
Optimising Compilers Exercise Sheet 2

Optimising Compilers Exercise Sheet 2

The purpose of this exercise sheet is to practise register allocation, strength reduction, static
single assignment, abstract interpretation and strictness analysis.

Questions

1. (a) Briefly describe the concept of abstract interpretation, making particular mention of
safety.

Consider a form of abstract interpretation in which our abstraction function captures the
possible intervals of integer arithmetic. For example given a variable x the abstraction
function α returns the interval [lx, hx] where lx is the lowest possible value of x and hx

is the highest possible value of x. For variables x and y the following properties hold
for our abstraction function:

f(x+ y) = [lx + ly, hx + hy]

f(x− y) = [lx − hy, hx − ly]

(b) Given the following function calculate the interval of its return value in terms of the
intervals of x and y.

int g(x, y) {
int a = x-y;
int b = x+x;
return b+a;

}

(c) An abstract interpretation of a program containing the function g ascertains the interval
of the parameters to g as α(x) = [5, 10] and α(y) = [0, 2]. Given this information can g
return 0? Give the interval of g.

2. (a) Explain the notion of a 3-argument function being strict in its second parameter, con-
sidering both mathematical view of functions (an extra value ⊥ representing nontermi-
nation), and the operational view of looping behaviour.

(b) Do the functions f(x, y) = f(x, y) and g(x, y) = x + y have different strictness? Do
they allow different strictness optimisations? Explain any differences between ‘strict’ in
a parameter, and needing to evaluate it.

Note: f(x, y) = f(x, y) is to be understood as a recursive function.

(c) Give the strictness function for

f(x, y, z) = if x = 0 then y else y + z

and justify it.

(d) Consider a weaker form of strictness analysis where the abstract value of an n-argument
function is just an n-argument bit vector where bit k is 1 if and only if the concrete
function is strict in parameter k. Why is this weaker? Give a program for which
strictness optimisation optimises a parameter to call-by-value but which this weaker
analysis fails to optimise.

A. Mycroft, D. Orchard, T. Petriček, R. Urma, T. Kohn, T. Jones 1



Optimising Compilers Exercise Sheet 2

3. (a) Describe the purpose of register allocation and how graph colouring can help.

(b) Describe a possible downside of a graph colouring approach in the context of JIT com-
pilers.

(c) Research an alternative register allocation algorithm (hint: linear scan) and briefly
contrast it with the graph colouring approach.

Suggested past exam questions

2002 Paper 7 Question 4

2004 Paper 8 Question 7

2005 Paper 8 Question 7 Part (b)

Relevant past exam questions

This section contains links to all past exam questions relevant to the topics covered in this
supervision sheet. Note that some questions appear under multiple headings and / or on multiple
exercise sheets when they cover more than one topic.

Register allocation and clash graphs

• 2017 Paper 9 Question 10

• 2016 Paper 7 Question 12

• 2009 Paper 7 Question 12

• 2005 Paper 8 Question 7

• 2002 Paper 7 Question 4

• 1996 Paper 8 Question 7

Code motion

• 2021 Paper 9 Question 12

• 2004 Paper 8 Question 7

Static single assignment, strength reduction

• 2019 Paper 9 Question 11

• 2015 Paper 7 Question 11

• 2013 Paper 9 Question 9

• 2004 Paper 8 Question 7

• 2001 Paper 9 Question 7

• 1999 Paper 7 Question 4

A. Mycroft, D. Orchard, T. Petriček, R. Urma, T. Kohn, T. Jones 2

https://www.cl.cam.ac.uk/tripos/y2002p7q4.pdf
https://www.cl.cam.ac.uk/tripos/y2004p8q7.pdf
https://www.cl.cam.ac.uk/tripos/y2005p8q7.pdf
https://www.cl.cam.ac.uk/tripos/y2017p9q10.pdf
https://www.cl.cam.ac.uk/tripos/y2016p7q12.pdf
https://www.cl.cam.ac.uk/tripos/y2009p7q12.pdf
https://www.cl.cam.ac.uk/tripos/y2005p8q7.pdf
https://www.cl.cam.ac.uk/tripos/y2002p7q4.pdf
https://www.cl.cam.ac.uk/tripos/y1996p8q7.pdf
https://www.cl.cam.ac.uk/tripos/y2021p9q12.pdf
https://www.cl.cam.ac.uk/tripos/y2004p8q7.pdf
https://www.cl.cam.ac.uk/tripos/y2019p9q11.pdf
https://www.cl.cam.ac.uk/tripos/y2015p7q11.pdf
https://www.cl.cam.ac.uk/tripos/y2013p9q9.pdf
https://www.cl.cam.ac.uk/tripos/y2004p8q7.pdf
https://www.cl.cam.ac.uk/tripos/y2001p9q7.pdf
https://www.cl.cam.ac.uk/tripos/y1999p7q4.pdf


Optimising Compilers Exercise Sheet 2

Abstract interpretation

• 2021 Paper 8 Question 12

• 2018 Paper 9 Question 11

• 2007 Paper 9 Question 16

Strictness analysis

• 2016 Paper 9 Question 9

• 2013 Paper 9 Question 9

• 2012 Paper 9 Question 9

• 2010 Paper 7 Question 12

• 2009 Paper 9 Question 10

• 2005 Paper 9 Question 7

• 2003 Paper 9 Question 7

• 2001 Paper 8 Question 7

• 1999 Paper 8 Question 7

• 1996 Paper 9 Question 7

• 1995 Paper 9 Question 7

A. Mycroft, D. Orchard, T. Petriček, R. Urma, T. Kohn, T. Jones 3

https://www.cl.cam.ac.uk/tripos/y2021p8q12.pdf
https://www.cl.cam.ac.uk/tripos/y2018p9q11.pdf
https://www.cl.cam.ac.uk/tripos/y2007p9q16.pdf
https://www.cl.cam.ac.uk/tripos/y2016p9q9.pdf
https://www.cl.cam.ac.uk/tripos/y2013p9q9.pdf
https://www.cl.cam.ac.uk/tripos/y2012p9q9.pdf
https://www.cl.cam.ac.uk/tripos/y2010p7q12.pdf
https://www.cl.cam.ac.uk/tripos/y2009p9q10.pdf
https://www.cl.cam.ac.uk/tripos/y2005p9q7.pdf
https://www.cl.cam.ac.uk/tripos/y2003p9q7.pdf
https://www.cl.cam.ac.uk/tripos/y2001p8q7.pdf
https://www.cl.cam.ac.uk/tripos/y1999p8q7.pdf
https://www.cl.cam.ac.uk/tripos/y1996p9q7.pdf
https://www.cl.cam.ac.uk/tripos/y1995p9q7.pdf

