# Overview of Natural Language Processing Part II \& ACS L90 <br> Lecture 3: Part-of-Speech Tagging and Log-Linear Models 

Weiwei Sun

Department of Computer Science and Technology University of Cambridge

Michaelmas 2023/24

## Is FST suitable for the following phenomena？

Non－concatenative morphology，e．g．duplication in Chinese：

| 高 兴 |
| :--- |$\rightarrow$

happy $\quad$| 高 高 兴 兴 |
| :--- |
| 高 兴 高 兴 |

$$
a^{n} b^{n} ?
$$

Some yinkish dripners blorked quastofically into the nindin with the pidibs


Some/DET yinkish/ADJ dripners/NOUN blorked/VERB quastofically/ADV into/PREP the/DET nindin/NOUN with/PREP the/DET pidibs/NOUN

Lecture 3: Part-of-Speech Tagging and Log-Linear Models

1. Labeling words
2. The statistical perspective
3. Corpora
4. Log-linear models
5. Evaluation

## Labeling Words

Fish fish fish.

## Fish fish fish.

## fish

## noun

US (4)) /fij/ UK (4) /fif/
plural fish or fishes


A1
[ C or U]
an animal that lives in water, is covered with scales, and breathes by taking water in through its mouth, or the flesh of these animals eaten as food:

Lew Robertson/Photolibrary
/Gettylmages

- Several large fish live in the pond.
- Sanjay caught the biggest fish l've ever seen.
- I don't like fish (= don't like to eat fish).


## Fish fish fish.

fish verb (ANIMAL)

B1 [I or T]
to catch fish from a river, sea, lake, etc., or to try to do this:

- They're fishing for tuna.
- The sea here has been fished intensely over the last ten years.
dictionary.cambridge.org/us/dictionary/english/fish


## Part-of-speech tagging is useful

## Fish/NOUN fish/VERB fish/NOUN


from FINDING NEMO MOVIE (2013)
photo: www.avforums.com/reviews/finding-nemo-movie-review. 6237

## Global v local ambiguity



## they are able to fish

they put fish into cans

## Ambiguity

- can: modal verb, verb, singular noun
- fish: verb, singular noun, plural noun

Global v local ambiguity


Ambiguity

- can: modal verb, verb, singular noun
- fish: verb, singular noun, plural noun


# application-independent tags; linguistic knowledge involved 

from Ann Copestake's course

Information extraction (1)

## Book a flight

- Leave London on $1^{\text {st }}$ Dec 2020
- Arrive in London on $1^{\text {st }}$ Dec 2020

| FROM |  |  |
| :--- | :--- | :--- |
| TO |  |  |
| TIME |  |  |

## Information extraction (1)

Book a flight

- Leave/o London/b-from on/o $1^{\text {st }} /$ b-TIME Dec/I-TiME 2020/e-Time
- Arrive/o in/o London/b-TO on/o $1^{\text {st }} / \mathrm{B}-\mathrm{TIME}$ Dec/i-TIME 2020/E-TIME

| FROM | London |  |
| :--- | :--- | :--- |
| TO |  | London |
| TIME | $1^{\text {st }}$ Dec 2020 | $1^{\text {st }}$ Dec 2020 |

Chunking
B begin of $X$
I inside $X$
E end of $X$
O outside $X$

## Information extraction (1)

Book a flight

- Leave/o London/b-FROM on/o $1^{\text {st }} /$ b-TIME Dec/I-TIME 2020/E-TIME
- Arrive/o in/o London/b-TO on/o $1^{\text {st }} /$ b-Time Dec/i-Time 2020/E-TIME

| FROM | London |  |
| :--- | :--- | :--- |
| TO |  | London |
| TIME | $1^{\text {st }}$ Dec 2020 | $1^{\text {st }}$ Dec 2020 |

Chunking
B begin of $X$
I inside $X$
E end of $X$
application-dependent tags; contextual information matters

O outside $X$

## Information extraction (2)

## Entity linking

Time is running out for Brussels and London to reach a post-Brexit trade deal.
Downing Street said Johnson, 55, is in extremely good spirits at the St Thomas' Hospital ward as his father, Stanley Johnson, called on his son to rest up.

