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1 Introduction

These notes provide a reminder of some simple manipulations that turn up a great deal when dealing
with probabilities. The material in this handout—assuming you know it well—should suffice for
getting you through most of the AI material on uncertain reasoning. In particular, the boxed results
are the really important ones.

Random variables (RVs) are by convention given capital letters. Saywe have the RVsX1, . . . , Xn.
Their values are given using lower case. So for example X1 might be a binary RV taking val-
ues true and false, and X2 might be the outcome of rolling a die and therefore taking values
{ , , , , . }.

The use of probability in AI essentially reduces to representing in some usable way the joint
distribution Pr (X1, . . . , Xn) of all the RVs our agent is interested in, because if we can do that then
in principle we can compute any probability that might be of interest. (This is explained in full
below.)

To be clear, the joint distribution is talking about the conjunction of the RVs. We’ll stick to the
convention that a comma-separated list of RVs (or a set of RVs) represents a conjunction. Also, the
notation ∑

xi∈Xi

(. . . xi . . .)

denotes the sum over all values of a random variable. So for example if X1 is binary then∑
x1∈X1

Pr (x1, X2) = Pr (true, X2) + Pr (false, X2)) . (1)

This sum can itself take on multiple values, one for each value of X2. This all extends to summing
over sets of RVs. Let’s define

X = {X1, . . . , Xn}

and the subset
X′ = {X ′

1, . . . , X
′
m} ⊆ X.

Then for any sets X and X′ ⊆ X of RVs define X\X′ to be the set X with the elements of X′

removed
X\X′ = {X ∈ X|X ̸∈ X′}.

We’ll always be assuming thatX′ ⊆ X. Finally∑
x′∈X′

(
. . . , x′1, . . . , x

′
m, . . .

)
means ∑

x′
1∈X′

1

∑
x′
2∈X′

2

· · ·
∑

x′
m∈X′

m

(
. . . , x′1, . . . , x

′
m, . . .

)
,

and is itself a function of the RVs in X\X′.
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2 Standard trick number 1: marginalising

Marginalising is the process of getting rid of RVs that we don’t want to have to think about—although
in some cases it’s used the other way around to introduce RVs. In general, say we want to ignore
Xi. Then

Pr (X\{Xi}) =
∑
xi∈Xi

Pr (X) .

So for example withX = {X1, X2}, equation 1 is actually telling us that
Pr (X2) = Pr (X\{X1})

=
∑

x1∈X1

Pr (x1, X2)

= Pr (true, X2) + Pr (false, X2) .

This can obviously be iterated for as many RVs as we like, so if X′ is the set of random variables
we’re not interested in then

Pr
(
X\X′) = ∑

x′∈X′

Pr (X) .

These notes assume for the most part that RVs are discrete. Everything still applies when continuous
RVs are involved1, but sums are then replaced by integrals. For example, we canmarginalise the two-
dimensional Gaussian density

p(x1, x2) =
1

2π
exp

(
−1

2

(
x21 + x22

))
as follows

p(x1) =
1

2π

∫ ∞

−∞
exp

(
−1

2

(
x21 + x22

))
dx2.

(And it turns out that this is itself Gaussian, as we shall see in the lectures.)

3 Standard trick number 2: you can treat a conjunction of RVs as an
RV

When we consider events such as X1 = true and X2 = , the conjunction of the events is also an
event. This goes for any number of events, and any number of RVs as well. Why is that interesting?
Well, Bayes’ theorem usually looks like this

Pr (X|Y ) =
Pr (Y |X) Pr (X)

Pr (Y )
.

However as a conjunction of RVs can be treated as an RV we can also write things like

Pr (X1, X5|X2, X3, X10) =
Pr (X2, X3, X10|X1, X5) Pr (X1, X5)

Pr (X2, X3, X10)

and Bayes’ theorem still works.
1Aword of caution here. If one wishes to be fully rigorous in dealing with probabilities then care is required in referring

to a probability distribution or density, whether certain items aremeasurable and so on. In most machine learning material,
such things tend to be taken for granted without incident.
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4 Standard trick number 3: conditional distributions are still distri-
butions

This is perhaps the point I want to make that’s most often missed: a conditional probability distribu-
tion is still a probability distribution. Consequently the first two tricks extend to them without any
extra work—you simply apply them while leaving the conditioning RVs (the ones on the right hand
side of the | in Pr (. . . | . . .)) alone. So, for instance, we can write

Pr (X1|X3) =
∑

x2∈X2

Pr (X1, X2|X3)

or in general for sets of RVs

Pr (X|Z) =
∑
y∈Y

Pr (X,Y|Z) .

Quite often this trick is used to introduce extra RVs in Y rather than eliminate them. The reason
for this is that you can then try to re-arrange the contents of the sum to get something useful. In
particular you can often use the following further tricks.

Just as marginalisation still works for conditional distributions, so do Bayes’ theorem and related
ideas. For example, the definition of a conditional distribution looks like this

Pr (X|Y ) =
Pr (X,Y )

Pr (Y )
(2)

so
Pr (X,Y ) = Pr (X|Y ) Pr (Y ) .

As the left-hand side of this equation is a joint probability distribution, and conjunctions of RVs act
like RVs, we can extend this to arbitrary numbers of RVs to get, for example

Pr (X1, X2, X3) = Pr (X1|X2, X3) Pr (X2, X3)

= Pr (X1|X2, X3) Pr (X2|X3) Pr (X3) .

