Overview of Natural Language Processing Part II & ACS L90

Lecture 2: Morphology

Weiwei Sun and Michael Schlichtkrull

Department of Computer Science and Technology University of Cambridge

Michaelmas 2023/24

Some yinkish dripners blorked quastofically into the nindin with the pidibs

 $\dots dripn + \underline{ER} + \underline{S} \ blork + \underline{ED} \ quastofical + \underline{LY} \ into \ the \ nindin \ with \ the \ pidib + \underline{S}$

Lecture 2: Morphology

- 1. Morphology
- 2. Relevant NLP tasks
- 3. Finite state techniques
- 4. Byte-pair encoding

Morphology

Morpheme

Morphemes are the *smallest meaningful units* of language. Words are composed of morpheme(s).

Morpheme

Morphemes are the *smallest meaningful units* of language. Words are composed of morpheme(s).

Affix: morpheme which only occurs in conjunction with other morphemes.

• suffix (units), prefix (incomplete), infix, circumfix

Morpheme

Morphemes are the *smallest meaningful units* of language. Words are composed of morpheme(s).

Affix: morpheme which only occurs in conjunction with other morphemes.

• suffix (units), prefix (incomplete), infix, circumfix

Root: nucleus of the word that affixes attach too.

Infix

Tagalog (Philippines)

Source: J Hana & A Feldman. ESSLLI 2013: Computational Morphology.

Inflection and derivation

Inflection creates new forms of the same word

- e.g. bring, brought, brings, bringing
- generally fully productive (modulo irregular forms)
- tends to affect only its syntactic function

Derivation creates new words

- e.g. logic, logical, illogical, illogicality, logician, etc.
- generally semi-productive: e.g., escapee, textee, ?dropee, ?snoree,
 cricketee (and ?)
- tends to be more irregular; the meaning is more idiosyncratic and less compositional.
- tends to affect the *meaning* of the word, and may change part-of-speech

Internal structure: ambiguity

Structural ambiguity

Capable of being unlocked. Not capable of being locked.

Can cross word boundaries

More about beautiful dancer: Larson (1998).

 ${\tt semantics.uchicago.edu/kennedy/classes/f11/na/docs/larson08.pdf}$

More about unlockable: en.wiktionary.org/wiki/unlockable

 $\textit{Stem}: \ \mathsf{word} \ \mathsf{without} \ \mathsf{its} \ \mathsf{inflectional} \ \mathsf{affixes} = \mathsf{roots} + \mathsf{all} \ \mathsf{derivational} \ \mathsf{affixes}.$

Stem: word without its inflectional affixes = roots + all derivational affixes.

bookshopped

Stem: word without its inflectional affixes = roots + all derivational affixes.

Stem: word without its inflectional affixes = roots + all derivational affixes.

Lexeme: the set of all forms related by inflection (but not derivation).

 $\{{\it bookshops, bookshopped, bookshopping, } \dots \}$

Lemma: the canonical/base/dictionary/citation form of a lexeme chosen by convention.

bookshop (cf. the stem—bookshopp)

Phonaestheme

slither, slide, slip etc have somewhat similar meanings; but sl- is not a morpheme.

Etymology: *slith*, *slid* and *slip* are historically related. See www.etymonline.com/word/slide

Phonaestheme

a pattern of sounds systematically paired with a certain meaning in a language

- cl-: related to a closing motion of a single object, such as clam, clamp, clap, clasp, clench, cling, clip, clop, clutch.
- gl-: related to light, as in glance, glare, glass, gleam, glimmer, glint, glisten, glitter, gloaming, gloom, gloss, glow.

Root: nucleus of the word that affixes attach too.

Compounds contain more than one root.

- (1) a. youthquake
 - b. post-truth
 - c. railway
 - d. sunset

Multiword expression: combinations of two or more words that exhibit syntactic and semantic idiosyncratic behavior.

- (2) a. climate emergency
 - b. computer science
 - c. random variable

Different types of multiword expressions

Fixed		(Syntactically) flexible
by and large		put on the clothes put the clothes on
Non-compositional	Semi-compositional	Compositional
kick the bucket	spill the beans (reveal the secret)	strong tea

Multiword expression and grammatical errors

- a. At this moment Carole was living with her husband but they didn't love each other any more.
 - \rightarrow At the moment
 - b. It is a *dream becames true* and was really unexpected for me!
 - \rightarrow dream come true
 - c. They go together in groups, then they prepare power point presentations and at least they present it in front of the other pupils and teachers.
 - \rightarrow finally
 - d. By the other side, I have never climbed a mountain but I always wanted to do it.
 - \rightarrow On the other hand
 - e. I tried to take it on my stride but I couldn't.
 - \rightarrow take it in my stride
 - f. However, I told my teacher that I am willing to give a hand next time.
 - \rightarrow lend a hand

Code-mixed languages

Code-switching

a speaker alternates between two or more languages in the context of a single conversation or situation.

Cantonese-English (widely used in Hong Kong)

The English word "sure" / "cute" is mixed into an otherwise Cantonese sentence.

- 我唔sure
- cu唔cute啊

Text normalization

- Not using any punctuation at all
 Eh speak english mi malay not tt good (Eh, speak English! My Ma-lay is not that good.)
- Using spell-ing/punctuation for emphasis gooooood Sunday morning!!!!!! (Good Sunday morning!)
- Using phonetic spelling dat iz enuf (That is enough)
- Dropping vowel
 i hv cm to c my luv. (I have come to see my love.)
- Introducing local flavor yar lor where u go juz now (yes, where did you go just now?)
- Dropping verb

I hv 2 go. Dinner w parents. (I have to go. Have dinner with parents.)

