3D Geometry Capture Prof Cengiz Öztireli

Sources of Geometry

Acquisition from the real world
Modeling applications

Shape Acquisition

- Digitizing real world objects

3D Scanning

Active Systems

- Triangulation Laser
- Laser beam and camera
- Laser dot is photographed
- The location of the dot in the image allows triangulation: we get the distance to the object

Active Systems
Structured light

Active Systems

Structured light

Active Systems

- Structured light
- Pattern of visible or infrared light is projected onto the object
- The distortion of the pattern (recorded by the camera) provides geometric information
- Very fast - 2D pattern at once
- Complex distance calculation \rightarrow prone to noise

Active Systems

- LIDAR

- Measures the time it takes the laser beam to hit the object and come back

Passive Systems

Passive Systems

3D Imaging

- Ultrasound, CT, MRI
- Discrete volume of density data
- First need to segment the desired object (contouring)

3D Scanning

- Challenges

Noise, outliers, irregularity

Incompleteness

Inconsistency

Shape Acquisition

- Digitizing real world objects

Registration

－Bringing scans into a common coordinate frame

Registration

$M_{1} \quad M_{2}$

$M_{1} \approx T\left(M_{2}\right), T$: translation + rotation

Registration

M_{1}
M_{2}

$$
M_{1} \approx T_{2}\left(M_{2}\right) \approx \cdots \approx T_{n}\left(M_{n}\right)
$$

Registration

- How many points are needed to define a unique rigid transformation?
- The first problem is finding pairs

$$
\begin{gathered}
\mathbf{p}_{1} \rightarrow \mathbf{q}_{1} \\
\mathbf{p}_{2} \rightarrow \mathbf{q}_{2} \\
\mathbf{p}_{3} \rightarrow \mathbf{q}_{3} \\
R \mathbf{p}_{i}+t \approx \mathbf{q}_{i}
\end{gathered}
$$

Registration

- ICP: Iterative Closest Point
- Idea: Iterate
- (1) Find correspondences
- (2) Use them to find a transformation

Registration

- ICP: Iterative Closest Point
- Intuition:
- With the right correspondences, problem solved
- If you don't have the right ones, can still make progress

Registration

- ICP: Iterative Closest Point

Registration

- ICP: Iterative Closest Point -- algorithm
- Select (e.g., 1000) random points
- Match each to closest point on other scan
- Reject pairs with distance too big
- Construct error function:
- Minimize

$$
E:=\sum_{i}\left(R \mathbf{p}_{i}+t-\mathbf{q}_{i}\right)^{2}
$$

- closed form solution in: http://dl.acm.org/citation.cfm?id=250160

Shape Acquisition

- Digitizing real world objects

Pre-processing

- Cleaning, repairing, resampling

Pre-processing

- Sampling for accurate reconstructions

Reconstruction

- Mathematical representation for a shape

Reconstruction

Connect-the-points Methods Approximation-based Methods

+ Theoretical error bounds
- Expensive
- Not robust to noise

+ Efficient to compute
+ Robust to noise
- No theoretical error bounds

Reconstruction

- Approximating an implicit function
$f: \mathbb{R}^{3} \rightarrow \mathbb{R}$
with value >0 outside the shape and <0 inside

Reconstruction

- Approximating an implicit function
$f: \mathbb{R}^{3} \rightarrow \mathbb{R}$
with value >0 outside the shape and <0 inside
$\{\mathbf{x}: f(\mathbf{x})=0\}$
extract zero set

Least Squares

- Problem

$$
f(x)=a x+b / 0
$$

Least Squares

- Problem

$$
\begin{aligned}
& \min _{a, b} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2} \\
& \min _{a, b} \sum_{i=1}^{n}\left(a x_{i}+b-y_{i}\right)^{2}
\end{aligned}
$$

Least Squares

- Multi-dimensional problem

$$
f(\mathbf{x}): \mathbb{R}^{d} \rightarrow \mathbb{R} \min _{f \in \Pi_{m}^{d}} \sum_{i}\left(f\left(\mathbf{x}_{i}\right)-f_{i}\right)^{2}
$$

Π_{m}^{d} : polynomials of degree m in d dimensions

$$
\begin{gathered}
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{c} \\
m=2, d=2 \quad \mathbf{b}(\mathbf{x})=\left[1 x y x^{2} y^{2} x y\right]^{T} \\
f(\mathbf{x})=c_{0}+c_{1} x+c_{2} y+c_{3} x^{2}+c_{4} y^{2}+c_{5} x y
\end{gathered}
$$

