8: Hidden Markov Models
Machine Learning and Real-world Data

Andreas Vlachos
(slides adapted from Simone Teufel and Helen Yannakoudakis)

Department of Computer Science and Technology
University of Cambridge
- So far we’ve looked at (statistical) classification.
- Experimented with different ideas for sentiment detection.
- Let us now talk about . . .
So far we’ve looked at (statistical) classification.
Experimented with different ideas for sentiment detection.
Let us now talk about . . . the weather!
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?

\[
P(w_t = \text{Rainy} | w_{t-1} = \text{Rainy}, w_{t-2} = \text{Cloudy}, w_{t-3} = \text{Cloudy}, w_{t-4} = \text{Rainy})
\]

Markov Assumption (first order):

\[
P(w_t | w_{t-1}, w_{t-2}, ..., w_1) \approx P(w_t | w_{t-1})
\]

The joint probability of a sequence of observations/events can then be approximated as:

\[
P(w_1, w_2, ..., w_t) \approx n \prod_{t=1}^{t} P(w_t | w_{t-1})
\]
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:
 \[
P(w_t = \text{Rainy} \mid w_{t-1} = \text{Rainy}, w_{t-2} = \text{Cloudy}, w_{t-3} = \text{Cloudy}, w_{t-4} = \text{Rainy})
\]
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:
 \[P(w_t = \text{Rainy} \mid w_{t-1} = \text{Rainy}, w_{t-2} = \text{Cloudy}, w_{t-3} = \text{Cloudy}, w_{t-4} = \text{Rainy}) \]
- **Markov Assumption** (first order):
 \[P(w_t \mid w_{t-1}, w_{t-2}, \ldots, w_1) \approx P(w_t \mid w_{t-1}) \]
Weather prediction

- Two types of weather: rainy and cloudy
- The weather doesn’t change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations:
 \[P(w_t = \text{Rainy} \mid w_{t-1} = \text{Rainy}, w_{t-2} = \text{Cloudy}, w_{t-3} = \text{Cloudy}, w_{t-4} = \text{Rainy}) \]
- **Markov Assumption** (first order):
 \[P(w_t \mid w_{t-1}, w_{t-2}, \ldots, w_1) \approx P(w_t \mid w_{t-1}) \]
- The joint probability of a sequence of observations / events can then be approximated as:
 \[P(w_1, w_2, \ldots, w_t) \approx \prod_{t=1}^{n} P(w_t \mid w_{t-1}) \]
Markov Chains

Today

Tomorrow

\[
\begin{array}{cc}
\text{Rainy} & \text{Cloudy} \\
0.7 & 0.3 \\
0.3 & 0.7 \\
\end{array}
\]

Transition probability matrix
Markov Chains

Transition probability matrix

\[
\begin{pmatrix}
\text{Rainy} & \text{Cloudy} \\
0.7 & 0.3 \\
0.3 & 0.7
\end{pmatrix}
\]

Two states: rainy and cloudy
Markov Chains

Transition probability matrix

\[
\begin{bmatrix}
\text{Rainy} & \text{Cloudy} \\
0.7 & 0.3 \\
0.3 & 0.7
\end{bmatrix}
\]

A Markov Chain is a stochastic process that embodies the Markov Assumption

- Can be viewed as a probabilistic finite-state automaton

- States are fully observable, finite and discrete; transitions are labelled with transition probabilities

- Models **sequential** problems – your current situation depends on what happened in the past
Markov Chains

- Useful for modeling the probability of a sequence of events
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)
 - Predictive texting
Markov Chains

- Useful for modeling the probability of a sequence of events that can be unambiguously observed
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)
 - Predictive texting
Markov Chains

- Useful for modeling the probability of a sequence of events that can be unambiguously observed
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)
 - Predictive texting
- What if we are interested in events that are not unambiguously observed?
Markov Model
Markov Model: A Time-elapsed view
Hidden Markov Model: A Time-elapsed view

