierarchical directories [10]. The  measurements of 
Lazowska et. al. are also very similar to ours [2]. 

Our last measurement  of access patterns is displayed 
in Figure 3. It shows that  most files are open only a short 
time: programs tend to open files, read or write their 
contents, then close the files again very quickly. This 
measurement  is consistent with our previous observations: 
if most files are short, and most are accessed as whole-file 
transfers, then it shouldn' t  take very long to complete 
most of the accesses. On the other  hand, there are a few 
files that  stay open for long periods of time, such as 
temporary files used by the text editor• 

5 . 3 .  F i l e  L i f e t i m e s  

Both Satyanarayanan [10]  and Smith [11]  have 
published measurements  of file lifetimes {the intervals 
between when files are wri t ten and they are overwri t ten or 
deleted; this is actually the lifetime of the file's data, not 
necessarily the lifetime of the file). In both cases the 
measurements  were made by sampling the "last-modified" 
a n d  " las t -examined" times of files on a disk, so they 
describe only long-term behavior (a few days or months). 
We used our trace data  to study file lifetimes over much 
shorter intervals. 

Figure 4 shows the results, which are surprising in 
two respects. First  of all, most file lifetimes are very short: 
80°~ of all new files are deleted or overwri t ten within 
about  3 minutes of creation. The  second unusual 
characteristic of the data  is the large concentration of 
lifetimes around 3 minutes• 30-40v~ of all new- files have 
lifetimes between 179 and 181 seconds• This concentration 
is due to network daemons that  update each of about 20 
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F i g u r e  3. Distribution of times that files were open. 
This is a cumulative distribution. For example, about 
70-80% of all files were open less than .5 second. 

host status files every three minutes. This feature is 
peculiar to 4.2 BSD. However, even disregarding the files 
with lifetimes around 3 minutes, 50-60% of the remaining 
files have lifetimes less than 3 minutes and 30-40% of all 
new information (counted by bytes) is overwri t ten within 3 

minutes• 
The  results in Figure 4 were quite surprising to us, 

but  can be accounted for by temporary  files. For  example, 
in program development  the compiler generates an 
assembler file which is deleted as soon as it has been 
translated to machine code. In a CAD environment,  a 
circuit s imulator generates output  listings that  are 
examined and then deleted before the next simulation run. 
In a word-processing environment,  printer  spool files can 
account for some of the short lifetimes. 

Figure 4 includes only data  writ ten to new files: files 
that  did not exist before or that  were t runcated to zero 
length after being opened. Although this includes most of 
the data  writ ten (refer back to Table  V), it does n o t  

include information writ ten to the middle or end of a n  

existing file. Section 6 contains another lifetime 
measurement  that  is more inclusive but reaches about  the 
same conclusion. 

6 .  B l o c k  C a c h e  S i m u l a t i o n s  

In considering various designs for a network filing 
system, one of the most interesting possible areas of 
change is the cache of disk blocks. The  UNIX file system 
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F i g u r e  4. Cumulative distributions of file lifetimes. 
Figure (a) is weighted by number of files (about 80% of 
all new files were deleted or completely overwritten in 
less than 200 seconds). Figure (b) is weighted by the 
size of the file (files deleted or overwritten in less than 
200 seconds accounted for about 40% of all data written 
to new files). The large jumps at 180 seconds are due to 
network status d a e m o n s .  
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uses about 10% of main memory (200-400 kbytes) for a 
c a c h e  of recently-used disk blocks. This cache is 
maintained in a least-recently-used fashion and results in a 
substantial reduction in the number of disk operations. 

For a network filing system with dedicated file servers 
it seems reasonable to use almost all of the servers' 
memory for disk caches; this could result in caches of 
eight megabytes or more with today's memory technology, 
and perhaps 32 or 64 megabytes in a few years. Although 
the general benefits of block caches are already well- 
known, there were a number of  questions we wished to 
answer: 

• How do the benefits scale with the size of the cache? 

* How should the cache be organized to maximize its 
effectiveness? 

• Can large block caches be used without risking large 
information losses on server crashes? 

6 . 1 .  T h e  C a c h e  S i m u l a t o r  

In order to answer these questions we wrote a 
program to simulate the behavior of various kinds of 
caches, using the trace data to drive the simulations. As 
mentioned in Section 3, the trace data contains only 
approximate timing information, which could conceivably 
have biased the results of a simulation. Fortunately, the 
inaccuracy in the trace times (a few seconds) is small in 
comparison to typical cache lifetimes (a few minutes to a 
few hours), so we doubt that it had much affect on the 
results. For the measurements below the three traces 
produced nearly indistinguishable results; only the results 
from the A5 trace are reported. 