Least Squares

- Multi-dimensional problem

$$
\begin{gathered}
f(\mathbf{x}): \mathbb{R}^{d} \rightarrow \mathbb{R} \min _{f \in \Pi_{m}^{d}} \sum_{i}\left(f\left(\mathbf{x}_{i}\right)-f_{i}\right)^{2} \\
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{c}
\end{gathered}
$$

$$
\min _{\mathbf{c}} E(\mathbf{c}) \quad E(\mathbf{c})=\sum_{i}\left(\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right)^{2}
$$

Least Squares

- Multi-dimensional problem

$$
\min _{\mathbf{c}} E(\mathbf{c}) \quad E(\mathbf{c})=\sum_{i}\left(\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right)^{2}
$$

$$
m=1, d=1 \quad m=2, d=1
$$

$$
E(\mathbf{c})=\sum_{i}\left(c_{0}+c_{1} x_{i}-f_{i}\right)^{2} \quad E(\mathbf{c})=\sum_{i}\left(c_{0}+c_{1} x_{i}+c_{2} x_{i}^{2}-f_{i}\right)^{2}
$$

Least Squares

- Multi-dimensional problem

$$
\begin{gathered}
\min _{\mathbf{c}} E(\mathbf{c}) \quad E(\mathbf{c})=\sum_{i}\left(\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right)^{2} \\
m=2, d=2 \\
E(\mathbf{c})=\sum_{i}\left(c_{0}+c_{1} x+c_{2} y+c_{3} x^{2}+c_{4} y^{2}+c_{5} x y-f_{i}\right)^{2}
\end{gathered}
$$

Least Squares

- Solution of the multi-dimensional problem

$$
\begin{gathered}
\min _{\mathbf{c}} E(\mathbf{c}) \quad E(\mathbf{c})=\sum_{i}\left(\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right)^{2} \quad \mathbf{b}\left(\mathbf{x}_{i}\right)=\left[b_{1}\left(\mathbf{x}_{i}\right) \cdots b_{m}\left(\mathbf{x}_{i}\right)\right]^{T} \\
\frac{\partial E(\mathbf{c})}{\partial c_{k}}=\sum_{i} 2 b_{k}\left(\mathbf{x}_{i}\right)\left[\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right]=0 \\
\frac{\partial E(\mathbf{c})}{\partial \mathbf{c}}=2 \sum_{i} \mathbf{b}\left(\mathbf{x}_{i}\right)\left[\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right]=0 \\
\sum_{i} \mathbf{b}\left(\mathbf{x}_{i}\right) \mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}=\sum_{i} \mathbf{b}\left(\mathbf{x}_{i}\right) f_{i} \quad \mathbf{c}=\left[\sum_{i} \mathbf{b}\left(\mathbf{x}_{i}\right) \mathbf{b}\left(\mathbf{x}_{i}\right)^{T}\right]^{-1} \sum_{i} \mathbf{b}\left(\mathbf{x}_{i}\right) f_{i}
\end{gathered}
$$

Least Squares

- Solution of the multi-dimensional problem

Example

$$
\begin{gathered}
m=2, d=1 \quad E(\mathbf{c})=\sum_{i}\left(c_{0}+c_{1} x+c_{2} x^{2}-f_{i}\right)^{2} \\
\sum_{i}\left[\begin{array}{ccc}
1 & x_{i} & x_{i}^{2} \\
x_{i} & x_{i}^{2} & x_{i}^{3} \\
x_{i}^{2} & x_{i}^{3} & x_{i}^{4}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\sum_{i}\left[\begin{array}{c}
1 \\
x_{i} \\
x_{i}^{2}
\end{array}\right] f_{i}
\end{gathered}
$$

Weighted Least Squares

- Multiply the terms with given weights
$\mathrm{LS} \quad \min _{\mathbf{c}} E(\mathbf{c}) \quad E(\mathbf{c})=\sum_{i}\left(\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right)^{2}$
WLS $\quad \min _{\mathbf{c}} E(\mathbf{c}) \quad E(\mathbf{c})=\sum_{i}\left(\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right)^{2} w_{i}$

Moving Least Squares

- Idea: make the weights local

Moving Least Squares

- Idea: make the weights local

Moving Least Squares

- Idea: make the weights local

$$
\begin{gathered}
\mathbf{c}(\mathbf{x})=\operatorname{argmin}_{\mathbf{c}} E_{\mathbf{x}}(\mathbf{c})=\sum_{i} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{i}\right\|\right)\left(\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right)^{2} \\
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{c}(\mathbf{x})
\end{gathered}
$$