Examples are from Aw et al. (2005). https://www.aclweb.org/anthology/P06-2005.pdf

More: noisy-text.github.io/norm-shared-task.html

Relevant NLP Tasks

Form transformation

Computational tasks

Segmentation

antidisestablishmentarianism ⇒ anti- dis- e- stabl -ish -ment -arian -ism
antidisestablishmentarianism
anti dis establish ment arian ism

en.wikipedia.org/wiki/Antidisestablishmentarianism www.etymonline.com/word/antidisestablishmentarianism

important for some application, e.g. bioinformatics

Word segmentation

Goal

- The written systems for some languages, e.g. Japanese and Chinese contain no word delimiters such as spaces.
- There is a need to develop algorithms that are able to automatically divide a string into its component words.

Example

解放大道路面积水问题

解放 / 大道 / 路面 / 积水 / 问题

解/放大/道路/面积/水/问题

Finite State Techniques

Language Is An Inherently Temporal Phenomenon

Orders matter!

- talk-ed \neq *ed-talk
- re-write ≠ *write-re
- un-kind-ly \neq *kind-un-ly

Language Is An Inherently Temporal Phenomenon

Orders matter!

- talk-ed \neq *ed-talk
- re-write ≠ *write-re
- un-kind-ly \neq *kind-un-ly

Turing machine

Finite-state automata

- Circles are states of the automaton.
- Arrows are called transitions.
- The automaton changes states by following transitions.
- The double circle indicates that this state is an accepting state. The automaton accepts the string if it ends in an accepting state.

Finite-state automata

- Circles are states of the automaton.
- Arrows are called transitions.
- The automaton changes states by following transitions.
- The double circle indicates that this state is an accepting state. The automaton accepts the string if it ends in an accepting state.

Finite state transducer

- cakes → cake#s
- boxes → box#s

b	0	Х	#	
b	0	X	е	s

b	0	х	#	S
b	0	х	е	s

• A symbolic system that can recognize or transform forms.

- A symbolic system that can recognize or transform forms.
- An automaton remembers only a finite amount of information.

- A symbolic system that can recognize or transform forms.
- An automaton remembers only a finite amount of information.
- Information is represented by its states.

- A symbolic system that can recognize or transform forms.
- An automaton remembers only a finite amount of information.
- Information is represented by its states.
- State changes in response to inputs and may trigger outputs.

- A symbolic system that can recognize or transform forms.
- An automaton remembers only a finite amount of information.
- Information is represented by its states.
- State changes in response to inputs and may trigger outputs.
- Transition rules define how the state changes in response to inputs.

- A symbolic system that can recognize or transform forms.
- An automaton remembers only a finite amount of information.
- Information is represented by its states.
- State changes in response to inputs and may trigger outputs.
- Transition rules define how the state changes in response to inputs.
- Given a sequence of input symbols, a recognition process starts in the start state and follow the transitions in turn. Input is accepted if this process ends up in an accepting state.

- A symbolic system that can recognize or transform forms.
- An automaton remembers only a finite amount of information.
- Information is represented by its states.
- State changes in response to inputs and may trigger outputs.
- Transition rules define how the state changes in response to inputs.
- Given a sequence of input symbols, a recognition process starts in the start state and follow the transitions in turn. Input is accepted if this process ends up in an accepting state.
- Partial grammars for text preprocessing, tokenization, named entity recognition etc.

Cross-lingual variants

 English morphology is essentially concatenative cf. duplication in Chinese, e.g.

Cross-lingual variants

 English morphology is essentially concatenative cf. duplication in Chinese, e.g.

 The phones making up a morpheme don't have to be contiguous, e.g. in Hebrew

Root	Pattern	PoS	Phonological Form	Gloss
ktb	CaCaC	V	katav	'wrote'
ktb	hi CCiC	٧	hixtiv	'dictated'
ktb	miCCaC	n	mixtav	'a letter'
ktb	CCaC	n	ktav	'writing, alphabet'

from E. Bender's tutorial (faculty.washington.edu/ebender/papers/100things.pdf)

Byte-Pair Encoding

Form transformation

 ${f Q}$ Are there some magical algorithms that are able to automatically induce useful representations from data?

Subword tokenisation

Isn't it just one symbol?

Subword tokenisation

Isn't it just one symbol?

Phonaestheme: It is difficult to hard-code the knowledge

• cl-: related to a closing motion of a single object, such as clam, clamp, clap, clasp, clench, cling, clip, clop, clutch.

Byte-Pair Encoding (BPE)

BPE was initially developed as an algorithm to compress texts, and then used by OpenAI for tokenization when pretraining the GPT model.

- Start from a small base vocabulary, e.g. 256 ASCII code.
- Add new tokens to the vocabulary until the desired vocabulary size is reached by learning merges, which are rules to merge two elements of the existing vocabulary together into a new one.
- At each step, the BPE algorithm search for the most frequent pair, namely two consecutive tokens, of existing tokens.

from https://huggingface.co/learn/nlp-course/chapter6/5?fw=pt

Example

```
("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)
```

on whiteboard

Readings

Required

- Ann's lecture notes.
 https://www.cl.cam.ac.uk/teaching/1920/NLP/materials.html
- E. Bender. 100 Things You Always Wanted to Know about Linguistics But Were Afraid to Ask. NAACL-HLT 2012 tutorial. faculty.washington.edu/ebender/papers/100things.pdf Please read Numbers #7-#27.

Optional

- * J. Hana & A. Feldman. Computational Morphology. ESSLLI 2013 course. ufal.mff.cuni.cz/~hana/teaching/2013-esslli/
- * M. Mohri. Finite-State Transducers in Language and Speech Processing. CL 1997 paper. www.aclweb.org/anthology/J97-2003/