9: Viterbi Algorithm for HMM Decoding
Machine Learning and Real-world Data

Andreas Vlachos
(slides adapted from Simone Teufel)

Department of Computer Science and Technology
University of Cambridge
Last session: estimating parameters of an HMM

- The dishonest casino, dice edition.
- Two hidden states: L (loaded dice), F (fair dice).
- You don’t know which dice is currently in use. You can only observe the numbers that are thrown.
- You estimated transition and emission probabilities (Problem 1 from last time).
- We are now turning to Problem 4.
- We want the HMM to find out when the fair dice was out, and when the loaded dice was out.
- We need to write a decoder.
Decoding: finding the most likely path

Definition of decoding: Finding the most likely hidden state sequence X that explains the observation O given the HMM parameters $\mu = (A, B)$.

$$
\hat{X} = \arg\max_X P(X, O|\mu) \\
= \arg\max_X P(O|X, B)P(X|A) \\
= \arg\max_{X_1...X_T} \prod_{t=1}^{T} P(O_t|X_t, B)P(X_t|X_{t-1}, A)
$$

Search space of possible state sequences X is $O(N^T)$; too large for brute force search.
Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course)
We can use Dynamic Programming if two conditions apply:

- **Optimal substructure property**
 - An optimal state sequence \(X_1 \ldots X_j \ldots X_T \) contains inside it the sequence \(X_1 \ldots X_j \), which is also optimal

- **Overlapping subsolutions property**
 - If both \(X_t \) and \(X_u \) are on the optimal path, with \(u > t \), then the calculation of the probability for being in state \(X_t \) is part of each of the many calculations for being in state \(X_u \).
Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course)
We can use Dynamic Programming if two conditions apply:

- **Optimal substructure property**
 - An optimal state sequence $X_1 \ldots X_j \ldots X_T$ contains inside it the sequence $X_1 \ldots X_j$, which is also optimal

- **Overlapping subsolutions property**
 - If both X_t and X_u are on the optimal path, with $u > t$, then the calculation of the probability for being in state X_t is part of each of the many calculations for being in state X_u.

The intuition behind Viterbi

- Here’s how we can save ourselves a lot of time.
- Because of the Limited Horizon of the HMM, we don’t need to keep a complete record of how we arrived at a certain state.
- For the first-order HMM, we only need to record one previous step.
- Just do the calculation of the probability of reaching each state once for each time step (variable δ).
- Then memoise this probability in a Dynamic Programming table.
- This reduces our effort to $O(N^2T)$.
- This is for the first order HMM, which only has a memory of one previous state.
Viterbi: main data structure

- Memoisation is done using a *trellis*.
- A trellis is equivalent to a Dynamic Programming table.
- The trellis is \((N + 2) \times (T + 2)\) in size, with states \(j\) as rows and time steps \(t\) as columns.
- Each cell \(j, t\) records the Viterbi probability \(\delta_j(t)\), the probability of the most likely path that ends in state \(s_j\) at time \(t\):
 \[
 \delta_j(t) = \max_{1 \leq i \leq N} [\delta_i(t - 1) a_{ij} b_j(O_t)]
 \]
- This probability is calculated by maximising over the best ways of going to \(s_j\) for each \(s_i\).
- \(a_{ij}\): the transition probability from \(s_i\) to \(s_j\)
- \(b_j(O_t)\): the probability of emitting \(O_t\) from destination state \(s_j\)
Viterbi algorithm, initialisation

Note: the probability of a state starting the sequence at $t = 0$ is just the probability of it emitting the first symbol.
Viterbi algorithm, initialisation

S_0
Viterbi algorithm, initialisation
Viterbi algorithm, initialisation

S_0

$\delta_0(0) = b_0(k_0)$
Viterbi algorithm, main step
Viterbi algorithm, main step: observation is 4

\[o_1 = 4 \]

\[b_F(4) \]

\[\delta_0(0) \]

\[X_1 = F \]

\[X = L \]

\[X_1 = L \]
Viterbi algorithm, main step: observation is 4

\[
\delta_F(1) = a_{0F} b_F(4) \delta_0(0)
\]

\[
o_1 = 4
\]

\[
X_1 = F \quad X = L
\]
Viterbi algorithm, main step, ψ

- $\psi_j(t)$ is a helper variable that stores the $t - 1$ state index i on the highest probability path.

$$
\psi_j(t) = \arg\max_{1 \leq i \leq N} \left[\delta_i(t - 1) a_{ij} b_j(O_t) \right]
$$