## Information extraction (2)

## Entity linking

Time is running out for Brussels/European_Council and
London/Government_of_the_United_Kingdom to reach a post-Brexit trade deal.
Downing Street/Goverment_of_the_United_Kingdom said Johnson/Boris_Johnson, 55, is in extremely good spirits at the St Thomas' Hospital ward as his father, Stanley Johnson, called on his son to rest up.


## The Statistical Perspective

The actual science of logic is conversant at present only with things either certain, impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore the true logic for this world is the calculus of probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind.


James C Maxwell

## Data, Information, Knowledge, Wisdom



## Last lecture

- Knowledge-driven approach: Finite-state machines
- Data-driven approach: Byte-pair encoding
- Unsupervise learning, representation learning

Corpora

## Annotations in NLP



MATTER: the annotation development cycle
Model Structural descriptions provide theoretically informed attributes derived from empirical observations over the data.

Annotate An annotation scheme assumes a feature set that encodes specific structural descriptions and properties of the input data.

Pustejovsky and Stubbs (2012)

## Annotations in NLP



MATTER: the annotation development cycle
Train The algorithm is trained over a corpus annotated with the target feature set.

Test The algorithm is tested against held-out data.

## Annotations in NLP



MATTER: the annotation development cycle
Evaluate A standardized evaluation of results is conducted.
Revise The model and the annotation specification are revisited in order to make the annotation more robust and reliable with use in the algorithm.

## Be careful

Data may be very difficult to acquire

- first language acquisition
- historical linguistics
- brain activities
- dolphin language
$\triangleright$ takes years to collect
$\triangleright$ no longer exist
$\triangleright$ wonderful machines, e.g. fMRI

Data may be extremely big

- e.g. data from twitter

Data may be private

- the Cambridge Analytica/Facebook scandal

Data may be biased

```
Prates et al. (2019) https://arxiv.org/pdf/1809.02208.pdf
```

```
Bengali English Hungarian Detect language
English Spanish Hungarian
Õ egy tudós.
\sigma egy mérnök.
õ egy pék.
o egy tanár.
õ egy esküvői szervező.
ő egy vezérigazgatója.
4) \
she's a nurse.
he is a scientist.
he is an engineer.
she's a baker.
he is a teacher.
She is a wedding organizer. he's a CEO.


\section*{Log-Linear Models}


\section*{POS tagging and prediction}


\section*{POS tagging and prediction}


\section*{POS tagging and prediction}


\section*{Aspects of POS tagging}

Some yinkish dripners blorked quastofically into the nindin with...

\section*{Aspects of POS tagging}
word=dripners

Some yinkish dripners blorked quastofically into the nindin with...
the word itself

\section*{Aspects of POS tagging}
word=dripners

Some yinkish dripners blorked quastofically into the nindin with...
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\text { suf }_{-1}=s
\end{gathered}
\]

\section*{Aspects of POS tagging}
word \(_{i-2}=\) some
\(\operatorname{word}_{i-1}=\) yinkish
w̄ord=dripners

Some yinkish dripners blorked quastofically into the nindin with...
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\text { suf }_{-1}=s
\end{gathered}
\]

\section*{Aspects of POS tagging}
\[
\begin{gathered}
\text { word }_{i-2}=\text { some } \\
\text { word }_{i-1}=\text { yinkish }
\end{gathered}
\]
\[
\begin{gathered}
\text { word }_{i+2}=\text { quastofically } \\
\text { word }_{i+1}=\text { blorked }
\end{gathered}
\]
ẁord=dripners

Some yinkish dripners blorked quastofically into the nindin with...
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\text { suf }_{-1}=s
\end{gathered}
\]

\section*{Aspects of POS tagging}
\[
\begin{aligned}
& \text { word }_{i+2}=\text { quastofically } \\
& \quad \text { word }_{i+1}=\text { blorked }
\end{aligned}
\]
word=dripners

Some yinkish dripners blorked quastofically into the nindin with... \(\operatorname{tag}_{i-2}=\) DET
```