- Underlying Markov Chain over hidden states
- We only have access to the observations at each time step
- There is no 1:1 mapping between observations and hidden states
- A number of hidden states can be associated with a particular observation, but the association of states and observations is governed by probabilities
- We now have to infer the sequence of hidden states that corresponds to the sequence of observations
Hidden Markov Model: A Time-elapsed view

Transition probabilities

\[P(w_t|w_{t-1}) \]

Emission probabilities

\[P(o_t|w_t) \]

(Observation likelihoods)

Hidden States

- **Rainy**
 - Transition probabilities:
 - \(P(\text{Rainy}|\text{Rainy}) = 0.7 \)
 - \(P(\text{Rainy}|\text{Cloudy}) = 0.3 \)
- **Cloudy**
 - Transition probabilities:
 - \(P(\text{Cloudy}|\text{Rainy}) = 0.3 \)
 - \(P(\text{Cloudy}|\text{Cloudy}) = 0.7 \)

Observed States

- **Umbrella**
 - Emission probabilities:
 - \(P(\text{Umbrella}|\text{Rainy}) = 0.9 \)
 - \(P(\text{Umbrella}|\text{Cloudy}) = 0.2 \)
- **No umbrella**
 - Emission probabilities:
 - \(P(\text{No umbrella}|\text{Rainy}) = 0.1 \)
 - \(P(\text{No umbrella}|\text{Cloudy}) = 0.8 \)

\[\begin{bmatrix}
 0.7 & 0.3 \\
 0.3 & 0.7 \\
\end{bmatrix} \]

\[\begin{bmatrix}
 0.9 & 0.1 \\
 0.2 & 0.8 \\
\end{bmatrix} \]
Hidden Markov Model: A Time-elapsed view – start and end states

- Could use initial probability distribution over hidden states
- Instead, for simplicity, we will also model this probability as a transition, and we will explicitly add a special start state
- Similarly, we will add a special end state to explicitly model the end of the sequence
- Special start and end states not associated with “real” observations
More formal definition of Hidden Markov Models; States and Observations

\[S_e = \{s_1, \ldots, s_N\} \]
a set of \(N \) emitting hidden states,
\[s_0 \]
a special start state,
\[s_f \]
a special end state.

\[K = \{k_1, \ldots k_M\} \]
an output alphabet of \(M \) observations ("vocabulary").
\[k_0 \]
a special start symbol,
\[k_f \]
a special end symbol.

\[O = O_1 \ldots O_T \]
a sequence of \(T \) observations, each one drawn from \(K \).

\[X = X_1 \ldots X_T \]
a sequence of \(T \) states, each one drawn from \(S_e \).
More formal definition of Hidden Markov Models; First-order Hidden Markov Model

1. **Markov Assumption (Limited Horizon):** Transitions depend only on the current state:

 \[P(X_t|X_1...X_{t-1}) \approx P(X_t|X_{t-1}) \]

2. **Output Independence:** Probability of an output observation depends only on the current state and not on any other states or any other observations:

 \[P(O_t|X_1...X_t, ..., X_T, O_1, ..., O_t, ..., O_T) \approx P(O_t|X_t) \]
More formal definition of Hidden Markov Models; State Transition Probabilities

\(a_{ij} \) is the probability of moving from state \(s_i \) to state \(s_j \):

\[
a_{ij} = P(X_t = s_j | X_{t-1} = s_i) \\
\forall i \sum_{j=0}^{N+1} a_{ij} = 1
\]

Special start state \(s_0 \) and end state \(s_f \):

- Not associated with “real” observations
- \(a_{0i} \) describe transition probabilities out of the start state into state \(s_i \)
- \(a_{if} \) describe transition probabilities into the end state
- Transitions into start state (\(a_{i0} \)) and out of end state (\(a_{fi} \)) undefined
More formal definition of Hidden Markov Models; State Transition Probabilities

\[A: \text{ a state transition probability matrix of size } (N+2) \times (N+2). \]

\[A = \begin{bmatrix}
- & a_{01} & a_{02} & a_{03} & \ldots & a_{0N} & - \\
- & a_{11} & a_{12} & a_{13} & \ldots & a_{1N} & a_{1f} \\
- & a_{21} & a_{22} & a_{23} & \ldots & a_{2N} & a_{2f} \\
- & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
- & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
- & a_{N1} & a_{N2} & a_{N3} & \ldots & a_{NN} & a_{Nf} \\
- & - & - & - & - & - & -
\end{bmatrix} \]