- In the backtracing phase, we will use ψ to find the previous cell/state in the best path.
Viterbi algorithm, main step: observation is 4

\[o_1 = 4 \]

\[\delta_F(1) = a_{0F} b_F(4) \delta_0(0) \]

\[X_1 = F \]

\[X = L \]
Viterbi algorithm, main step: observation is 4

\[\delta_F(1) = a_{0F} b_F(4) \delta_0(0) \]

\[\psi_F(1) = 0 \]

\[o_1 = 4 \]

\[S_0 \quad S_F \quad S_L \]

\[X_1 = F \]

\[X = L \]

\[X = L \]
Viterbi algorithm, main step: observation is 4

\[o_1 = 4 \]

\[\delta_F(1) = a_{0F} b_F(4) \delta_0(0) \]

\[\psi_F(1) = 0 \]

\[X_1 = F \]

\[X = L \]

\[X = L \]
Viterbi algorithm, main step: observation is 4

\[o_1 = 4 \]

\[\delta_F(1) = a_{OF} b_F(4) \delta_0(0) \]

\[\psi_F(1) = 0 \]

\[\delta_L(1) = a_{OL} b_L(4) \delta_0(0) \]

\[\psi_L(1) = 0 \]

\[X_1 = F \quad X = L \quad X' = L \]
Viterbi algorithm, main step: observation is 3

\[
\begin{array}{c}
S_0 \\
\delta_L(1) \\
S_L \\
\delta_F(1) \\
S_F \\
b_F(3) \\
X_1 = F \\
X_2 = L \\
X = L
\end{array}
\]
Viterbi algorithm, main step: observation is 3
Viterbi algorithm, main step: observation is 3

\[o_1 = 4 \quad o_2 = 3 \]

\[\delta_F(1) \]

\[\delta_L(1) \]

\[\psi_F(2) = L \]

\[\psi_L(2) = L \]

\[X_1 = F \]

\[X_2 = L \]

\[X_3 = L \]
Viterbi algorithm, main step: observation is 3

\[o_1 = 4 \quad o_2 = 3 \]

\[\delta_F(1) \rightarrow_S S_F \quad \delta_F(2) \rightarrow_S S_F \]
\[\delta_L(1) \rightarrow_S S_L \quad \delta_L(2) = \max (a_{FL} b_L(3) \delta_F(1), a_{LL} b_L(3) \delta_L(1)) \]

\[X_1 = F \quad X_2 = L \quad X = L \]
Viterbi algorithm, main step: observation is 3

\[o_1 = 4 \quad o_2 = 3 \]

\[X_1 = F \quad X_2 = L \quad X_3 = L \]
Viterbi algorithm, main step: observation is 5

\[\delta_F(3) = \max (a_{FF} \cdot b_F(5) \cdot \delta_F(2), a_{LF} \cdot b_F(5) \cdot \delta_L(2)) \]

\[\psi_F(3) = F \]

\[o_1 = 4 \]
\[o_2 = 3 \]
\[o_3 = 5 \]

\[X_1 = F \]
\[X_2 = L \]
\[X_3 = L \]
Viterbi algorithm, main step: observation is 5
Viterbi algorithm, termination

\[o_1 = 4 \quad o_2 = 3 \quad o_3 = 5 \]

\[\delta_{F}(3) \]

\[\delta_{L}(3) \]

\[X_1 = F \quad X_2 = L \quad X_3 = L \]

\[\delta_f(4) = \max \left(a_{Ff} b_{f(k_f)} \delta_{F}(3), \quad a_{Lf} b_{f(k_l)} \delta_{L}(3) \right) \]
Viterbi algorithm, termination

\[\delta_F(3) \]

\[\delta_L(3) \]

\[\delta_f(4) = \max (a_F b(k_f) \delta_F(3), a_L b(k_f) \delta_L(3)) \]

\[\psi_f(4) = L \]
Viterbi algorithm, backtracing

$o_1 = 4 \quad o_2 = 3 \quad o_3 = 5$

$X_1 = F \quad X_2 = L \quad X_3 = L$

$\psi_f(4) = L$
Viterbi algorithm, backtracing

\[o_1 = 4 \quad o_2 = 3 \quad o_3 = 5 \]

\[X_1 = F \quad X_2 = L \quad X_3 = L \]