In each of the simulations, the disk cache consisted of 
a number of fixed-size blocks used to hold portions of files. 
We used a least-recently-used algorithm for cache 
replacement. When the trace indicated that a range of 
bytes in a file was read or written, the range was first 
divided up into one or more block accesses. For each 
block access, the simulator checked to see if the block was 
in the cache. If so, it was used from the cache. If not, 
then the block was added to the cache, replacing the block 
that had not been accessed for the longest time. 

In evaluating the different caches, our principal metric 
was the miss ratio, which is the ratio of disk I /O 

operations to logical block accesses. The smaller the miss 
ratio, the better. Disk accesses occurred in two ways in 
the simulations. First, a disk access was necessary each 
time a block was referenced that wasn't in the cache, 
unless the block was about to be overwritten in its 
entirety. Second, disk accesses were necessary to write 
modified blocks back from the cache to disk. We 
experimented with several different write policies, which 
are discussed below. 

In computing block accesses, we assumed that 
programs made requests in units of the cache block size, 
rather than as several smaller requests. In practice, 
though, some programs make smaller requests than these, 
resulting in lower miss ratios than we have reported (there 
will be many more block accesses for the same amount of 
data, but about the same number of disk I/Os). 

6 . 2 .  C a c h e  S i z e  a n d  W r i t e  P o l i c y  

The simulations varied in three respects: cache size, 
write policy, and block size. Figure 5 and Table VI show 
the effect of varying the cache size and write policy with a 
block size of 4096 bytes (the most common size in 4.2 BSD 
UNIX systems). We tried four different write policies in 
the simulations. The first write policy is write-through: 
each time a block is modified in the cache, a disk access is 
used to write the block through to disk. Write-through is 
attractive because it ensures that the disk always contains 
an up-to-date copy of each block. Unfortunately, about 
one third of all block accesses were writes, so the miss 
ratio was never lower than about 30%. 

The caches were most effective with the policy we call 
delayed-write (this policy is sometimes referred to as 
"copy-back" or "write-back"). The delayed-write policy 
waits to write a block to disk until the block is about to be 
ejected from the cache. This resulted in much better 
performance for large caches. With a cache size of 16 
megabytes, miss ratios less than 10% occurred. The 
improvement occurred because about 75% of the newly- 
written blocks were overwritten or their files were deleted 
before the blocks were ejected from the cache; these blocks 
were never written to disk at all. 

Unfortunately, a delayed-write policy may not be 
practical because some blocks could reside in the cache a 
long time before they are written to disk. For example, 

lOO 

Miss 60 .  
Ratio . 

(percent) 40 . . . . .  
.... " ~ -  ~ Write-Through 

. . . . . . . . . .  " . . . . . . . . . . . . . .  30 Sec Flush 
20 ,  - " .............. 5 Min Flush 

Delayed Write  

0 

0 1 2 3 4 
Cache Size (Mbytes) 

F i g u r e  5 .  C a c h e  miss  ra t io  as a f u n c t i o n  of  cache  s ize  and  wr i t e  pol icy ,  us ing  the  A5  t r a c e  w i t h  
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Write- 
Cache Size 

Through 

390 kbytes 57.6% 
(UNIX) 
1 Mbyte 45.1% 

2 Mbytes 39.7% 

4 Mbytes 36.5% 

8 Mbytes 34.7% 

16 Mbytes 33.5% 

30 sec 5 min Delayed 
Flush Flush Write 

40.2% 45.0% 43.1% 

36.6% 30.1% 25.0% 

31.2% 24.3% 17.7% 

28.0% 21.2% 13.5% 

26.2% 19.3% 11.2% 

25.0% 18.1% 0.6% 

T a b l e  VI. A tabular representation of the data from 
Figure 5 (miss ratio as a function of cache size and write 
policy for the A5 trace with 4090-byte cache blocks). 

Block No 400 Kbyte 
Size Cache Cache 
1 kbytes 
2 kbytes 
4 kbytes 
8 kbytes 
16 kbytes 
32 kbytes 

1,432,179 
925,934 
623,573 
527,634 
481,052 
461,976 

562,492 
365,806 
268,864 
259,941 
280,068 
307,002 

2 Mbyte 4 Mbyte 8 Mbyte 
Cache Cache Cache 

280,056 227,299 194,724 
165,312 129,654 110,309 
110,182 8 4 , 1 6 4  69,651 
90,539 6 5 , 3 0 2  51,635 

103,223 6 3 , 3 3 0  47,626 
156,523 8 2 , 3 5 0  51,883 

Table  VII. A tabular representation of the data 
from Figure 6 (disk I/O's as a function of cache size 
and block size). The first column gives the total 
number of block accesses for each block size. 

we found that with a 4 Mbyte cache, about 20% of all 
blocks stay in the cache longer than 20 minutes. System 
crashes could cause large amouhts of information to be 
lost. We tried two write policies that were intermediate 
between write-through and delayed-write. We call these 
flush-back policies. With a flush-back policy the cache is 
scanned at regular intervals: any blocks that have been 
modified since the last scan are written to disk. If the 
flush interval becomes very small then flush-back is 
equivalent to write-through; if the flush interval becomes 
very large then flush-back is equivalent to delayed-write. 