*ggi-2 = DET

```
\(\operatorname{tag}_{i+1}=\) VERB
\(\operatorname{tag}_{i-1}=\mathrm{ADJ}\)

\section*{Aspects of POS tagging}


Some yinkish dripners blorked quastofically into the nindin with...
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\operatorname{suf}_{-1}=s
\end{gathered}
\]

The task: model the distribution
\[
p\left(t_{i} \mid w_{1}, \ldots, w_{n}\right) \Rightarrow p\left(t_{i} \mid \operatorname{DERIVEFEATURE}\left(w_{i-w}, w_{i-w+1} \ldots w_{i+w}\right)\right)
\]

Many features may be relevant. Usually we only consider local features.

\section*{1-of- \(K\) encoding}
\(k\) is the index of current POS label; \(D\) is the dimension of \(f(x)\).
word \(_{i-2}=\) some
word \(_{i-1}=\) yinkish
word \(_{i+2}=\) quastofically word \(_{i+1}=\) blorked
word=dripners
Some yinkish dripners blorked quastofically
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\text { suf }_{-1}=s
\end{gathered}
\]
\(\left.\cdots \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\)

\section*{1-of- \(K\) encoding}
word \(_{i-2}=\) some
word \(_{i+2}=\) quastofically word \(_{i+1}=\) blorked
\(k\) is the index of current POS label;
\(D\) is the dimension of \(f(x)\).
word=dripners

Some yinkish dripners blorked quastofically
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\text { suf }_{-1}=s
\end{gathered}
\]


\section*{1-of- \(K\) encoding}
word \(_{i-2}=\) some
word \(_{i-1}=\) yinkish
word \(_{i+2}=\) quastofically word \(_{i+1}=\) blorked
\(k\) is the index of current POS label;
\(D\) is the dimension of \(f(x)\).
```

word=dripners

```

Some yinkish dripners blorked quastofically
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\text { suf }_{-1}=s
\end{gathered}
\]


\section*{1-of- \(K\) encoding}
\(k\) is the index of current POS label;
\(D\) is the dimension of \(f(x)\).
word \(_{i-2}=\) some
word \(_{i-1}=\) yinkish
\(\operatorname{word}_{i+2}=\) quastofically word \(_{i+1}=\) blorked
word=dripners

Some yinkish dripners blorked quastofically
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\text { suf }_{-1}=s
\end{gathered}
\]


\section*{1-of- \(K\) encoding}
```

\mp@subsup{word}{i-2}{}=\mathrm{ some}
\mp@subsup{word}{i-1}{}=\mathrm{ yinkish}
word $_{i-2}=$ some
word $_{i-1}=$ yinkish

```
word \(_{i+2}=\) quastofically
    word \(_{i+1}=\) blorked
\(k\) is the index of current POS label;
\(D\) is the dimension of \(f(x)\).
```

word=dripners

```

Some yinkish dripners blorked quastofically
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\text { suf }_{-1}=s
\end{gathered}
\]


\section*{1-of- \(K\) encoding}
\(k\) is the index of current POS label;
\(D\) is the dimension of \(f(x)\).
word \(_{i+2}=\) quastofically word \(_{i+1}=\) blorked

Some yinkish dripners blorked quastofically
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\text { suf }_{-1}=s
\end{gathered}
\]
sparse vector: most are 0's
\(f_{12}\) : if suf \(-2,-1=1 y\) and tag \(=\mathrm{N}\)

\[
f_{101}: \text { if word }=\text { dripners and tag }=\mathrm{N}
\]

\section*{1-of- \(K\) encoding}
\(k\) is the index of current POS label;
\(D\) is the dimension of \(f(x)\).
```