\(a_{ij} \) is the probability of moving from state \(s_i \) to state \(s_j \):

\[a_{ij} = P(X_t = s_j | X_{t-1} = s_i) \]

\[\forall i \sum_{j=0}^{N+1} a_{ij} = 1 \]
More formal definition of Hidden Markov Models; State Transition Probabilities

\(A \): a state transition probability matrix of size \((N+2) \times (N+2)\).

\[
A = \begin{bmatrix}
- & a_{01} & a_{02} & a_{03} & \cdots & a_{0N} & - \\
- & a_{11} & a_{12} & a_{13} & \cdots & a_{1N} & a_{1f} \\
- & a_{21} & a_{22} & a_{23} & \cdots & a_{2N} & a_{2f} \\
- & & & & & \cdots \\
- & & & & & \cdots \\
- & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
- & a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} & a_{Nf} \\
- & - & - & - & - & - & -
\end{bmatrix}
\]

\(a_{ij} \) is the probability of moving from state \(s_i \) to state \(s_j \):

\[
a_{ij} = P(X_t = s_j | X_{t-1} = s_i)
\]

\[
\forall_i \sum_{j=0}^{N+1} a_{ij} = 1
\]
More formal definition of Hidden Markov Models; State Transition Probabilities

\[A: \] a state transition probability matrix of size \((N+2) \times (N+2)\).

\[
A = \begin{bmatrix}
- & a_{01} & a_{02} & a_{03} & \ldots & a_{0N} & - \\
- & a_{11} & a_{12} & a_{13} & \ldots & a_{1N} & a_{1f} \\
- & a_{21} & a_{22} & a_{23} & \ldots & a_{2N} & a_{2f} \\
- & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
- & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
- & a_{N1} & a_{N2} & a_{N3} & \ldots & a_{NN} & a_{Nf} \\
- & - & - & - & - & - & -
\end{bmatrix}
\]

\(a_{ij}\) is the probability of moving from state \(s_i\) to state \(s_j\):

\[
a_{ij} = P(X_t = s_j | X_{t-1} = s_i)
\]

\[
\forall i \sum_{j=0}^{N+1} a_{ij} = 1
\]
More formal definition of Hidden Markov Models; State Transition Probabilities

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

\[
A = \\
\begin{bmatrix}
-a_{01} & a_{02} & a_{03} & \cdots & a_{0N} & - \\
-a_{11} & a_{12} & a_{13} & \cdots & a_{1N} & a_{1f} \\
-a_{21} & a_{22} & a_{23} & \cdots & a_{2N} & a_{2f} \\
& & & \ddots & & \\
& & & & & \ddots \\
-a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} & a_{Nf} \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
\end{bmatrix}
\]

a_{ij} is the probability of moving from state s_i to state s_j:

\[
a_{ij} = P(X_t = s_j | X_{t-1} = s_i)
\]

\[
\forall i \sum_{j=0}^{N+1} a_{ij} = 1
\]
More formal definition of Hidden Markov Models; Emission Probabilities

\[B: \text{ an emission probability matrix of size } (M + 2) \times (N + 2). \]

\[
B = \begin{bmatrix}
 b_0(k_0) & - & - & - & - & - & - & - & - & - \\
 - & b_1(k_1) & b_2(k_1) & b_3(k_1) & . & . & . & b_N(k_1) & - \\
 - & b_1(k_2) & b_2(k_2) & b_3(k_2) & . & . & . & b_N(k_2) & - \\
 - & . & . & . & & & & & - \\
 - & . & . & . & & & & & - \\
 - & b_1(k_M) & b_2(k_M) & b_3(k_M) & . & . & . & b_N(k_M) & - \\
 - & . & . & . & - & - & - & - & - & b_f(k_f)
\end{bmatrix}
\]

\[b_i(k_j) \] is the probability of emitting vocabulary item \(k_j \) from state \(s_i \):

\[b_i(k_j) = P(O_t = k_j | X_t = s_i) \]