Figure 5 shows two different flush-back intervals: 30 
seconds and 5 minutes. For large caches, a 30-second 
flush-back policy reduces the number of I/Os by about 
25c~ and a 5-minute flush-back policy reduces the number 
of I/Os by about 50%. This means that about 25% of 
newly-written blocks are overwritten or deleted within 30 
seconds and about 50% are overwritten or deleted within 
5 minutes. These data provide another measurement of 
the lifetime of information in files, and are similar to the 
results of Figure 4. 

6.3 .  B l o c k  S i z e  

We also evaluated the effectiveness of different block 
sizes. The original UNLL~ system used 512-byte blocks, but 
the block size has grown since then to 1024 bytes in 
AT&T's System V [1] and 4096 bytes in most 4.2 BSD 

systems. Figure 6 and Table VII show the results of 
varying the block size and cache size. For a 4-Mbyte 
cache, a block size of 16 kbytes reduces disk accesses by 
about 25% over a @kbyte block size and by a factor of 3 
over l-kbyte blocks. Even for a cache size of 400 kbytes, 
an 8-kbyte block size results in about 10% fewer disk I/Os 
than a 4-kbyte block size and 60% fewer I/Os than a 1- 
kbyte block size. This conclusion is similar .to the one 
reached by Lazowska et. al. in [2]. For smaller caches, 
larger block sizes are less beneficial because they result in 
fewer blocks in the cache; most of the cache space is 
wasted since short files only occupy the first portions of 
their blocks. 

Although large blocks are attractive for a cache, they 
may result in wasted space on disk due to internal 
fragmentation. Fortunately a scheme like the one in 4.2 
BSD, which uses multiple block sizes on disk to avoid 
wasted space for small files, works well in conjunction with 
a fixed-block-size cache. 

6 .4 .  C o m p a r i s o n s  

Typical 4.2 BSD systems run with disk block caches 
containing about 100-200 blocks of different sizes, with a 
total cache size of about 400 kbytes. The sync system call 
is typically invoked every 30 seconds to flush the cache. 
According to our simulations, this combination of cache 
size and write policy should reduce disk accesses by about 
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large caches. For very large block sizes, the curves turn up because the cache has too few blocks 
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a factor of two. However, Leffler et al. report a measured 
cache miss ratio of only about 15% [4]. There are two 
explanations for the discrepancy. First, there are many 
programs that make I/O requests in units smaller than the 
cache block size; this inflates the number of logical I/Os 
and reduces the miss ratio. Second, the measurements in 
[4] include block accesses for paging, directories, and file 
descriptors, which we did not consider. 

We ran a crude test to verify the hypothesis that 
paging accesses also exhibit high locality. The trace data 
include information about which files were executed as 
programs; we simulated paging activity by forcing a 
whole-file read to each program file at the time the 
program was executed. We did not attempt to simulate 
page-out activity, since [2] and [6] indicate that it rarely 
happens. As Figure 7 shows, the simulated paging resulted 
in degraded performance for small cache sizes (the large 
program files increased the total working set of file 
information), but improved miss ratios for large cache 
sizes. This implies that the locality of program accesses is 
at least as great as that of file data. 

From this evidence we think that our miss ratio 
estimates are likely to be upper bounds; the real benefits 
of caches should be even better than our figures suggest. 

7 .  D o  t h e  R e s u l t s  G e n e r a l i z e ?  

A few of our results, such as the large number of files 
with lifetimes around 3 minutes, are peculiar to 4.2 BSD. 
However, we think that most of the conclusions will apply 
across a wide range of personal workstations and 
timesharing systems. We also think that the results will 
apply to operating systems other than UNIX. For 
example, Smith's disk cache study reaches conclusions 
similar to ours [12], even though his study used IBM 
mainframes and was based on physical disk blocks rather 
than logical file accesses. Rodriguez-Rosell determined in 
[9] that database systems also exhibit sequential access 
patterns. 

The generality of our conclusions is also supported by 
the similarity of the results for the three different traces. 
The results are similar in all three traces, even though one 
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Figure 7. Miss ratios [4096.-byte blocks, delayed write, 
trace A5) with paging behavior approximate(! by forcing 
a whole-file read of each program that is executed. 

of the traces (C3) was for a substantially different 
application domain than the other two (computer-aided 
design as opposed to program development). 