word=dripners

```

Some yinkish dripners blorked quastofically
\[
\begin{gathered}
\text { suf }_{-3,-2}=e r \\
\text { suf }_{-1}=s
\end{gathered}
\]


\section*{Log-linear models (multinomial logistic regression)}

Assume we have a parameter vector \(\theta \in \mathbb{R}^{m}\).

\section*{Log-linear models (multinomial logistic regression)}

Assume we have a parameter vector \(\theta \in \mathbb{R}^{m}\).
We define
\[
p(y \mid x ; \theta)=\frac{\exp \left(\theta^{\top} f(x, y)\right)}{\sum_{y^{\prime} \in \mathcal{Y}} \exp \left(\theta^{\top} f\left(x, y^{\prime}\right)\right)}
\]

\section*{Log-linear models (multinomial logistic regression)}

Assume we have a parameter vector \(\theta \in \mathbb{R}^{m}\).
We define
\[
p(y \mid x ; \theta)=\frac{\exp \left(\theta^{\top} f(x, y)\right)}{\sum_{y^{\prime} \in \mathcal{Y}} \exp \left(\theta^{\top} f\left(x, y^{\prime}\right)\right)}
\]

Why the name
\[
\log p(y \mid x ; \theta)=\underbrace{\theta^{\top} f(x, y)}_{\text {linear term }}-\underbrace{\log \sum_{y^{\prime} \in \mathcal{Y}} \exp \left(\theta^{\top} f\left(x, y^{\prime}\right)\right)}_{\text {normalization term }}
\]

\section*{Log-linear models (multinomial logistic regression)}

Assume we have a parameter vector \(\theta \in \mathbb{R}^{m}\).
We define
\[
p(y \mid x ; \theta)=\frac{\exp \left(\theta^{\top} f(x, y)\right)}{\sum_{y^{\prime} \in \mathcal{Y}} \exp \left(\theta^{\top} f\left(x, y^{\prime}\right)\right)}
\]

Why the name
\[
\log p(y \mid x ; \theta)=\underbrace{\theta^{\top} f(x, y)}_{\text {linear term }}-\underbrace{\log \sum_{y^{\prime} \in \mathcal{Y}} \exp \left(\theta^{\top} f\left(x, y^{\prime}\right)\right)}_{\text {normalization term }}
\]

Prediction/ranking/scoring
\[
\arg \max _{y^{\prime} \in \mathcal{Y}} p(y \mid x ; \theta)=\arg \max _{y^{\prime} \in \mathcal{Y}} \log p(y \mid x ; \theta)=\arg \max _{y^{\prime} \in \mathcal{Y}} \underbrace{\theta^{\top} f\left(x, y^{\prime}\right)}_{\text {linear function }}
\]

\section*{POS tagging and prediction}


\section*{POS tagging and prediction}

\(f(x) \longrightarrow f(x, y)\)
\(f(x)\)
000

\section*{POS tagging and prediction}

\(f(x) \longrightarrow f(x, y)\)


\section*{POS tagging and prediction}

\[
f(x) \longrightarrow f(x, y)
\]


\section*{POS tagging and prediction}

\(f(x) \rightarrow f(x, y)\)


\section*{POS tagging and prediction}

\(f(x) \longrightarrow f(x, y)\)


\section*{About weights}
\[
p(y \mid x ; \theta)=\frac{\exp \left(\theta^{\top} f(x, y)\right)}{\sum_{y^{\prime} \in \mathcal{Y}} \exp \left(\theta^{\top} f\left(x, y^{\prime}\right)\right)}
\]


\section*{About weights}
\[
p(y \mid x ; \theta)=\frac{\exp \left(\theta^{\top} f(x, y)\right)}{\sum_{y^{\prime} \in \mathcal{Y}} \exp \left(\theta^{\top} f\left(x, y^{\prime}\right)\right)}
\]
\[
\begin{aligned}
& \cdots \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \\
& f_{1001} \text { : if word }-2=\text { some and } \operatorname{tag}=\mathrm{N}
\end{aligned}
\]

\section*{is \(\theta_{1001}\) positively large? vote for yes}

\section*{Supervised learning}

Assume there is a good annotated corpus
\[
\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(l)}, y^{(l)}\right)\right\}
\]

How can we get a good parameter vector?

\section*{Supervised learning}

Assume there is a good annotated corpus
\[
\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(l)}, y^{(l)}\right)\right\}
\]

How can we get a good parameter vector?

Maximum-Likelihood Estimation
\[
\hat{\theta}=\arg \max L(\theta)
\]
where
\[
\begin{aligned}
L(\theta) & =\sum_{i=1}^{l} \log p\left(y^{(i)} \mid x^{(i)} ; \theta\right) \\