In comparison, LS:

$$
\begin{gathered}
\mathbf{c}=\operatorname{argmin}_{\mathbf{c}} E(\mathbf{c})=\sum_{i}\left(\mathbf{b}\left(\mathbf{x}_{i}\right)^{T} \mathbf{c}-f_{i}\right)^{2} \\
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{c}
\end{gathered}
$$

Moving Least Squares

- Local solution

$$
\begin{gathered}
\mathbf{c}(\mathbf{x})=\left[\sum_{i} \phi_{i}(\mathbf{x}) \mathbf{b}\left(\mathbf{x}_{i}\right) \mathbf{b}\left(\mathbf{x}_{i}\right)^{T}\right]^{-1} \sum_{i} \phi_{i}(\mathbf{x}) \mathbf{b}\left(\mathbf{x}_{i}\right) f_{i} \\
\phi_{i}(\mathbf{x})=\phi\left(\left\|\mathbf{x}-\mathbf{x}_{i}\right\|\right) \\
f(\mathbf{x})=\mathbf{b}(\mathbf{x})^{T} \mathbf{c}(\mathbf{x})
\end{gathered}
$$

Moving Least Squares

- Local solution

Example $m=1, d=1$

$$
\begin{aligned}
& \min _{c_{0}, c_{1}} \sum_{i} \phi_{i}(x)\left(c_{0}+c_{1} x_{i}-f_{i}\right)^{2} \\
& f_{x}(x)=c_{0}+c_{1} x \\
& f(x)=f_{x}(x)
\end{aligned}
$$

Implicit MLS Surfaces

- Basic problem
- Given sample points \& attributes
- Compute a function

$$
f(\mathbf{x}): \mathbb{R}^{2} \text { or } \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

- such that the curve/surface is given by

$$
\mathcal{S}=\{\mathbf{x} \mid f(\mathbf{x})=0, \nabla f(\mathbf{x}) \neq \mathbf{0}\}
$$

Implicit MLS Surfaces

$$
f(\mathbf{x})=f_{\mathbf{x}}(\mathbf{x})
$$

Implicit MLS Surfaces

Example $m=1, d=2$

$$
f_{\mathbf{x}}(\mathbf{x})=c_{0}(\mathbf{x})+c_{1}(\mathbf{x}) x+c_{2}(\mathbf{x}) y
$$

Implicit MLS Surfaces

How can we avoid the trivial solution

$$
f(\mathbf{x})=0 \forall \mathbf{x}
$$

Gradient constraints

$$
\left\|\nabla f_{\mathbf{x}}(\mathbf{x})\right\|=1 \quad \nabla f\left(\mathbf{x}_{i}\right)=\mathbf{n}_{i}
$$

Reproduce local functions

$$
f_{i}(\mathbf{x})=\mathbf{n}_{i}^{T}\left(\mathbf{x}-\mathbf{x}_{i}\right)
$$

Implicit MLS Surfaces

- Example

$$
\begin{aligned}
& m=1, d=2 \\
& f_{\mathbf{x}}(\mathbf{x})=\mathbf{n}_{\mathbf{x}}^{T} \mathbf{x}+o_{\mathbf{x}} \quad\left\|\mathbf{n}_{\mathbf{x}}\right\|=1
\end{aligned}
$$

$$
\left(\mathbf{n}_{\mathbf{x}}, o_{\mathbf{x}}\right)=\operatorname{argmin}_{\mathbf{n}, o} \sum_{i} \phi_{i}(\mathbf{x})\left(\mathbf{n}^{T} \mathbf{x}_{i}+o\right)^{2} \quad\|\mathbf{n}\|=1
$$

Implicit MLS Surfaces

- Examples in 3D

Feature Preserving Point Set Surfaces based on Non-Linear Kernel Regression, Eurographics 2009

Implicit MLS Surfaces

- Examples in 3D

Spatio-Temporal Geometry Fusion for Multiple Hybrid Cameras using Moving Least Squares Surfaces, Eurographics 2014
CAMBRIDGE

Shape Acquisition

- Digitizing real world objects

Neural Radiance Fields

Neural Radiance Fields

Neural Radiance Fields

⿴囗大⿹勹䶹．
CAMBRIDGE

Neural Radiance Fields

