
10. Storage & File
Management

9th ed: Ch. (10,) 11, 12

10th ed: Ch. (11,) 13, 14, 15

2

Objectives

• To understand the nature of mass storage
• To be aware of the challenges of (disk) storage management
• To understand concepts of files, directories and directory

namespaces, directory structures, hard- and soft-links
• To know of basic file operations and access control mechanisms
• To be aware of the relationship between paging and block storage in

the buffer cache

10. Storage & File Management

3

Outline

• Mass storage
• Disk scheduling
• Disk management
• Files
• Directories
• Other issues

10. Storage & File Management

4

Outline

• Mass storage
• Hard disks
• Solid state disks

• Disk scheduling
• Disk management
• Files
• Directories
• Other issues

10. Storage & File Management

5

Mass storage: Hard Disks (HDs)

• Stack of platters
• Historically 0.85” to 14”
• Commonly 3.5”, 2.5”, 1.8”
• Capacity continually increases but

perhaps 30GB – 3TB

• Performance
• Transfer Rate (theoretical) = 6 Gb/sec
• Effective Transfer Rate (real) = 1Gb/sec
• Seek time 3–12ms with around 9ms

common
• Rotation typically 7200 or 15,000 RPM

10. Storage & File Management

6

Hard disk performance

 Average latency [secs] = ½ latency = ½ × 1/60 / (rotations/minute) = 30 / RPM
 Access latency [secs] = Average seek time + Average latency
 Average I/O time [secs]

= Access latency + (transfer amount / transfer rate) + controller overhead
 E.g., 4kB block, 7200 RPM, 5ms average seek time, 1Gb/sec transfer

rate, 0.1ms controller overhead
 Average latency = 30 / 7200 = 4.17ms

 Transfer time = 4096 bytes × 8 bits/byte / 10243 bits/second = 0.031ms

 Average I/O time = 5ms + 4.17ms + 0.031ms + 0.1ms = 9.301ms

10. Storage & File Management

7

Mass storage: Solid state disks
(SSDs)
• Non-volatile memory used like a hard drive; many variations
• Pros
• Can be more reliable than HDDs
• No moving parts, so no seek time or rotational latency
• Much faster

• Cons
• Reads/writes wear out cells leading to unreliability and potentially shorter
• More expensive per MB
• Lower capacity

10. Storage & File Management

8

Outline

• Mass storage
• Disk scheduling
• First-Come First-Served (FCFS)
• Shortest Seek Time First (SSTF)
• SCAN, C-SCAN

• Disk management
• Files
• Directories
• Other issues

10. Storage & File Management

9

Disk scheduling

• The disk controller receives a sequence of read/write requests from
the OS that it must schedule
• How best to order reads and writes to achieve policy aim?
• Analogous to CPU scheduling but with very different mechanisms, constraints,

and policy aims
• Many algorithms exist

• Simplest: First-come First-served (FCFS)
• Intrinsically fair but inefficient
• E.g., requests for blocks on cylinders are

98, 183, 37, 122, 14, 124, 65, 67

10. Storage & File Management

=

10

Shortest Seek-Time First (SSTF)

• Service requests based on distance to current head position
• Next request in queue is that with the shortest seek time

• For this example, involves movement of just 236 cylinders
• 1/3 of that required by FCFS

• Somewhat analogous to SJF
• A big improvement but allows starvation
• Not optimal: from 53 move to 37 then 14

and then 65 etc – gives movement of
208 cylinders

10. Storage & File Management

=

11

SCAN and C-SCAN

• SCAN or elevator algorithm
• Start at one end of the disk and move to the other

end
• Service everything on the way

• Consider density of requests when changing
direction
• Have just serviced (almost) everything in that vicinity
• Those furthest away have waited longest so…

• Circular-SCAN
• Return back to the start when reaching the end
• Cylinders treated as a circular list, wrapping when

reaching the end

10. Storage & File Management

=

12

Outline

• Mass storage
• Disk scheduling
• Disk management
• Booting from disk

• Files
• Directories
• Other issues

10. Storage & File Management

13

Disk management

• Low-level or physical formatting
• Divides a disk into sectors that the disk controller can read and write
• Each sector can hold header information, plus data, plus error correction code (ECC)
• Usually 512 bytes of data but can be selectable