& =\sum_{i=1}^{l}\left(\theta^{\top} f\left(x^{(i)}, y^{(i)}\right)-\log \sum_{y^{\prime} \in \mathcal{Y}} \exp \left(\theta^{\top} f\left(x^{(i)}, y^{\prime}\right)\right)\right)
\end{aligned}
\]

\section*{Evaluation}


\section*{Experimental Science}
- Experiments are run to test hypotheses
- Hypotheses are tentative theoretical explanations
morphological segmentation facilitates syntactic parsing system \(A\) outperforms system \(B\) on data set \(C\)
- Validating hypotheses requires repeated testing

\section*{Intrinsic evaluation}
- Creating a test set that contains a sample of test sentences for input, along with the ground truth.
- Quantifying the system's agreement with the ground truth.
- Training, development and test data Training data is used for parameter estimation. Development data is used for tuning some hyperparameters. Test data must be kept unseen, e.g. 80\% training, \(10 \%\) devel and \(10 \%\) test data.
- Baseline
- Ceiling Human performance on the task, often with the percentage agreement found between two annotators (inter annotator agreement)
- Error analysis Error rates are nearly always unevenly distributed.
- Replicability and reproducibility

\section*{Inter-annotator agreement}
- It is common practice to compare the performance of multiple human annotators.
- If human beings cannot reach substantial agreement about what annotations are correct, it is likely either that the task is too difficult or that it is poorly defined.
- It is generally agreed that human inter-annotator agreement defines the upper limit on our ability to measure automated performance. \(\triangleright\) subjective opinion

Gale et al. (1992) observed that
our ability to measure performance is largely limited by our ability [to] obtain reliable judgments fromhuman informants

\section*{Extrinsic evaluation}
- Measuring the quality of the system by looking at its impact on the effectiveness of downstream applications.
- Can be applied to compare heterogeneous resources.


\section*{Benchmarking and "fair" comparisons - fast science}
- Test corpora have to be representative of the actual application
based on Ann Copestake's slides

\section*{Benchmarking and "fair" comparisons - fast science}
- Test corpora have to be representative of the actual application
- POS tagging and similar techniques are not always very robust to differences in domain
data-driven () vs data set-driven ()
based on Ann Copestake's slides

\section*{Benchmarking and "fair" comparisons - fast science}
- Test corpora have to be representative of the actual application
- POS tagging and similar techniques are not always very robust to differences in domain
- Balanced corpora may be better, but still don't cover all text types
based on Ann Copestake's slides

\section*{Benchmarking and "fair" comparisons - fast science}
- Test corpora have to be representative of the actual application
- POS tagging and similar techniques are not always very robust to differences in domain
- Balanced corpora may be better, but still don't cover all text types
- Communication aids: extreme difficulty in obtaining data, text corpora don't give good prediction for real data

\section*{data-driven () vs data set-driven \()\)}
based on Ann Copestake's slides

\section*{Good Science}

"Measurement as a virtue in itself"

"Lots of numbers with very small differences"
"What are the research questions?"

\section*{Readings}

\section*{Required}
- Chapter 5. Logistic Regression. Speech and Language Processing. D Jurafsky and J Martin.
https://web.stanford.edu/~jurafsky/slp3/5.pdf```