What’s more useful however is to note that Bayes’ theorem is obtained from equation 2 and its twin

Pr (Y |X) =
Pr (X,Y )

Pr (X)

by a simple re-arrangement. How might this work if we have conjunctions of random variables?
Consider

Pr (X|Y,Z) =
Pr (X,Y, Z)

Pr (Y,Z)

and its twin
Pr (Y |X,Z) =

Pr (X,Y, Z)

Pr (X,Z)

both of which follow from the definition of conditional probability. Re-arranging to eliminate the
Pr (X,Y, Z) gives

Pr (X|Y, Z) =
Pr (Y |X,Z) Pr (X,Z)

Pr (Y,Z)
.
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We now have two smaller joint distributions Pr (Y, Z) and Pr (X,Z) which we can split to give

Pr (X|Y, Z) =
Pr (Y |X,Z) Pr (X|Z) Pr (Z)

Pr (Y |Z) Pr (Z)

=
Pr (Y |X,Z) Pr (X|Z)

Pr (Y |Z)

or in general, with sets of RVs

Pr (X|Y,Z) =
Pr (Y|X,Z) Pr (X|Z)

Pr (Y|Z)
. (3)

A word of warning. As conditional distributions are still distributions, it must always be the case
that ∑

x∈X
Pr (X|Y) = 1

regardless of the value ofY. It is not however necessarily the case that∑
y∈Y

Pr (X|Y) = 1.

Do not get this the wrong way around!

5 How to (in principle) compute absolutely anything

Say you want to compute a conditional probability Pr (X|Z). By definition

Pr (X|Z) = Pr (X,Z)

Pr (Z)

and if the complete collection of all the RVs our agent is interested in is {X,Y,Z} then both the nu-
merator and the denominator can be computed by marginalising the joint distribution Pr (X,Y,Z).
In fact as the denominator serves essentially just to make the left hand side sum to 1 (when we sum
overX) so that it’s a proper probability distribution, we often treat it just as a constant and write

Pr (X|Z) = 1

Z

∑
y∈Y

Pr (X,Y,Z) .

The quantity Z is called the partition function if you’re a physicist or evidence if you’re a computer
scientist, for reasons that will become clear during the lectures. Clearly

Z =
∑

x∈X,y∈Y
Pr (X,Y,Z) .
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6 Further tricks

We now look at some further simple manipulations that are needed to understand the application of
Bayes’ theorem to supervised learning. Once again, random variables are assumed to be discrete, but
all the following results still hold for continuous random variables, with sums replaced by integrals
where necessary.

6.1 Some (slightly) unconventional notation

In the machine learning literature there is a common notation intended to make it easy to keep track
of which random variables andwhich distributions are relevant in an expression. While this notation
is common within the field, it’s rarely if ever seen elsewhere; it is however very useful.

A statistician would define the expected value of the random variable X as

E [X] =
∑
x∈X

xPr (x)

or when we’re interested in the expected value of a function of a random variable

E [f(X)] =
∑
x∈X

f(x)Pr (x)

where f is some function defined on X . Here, it is implicit that the RV X has some probability
distribution, which we will denote by P (X). With complex expressions involving combinations of
functions defined on random variables with multiple underlying distributions it can be more tricky
to keep track of which distributions are relevant. Thus the notation

Ex∼P (X) [f(X)]

is intended to indicate explicitly that the distribution of X is P (X), in situations where we don’t
write out the full definition

Ex∼P (X) [f(X)] =
∑
x∈X

f(x)Pr (x)

to make it clear. The same notation is also often applied to statements about probabilities rather than
expected values.

6.2 Expected value and conditional expected value

The standard definition of the expected value of a function f of a random variable X is

Ex∼P (X) [f(X)] =
∑
x∈X

f(x)Pr (x)

as already noted. We can also define the conditional expected value of f(X) given Y as
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Ex∼P (X|Y ) [f(X)|Y ] =
∑
x∈X

f(x)Pr (x|Y ) .

Now here’s an important point: the value of this expression depends on the value of Y . Thus, the
conditional expected value is itself a function of the random variable Y . What is its expected value?
Well

Ey∼P (Y )

[
Ex∼P (X|Y ) [f(X)|Y ]

]
=

∑
y∈Y

Ex∼P (X|Y ) [f(X)|Y ] Pr (y)

=
∑
y∈Y

∑
x∈X

f(x)Pr (x|y) Pr (y)

=
∑
y∈Y

∑
x∈X

f(x)Pr (x, y)

=
∑
x∈X

f(x)
∑
y∈Y

Pr (x, y)

=
∑
x∈X

f(x)Pr (x)

= Ex∼P (X) [f(X)]

or in the more usual notation

E [E [f(X)|Y ]] = E [f(X)] .

6.3 Expected value of the indicator function

For any b ∈ {true, false} the indicator function I is defined as

I [b] =

{
1 if b = true

0 if b = false
.

Let f be a Boolean-valued function on a random variable X . Then

Ex∼P (X) [I [f(x)]] =
∑
x∈X

I [f(x)] Pr (x)

=
∑

x∈X,f(x) is true

I [f(x)] Pr (x) +
∑

x∈X,f(x) is false

I [f(x)] Pr (x)

=
∑

x∈X,f(x) is true

Pr (x)

= Px∼P (x) [f(x) = true]

.

6



In other words, the probability of an event is equal to the expected value of its indicator function.
This provides a standard method for calculating probabilities by evaluating expected values. So for
example if we roll a fair die and consider f(X) to be true if and only if the outcome is even then

Pr (outcome is even) = E [I [f(X)]] = 1/6 + 1/6 + 1/6 = 1/2

as expected.
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