• Logical formatting to make a file system required before disk can hold files
• OS needs to record its own data structures on the disk so it can find files
• Partition the disk into one or more groups of cylinders, each treated as a logical disk
• To increase efficiency most file systems group blocks into clusters

• Disk I/O done in blocks
• File I/O done in clusters

• Some applications, e.g., databases, will prefer “raw” block access

10. Storage & File Management

14

Booting from disk

• OS needs to know where to start looking
• BIOS (or similar) is “firm-coded” to e.g., read first block of first disk

• First block contains bootloader program, which is executed
• Bootloader knows enough to start

reading in the right blocks to read
the filesystem starting with
the partition table
• Sometimes need to chain-load to

get enough code to parse more
complex filesystems

• Allows for handling of bad blocks
• E.g., by sector sparing where spare good

blocks logically substitute for bad ones

10. Storage & File Management

15

Outline

• Mass storage
• Disk scheduling
• Disk management
• Files
• File systems
• File metadata
• File and directory operations

• Directories
• Other issues

10. Storage & File Management

16

Files

• The basic abstraction for non-volatile storage:
• Can be a user or an OS abstraction (convenience vs flexibility)
• Typically comprises a single contiguous logical address space

• Many different types
• Data: numeric, character, binary (text vs binary split quite common)
• Program: source, object, executable
• “Documents”

• Can have varied internal structure:
• None: a simple sequence of words or bytes
• Simple record structures: lines, fixed length, variable length
• Complex internal structure: formatted document, relocatable object file

10. Storage & File Management

17

File system

• Consider only simple file systems
• Directory service maps names to file

identifiers and metadata, handles access and
existence control

• Storage service stores data on disk,
including storing directories

• Each partition formatted with a filesystem
• Logically, a directory and some files
• Directory maps human name (hello.java)

to System File ID (typically an integer)
• Different filesystems implement using

different structures

10. Storage & File Management

18

File metadata

• The mapping from SFID to File Control Block (FCB)
is filesystem specific

• Files typically have a number of other attributes or
metadata stored in directory
• Type – file or directory
• Location – pointer to file location on device
• Size – current file size
• Protection – controls who can do reading, writing, executing
• Time, date, and user identification – data for protection, security, and usage monitoring

• OS must also track open files in an open-file table containing
• File pointer or cursor: last read/written location per process with the file open
• File-open count: how often is each file open, so as to remove it from open-file table when last process

closes it
• On-disk location: a cache of data access information
• Access rights: per-process access mode information

10. Storage & File Management

19

File and directory operations

• A file as an abstract data type (ADT) over some (possibly structured) bytes
• Directory operations to manage lifetime of a file

• Create allocates blocks to back the file
• Open/Close handle to the file, typically including OS maintained current position (cursor)
• Delete returns allocated blocks to the free list
• Stat retrieves file status including existence reads and returns file metadata

• File operations to interact with file
• Write provided data at cursor location
• Read data at cursor location into provided

memory
• Truncate clips length of file to end at current cursor value

• Access pattern:
• Random access permits seek to move cursor without reading or writing
• Sequential access permits only rewind to move cursor back to beginning

10. Storage & File Management

20

Opening a file

• In-memory directory structure previously read from disk resolves file
name to a file control block

10. Storage & File Management

21

Reading a file

• Using per-process open-file table, index (file handle or file descriptor) resolves to
system-wide open-file table containing file-control block which resolves to actual
data blocks on disk

10. Storage & File Management

22

Outline

• Mass storage
• Disk scheduling
• Disk management
• Files
• Directories
• Tree-structured
• Acyclic-graph structured
• File system mounting

• Other issues

10. Storage & File Management

23

Directories

• Implementations must provide
• Grouping, to enable related files to be kept together
• Naming, for user convenience so different files can have the same name and

one file can have many names
• Efficiency, to find files quickly

• Single-level directory is simplest
• Naming and grouping problems though

• Two-level directory is next (FAT)
• Same names for different users via paths
• Efficient searching but no grouping