\[\psi_f(4) = L \]
Viterbi algorithm, backtracing

$\psi_L(3) = L$

$x_1 = _ \quad x_2 = L \quad x_3 = L$

$\omega_1 = 4 \quad \omega_2 = 3 \quad \omega_3 = 5$
Viterbi algorithm, backtracing

\[o_1 = 4 \quad o_2 = 3 \quad o_3 = 5 \]

\[X_1 = F \quad X_2 = L \quad X_3 = L \]
Viterbi algorithm, backtracing

\[o_1 = 4 \quad o_2 = 3 \quad o_3 = 5 \]

\[x_1 = F \quad x_2 = L \quad x_3 = L \]

\[\psi_L(2) = F \]
Viterbi algorithm, backtracing

\[o_1 = 4 \quad o_2 = 3 \quad o_3 = 5 \]

\[X_1 = F \quad X_2 = L \quad X_3 = L \]
Viterbi algorithm, backtracing

\[o_1 = 4 \quad o_2 = 3 \quad o_3 = 5 \]

\[X_1 = F \quad X_2 = L \quad X_3 = L \]
Viterbi algorithm, backtracing

\[o_1 = 4 \quad o_2 = 3 \quad o_3 = 5 \]

\[
\begin{align*}
S_0 & \rightarrow S_F \\
S_L & \rightarrow S_F \\
S_F & \rightarrow S_F \\
S_F & \rightarrow S_f \\
S_F & \rightarrow S_L \\
S_L & \rightarrow S_L \\
S_L & \rightarrow S_f \\
S_f & \rightarrow S_f \\
\end{align*}
\]

\[X_1 = F \quad X_2 = L \quad X_3 = L \]
Why is it necessary to keep N states at each time step?

- We have convinced ourselves that it's not necessary to keep more than N (“real”) states per time step.
- But could we cut down the table to just a one-dimensional table of T time slots by choosing the probability of the best path overall ending in that time slot, in any of the states?
 - This would be the greedy choice
 - But think about what could happen in a later time slot.
 - You could encounter a zero or very low probability concerning all paths going through your chosen state s_j at time t.
 - Now a state s_k that looked suboptimal in comparison to s_j at time t becomes the best candidate.
 - As we don’t know the future, this could happen to any state, so we need to keep the probabilities for each state at each time slot.
- But thankfully, no more.
Precision and Recall

- So far, we have measured system success in accuracy or agreement in Kappa.
- But sometimes it’s only one type of instances that we find interesting.
- We don’t want a summary measure that averages over interesting and non-interesting instances, as accuracy does.
- In those cases, we use precision, recall and F-measure.
- These metrics are imported from the field of information retrieval, where the difference (in numbers) between interesting and non-interesting examples is particularly high.
- Accuracy doesn’t work well when the types of instances are unbalanced.
True positives, false negatives...

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>TP</td>
<td>FN</td>
<td>TP+FN</td>
</tr>
<tr>
<td>F</td>
<td>FP</td>
<td>TN</td>
<td>FP+TN</td>
</tr>
<tr>
<td>Total</td>
<td>TP+FP</td>
<td>FN+FP</td>
<td>TP+FP+FN+FP</td>
</tr>
</tbody>
</table>

L is the category we are interested in.

- TP are the true positives.
 - The system correctly declared them as positive.
- FN are the false negatives.
 - The system didn’t declare them as a positive, but should have.
- TN are the true negatives.
 - The system didn’t declare them as a positive, and was right.
- FP are the false positives.
 - The system declared them as a positive, but shouldn’t have.
Precision and Recall

System says:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth is:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>TP</td>
<td>FN</td>
<td>TP+FN</td>
</tr>
<tr>
<td>F</td>
<td>FP</td>
<td>TN</td>
<td>FP+TN</td>
</tr>
<tr>
<td>Total</td>
<td>TP+FP</td>
<td>FN+TN</td>
<td>TP+FP+FN+TN</td>
</tr>
</tbody>
</table>

- **Precision of L:** $P_L = \frac{TP}{TP+FP}$
- **Recall of L:** $R_L = \frac{TP}{TP+FN}$
- **F-measure of L:** $F_L = \frac{2P_L R_L}{P_L + R_L}$
- **Accuracy:** $A = \frac{TP+TN}{TP+FP+FN+TN}$
Your task today

Task 8:
- Implement the Viterbi algorithm.
- Run it on the dice dataset and measure precision of L (P_L), recall of L (R_L) and F-measure of L (F_L).
Literature