Our HMM is defined by its parameters \(\mu = (A, B) \).
More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size $(M + 2) \times (N + 2)$.

\[
B = \begin{bmatrix}
 b_0(k_0) & - & - & - & - & - & - & - & - & - \\
 - & b_1(k_1) & b_2(k_1) & b_3(k_1) & . & . & . & b_N(k_1) & - \\
 - & b_1(k_2) & b_2(k_2) & b_3(k_2) & . & . & . & b_N(k_2) & - \\
 - & b_1(k_M) & b_2(k_M) & b_3(k_M) & . & . & . & b_N(k_M) & - \\
 - & - & - & - & - & - & - & - & - & b_f(k_f)
\end{bmatrix}
\]

$b_i(k_j)$ is the probability of emitting vocabulary item k_j from state s_i:

\[
b_i(k_j) = P(O_t = k_j | X_t = s_i)
\]

Our HMM is defined by its parameters $\mu = (A, B)$.
Examples where states are hidden

- **Speech recognition**
 - Observations: audio signal
 - States: phonemes
- **Part-of-speech tagging (assigning tags like Noun and Verb to words)**
 - Observations: words
 - States: part-of-speech tags
- **Machine translation**
 - Observations: target words
 - States: source words
Today’s task: the dice HMM

- Imagine a fraudulent croupier in a casino where customers bet on dice outcomes
- She has two dice – a fair one and a loaded one
- The fair one has the standard distribution of outcomes – $P(O) = \frac{1}{6}$ for each number 1 to 6.
- The loaded one has a different distribution
- She secretly switches between the two dice
- You don’t know which dice is currently in use. You can only observe the numbers that are thrown.
Today’s task: the dice HMM

States: fair and loaded, plus special states s_0 and s_f.

Distribution of observations differs between the states.
Today’s task: the dice HMM

- States: fair and loaded, plus special states \(s_0 \) and \(s_f \).
- Distribution of observations differs between the states.
Today’s task: the dice HMM

- States: fair and loaded, plus special states s_0 and s_f.
- Distribution of observations differs between the states.
Today’s task: the dice HMM

- States: fair and loaded, plus special states s_0 and s_f.
- Distribution of observations differs between the states.
Today’s task: the dice HMM

- States: fair and loaded, plus special states s_0 and s_f.
- Distribution of observations differs between the states.
Fundamental tasks with HMMs

- **Problem 1** (Labelled Learning)
 - Given a parallel observation and state sequence O and X, learn the HMM parameters A and B \today

- **Problem 2** (Unlabelled Learning)
 - Given an observation sequence O (and only the set of emitting states S_e), learn the HMM parameters A and B

- **Problem 3** (Likelihood)
 - Given an HMM $\mu = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\mu)$

- **Problem 4** (Decoding)
 - Given an observation sequence O and an HMM $\mu = (A, B)$, discover the best hidden state sequence X \ Task 8
Your Task today

Task 7:

- Your implementation performs labelled HMM learning, i.e. it has
 - Input: dual tape of state and observation (dice outcome) sequences X and O
 - Output: HMM parameters A, B

- Note: you will in a later task use your code for an HMM with more than two states. Either plan ahead now or modify your code later
Parameter estimation of HMM parameters A, B

- Transition matrix A consists of transition probabilities a_{ij}

 \[a_{ij} = P(X_{t+1} = s_j | X_t = s_i) \sim \frac{\text{count}_{\text{trans}}(X_t = s_i, X_{t+1} = s_j)}{\text{count}_{\text{trans}}(X_t = s_i)} \]

- Emission matrix B consists of emission probabilities $b_i(k_j)$

 \[b_i(k_j) = P(O_t = k_j | X_t = s_i) \sim \frac{\text{count}_{\text{emission}}(O_t = k_j, X_t = s_i)}{\text{count}_{\text{emission}}(X_t = s_i)} \]

- (Add-one smoothed versions of these)
Literature