10. Storage & File Management

24

Tree-structured directories

• Provide naming convenience, efficient search, and grouping
• Introduce notion of current working directory (CWD)

cd /spell/mail/prog

type list
• Gives rise to absolute or relative

path names
• Name is resolved with respect to the

CWD

• Other operations also typically
carried out relative to CWD

10. Storage & File Management

25

Acyclic-graph structured directories

• Generalise to a DAG so can share subdirectories and files
• Allows files to have two different absolute names (aliasing)

• Need to know when to actually delete a file
• Use back-references or reference counting
• Compare soft- and hard-links in Unix

• Need to know how to account storage
• Which user “owns” the storage backing the file
• For deletion and generally for permissions

• Need to avoid creating cycles
• Forbid links to subdirectories

10. Storage & File Management

26

• Filesystems must be mounted at a mount-point before access, e.g.,

onto a pre-existing file-system...

…an unmounted filesystem in
another partition

 …is mounted, overlaying
the users subdirectory

File-system mounting

10. Storage & File Management

27

Outline

• Mass storage
• Disk scheduling
• Disk management
• Files
• Directories
• Other issues
• Consistency
• Efficiency
• Buffer cache

10. Storage & File Management

28

Consistency issues

• Arise without multiple threads!
• E.g., Deleting a file uses the unlink system call

• Invoked from the shell as rm <filename>

• Implementation must
• Check if user has sufficient permissions on the file (write access)
• Check if user has sufficient permissions on the directory (write access)
• If ok, remove entry from directory
• Decrement reference count on inode
• If reference count is now zero, free data blocks and inode

• If the system crashes, must check the entire filesystem (fsck)
• Check if any block is unreferenced, and mark free
• Check if any block double referenced, and update reference counts

10. Storage & File Management

29

Efficiency and performance

• Efficiency depends on, e.g,
• Disk allocation and directory algorithms

• Similar challenges to memory of allocation, fragmentation, compaction

• Types of metadata in directory entries
• E.g., file creation time vs last written time vs last accessed time

• Pre-allocation or as-needed allocation of metadata structures
• Fixed-size or varying-size data structures

• Performance measures include
• Keep data and metadata close together
• Create a buffer cache, a separate part of memory for often used blocks

• Synchronous writes sometimes requested by apps or needed by OS
• Require no buffering / caching – writes must hit the disk before acknowledgement
• Asynchronous writes more common, can be buffered, are faster

10. Storage & File Management

30

Buffer caches

• Not unified
• Page cache caches pages not disk blocks, using virtual

memory techniques and addresses
• Memory-mapped I/O uses a page cache while routine

I/O through the file system uses the buffer (disk) cache

• Unified
• A single buffer cache uses a

single page cache for both
memory-mapped I/O and
normal disk I/O

10. Storage & File Management

31

Summary

• Mass storage
• Hard disks
• Solid state disks

• Disk scheduling
• First-Come First-Served (FCFS)
• Shortest Seek Time First (SSTF)
• SCAN, C-SCAN

• Disk management
• Booting from disk

• Files
• File systems
• File metadata
• File and directory operations

• Directories
• Tree-structured
• Acyclic-graph structured
• File system mounting

• Other issues
• Consistency
• Efficiency
• Buffer cache

10. Storage & File Management

	10. Storage & File Management
	Objectives
	Outline
	Outline (2)
	Mass storage: Hard Disks (HDs)
	Hard disk performance
	Mass storage: Solid state disks (SSDs)
	Outline (3)
	Disk scheduling
	Shortest Seek-Time First (SSTF)
	SCAN and C-SCAN
	Outline (4)
	Disk management
	Booting from disk
	Outline (5)
	Files
	File system
	File metadata
	File and directory operations
	Opening a file
	Reading a file
	Outline (6)
	Directories
	Tree-structured directories
	Acyclic-graph structured directories
	File-system mounting
	Outline (7)
	Consistency issues
	Efficiency and performance
	Buffer caches
	Summary