8 .  C o n c l u s i o n s  

Our trace analysis of the 4.2 BSD file system has 
three important overall results. First, it shows that 
individual users don't use very much file data on average. 
This suggests that network bandwidth will not be a 
limiting factor in building network filesystems. Second, 
the analysis shows that most file data is deleted or 
replaced within a few minutes of creation. This is a key 
reason for the success of large disk block caches. The 
third overall result is that very large disk caches (many 
megabytes) with very large blocks (16 kbytes) result in 
very large reductions in disk I/O, and that occasional 
flush-backs provide safety against crashes without 
destroying the benefits of the large caches. As memory 
sizes approach 100 megabytes, we think that disk caches 
will become so effective that the whole role of magnetic 
disks comes into question: could write-once optical disks 
provide the same level of backup protection for less cost? 

Our results also confirm several suppositions of 
operating system folklore: most files accessed are short, 
though long files account for a large fraction of the da£a 
transferred; accesses tend to be highly sequential; and file 
system activity is bursty. 

Our final conclusion is that as block sizes become 
larger and disk block caches become more and more 
effective, I/O for things other than file data (paging, 
directories, and file descriptors) begins to play a larger role 
in determining overall file system performance. It appears 
from our data that more than half of all disk block 
references could come from these "other" accesses. There 
are indications that the other accesses can also be handled 
efficiently by caching, but more work is needed to 
understand their importance and to evaluate mechanisms 
for dealing with them. 

9 .  A c k n o w l e d g e m e n t s  

We owe special thanks to Ik)b llenry, Mike Karels, 
Brad Krebs, and Richard Newton for allowing us Io gather 
tile trace data on their machines and for assisting us in 
installing all instrmnented version of the kernel. Tile 
kernel modifications were based on a Master's project by 
Tibor Lukac [3]. Luis Felipe Cabrcra, Alan Smith, and tile 
SOSP program committee provided helpful comments on 
early drafts <>f the paper. This work was supported in 
part. by the l)efeuse Advance<t Research Projects Agency 
under Contract No. N00039-8,5-R-0269 and in part by tile 
Nat tonal Science Foundation u n(ler grant 1';CS-8351961. 



10. References 

[1] Feder, J. "The Evolution of UNIX System 
Performance." Bell Laboratories Technical Journal, 
Vol. 63, No. 8, October 1984, pp. 1791-1814. 

[2] Lazowska, E.D. et al. File Access Performance of 
Diskless Workstations. Technical Report 84-06-01, 
Depar.tment of Computer Science, University of 
Washington, June 1984. 

[3] Lukae, T. "A UNIX File System Logical I/O Trace 
Package." M.S. Report, U.C. Berkeley, 1984. 

[4] McKusick, M.K., Karels, M., and Leflter, S. 
"Performance Improvements and Functional 
Enhancements in 4.3 BSD." Proceedings of the 1985 
Usenix Summer Conference, Portland, Oregon, June 
1985, pp. 519-531. 

[5] McKusick, M.K., Joy, W.N., Lefller, S.J., and Fabry, 
R.S. "A Fast File System for UNIX." ACM 
Transactions on Computer Systems, Vol. 2, No. 3, 
August 1984, pp. 181-197. 

[6] Nelson, M.N. and Duffy, J.A. Feasibility of Network 
Paging and a Page Server Design. Term project, CS 
262, Department of EECS, University of California, 
Berkeley, May 1984. 

[7] Porcar, J.M. File Migration in Distributed 
Computer Systems. Ph.D. Dissertation, University of 
California, Berkeley, July 1982. 

[8] Ritchie, D.M. and Thompson, K. "The UNIX Time- 
Sharing System." Communications of the ACM, Vol. 
17, No. 7, July 1974, pp. 365-375. 

[9] Rodriguez-Rosell, J. "Empirical Data Reference 
Behavior- in Data Base Systems." IEEE Computer , 
November 1976, pp. 9-13. 

[10] Satyanarayanan, M. "A Study of File Sizes and 
Functional Lifetimes." Proc 8th Symposium on 
Operating Systems Principles, 1981, pp. 96-108. 

[11] Smith, A.J. "Analysis of Long Term File Reference 
Patterns for Application to File Migration 
Algorithms." IEEE Transactions on Software 
Engineering. Vol. SE-7, No. 4, July, 1981, pp. 403- 
417. 

[12] Smith, A.J. "Disk Cache - -  Miss Ratio Analysis and 
Design Considerations." ACM Transactions on 
Computer Systems, August 1985, pp. 161-203. 

[13] Thompson, J. "File Deletion in The UNIX System: 
Its Impact of File System Design and Analysis." CS 
266 term project, Department of EECS, University of 
California, Berkeley, April 1985. 

24 


