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Inertial Measurement Unit

* Accelerometer
* Gyroscope

* Magnetometer




Accelerometer
* Measures rate of change of velocity along three
orthogonal axes of smartphone
* Output: gravitational units (g) or meters per
seconds squared (m/s?); positive or negative
depending on the orientation of smartphone

Gyroscope
* Measures angular velocity around three
orthogonal axes of smartphone
* Output: radians per second (rad/s);
positive or negative depending on the
direction of rotation X

+Z

Magnetometer
* Measures strength of Earth’s magnetic field relative
to three orthogonal axes of smartphone
* Output: microtesla (uT); positive or negative
depending on the orientation of smartphone
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Accelerometer

* Measures the change in speed with
respect to time.
* More informative than just speed.
* Speed can be deduced.

 Capacitor (vibration)
* Piezoelectric

* Current devices have
accelerometers measuring
movement in the three orthogonal
axis.
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Gyroscope: an intuition

* Gyroscopes use vibration to measures the rate of rotation.
* In practice it measures the rate of rotation wrt to each axis
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Step Count e

< Summary Steps Add Data
* Wearables already use IMUs to offer 8,435...:

activity indicators

* However no automatic (more

refined) activity recognition in most ”,, LHH,H‘“JM
cases...

Highlights Show All

O Steps

On average, this year's step count is
higher than last year'’s.

7, 458 steps/day
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Activity Recognition
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Considerations

* Position of the device might change the signals.
* Different sensors sense different patterns.

* Does it change from person to person.

* What about sampling?
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Sampling
* Generally between 20 and 30 Hz.

* Some studies try to research the trade offs of sampling frequency and
activity detection because sampling affects device battery...

* 10Hz enough to distinguish activity from smartphone IMUs and 20Hz for
mode of transport [1].
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PreprOCESSi ng walking — d:d.i.g walking " _standing
" L p—

removed samples
A labels are realigned (by eye) V\W\N\M‘W—‘“ﬁw Nwm““lwlj J

B samples are removed to balance data
C missing data is filled with adjacent data C d

D removing components, denoising: high WWMW{MM”\V“-’M VWA A et~
frequency noise cancellation.

E (see next slides ..magnitude): aggregation e

» inserted samples \removed components
F rotate to different coordinate system WW‘W\NM i A WMMWWW‘M”‘%

WWM/Signal nOrm_l IMM%’M“%“A’M' &\ T
L Kz A — rotated signal
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Signal Filtering
* Removing certain frequencies

* Example
* Low pass filter: passes low frequencies and attenuates high frequencies.
* Band-pass filter: only frequencies in a frequency band are passed.

raw acceleration in 3 axis
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Preprocessing: Magnitude

/S|gnal norm-1
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Gravitational and Body Force Separation
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Data Segmentation

* Localize temporal patterns of interest
* But you do not know what/where these are...

* Sliding window approach
* |ssues: window length, overlap, window label choice...

B UNIVERSITY OF
¥ CAMBRIDGE

14




Sliding Window with 50% overlap

* Let’s fix the window size, define a 50% overlap
* One can change window size and overlap
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Segmented Samples to Prediction

* For each sample further analysis is applied to reach a prediction, for
example:

* A number of features are extracted on a sample and a classifier is used to use
these to decide on the class label for a sample.

* The sample raw data is fed into a deep learning network which gets to a
softmax probability offering a classification output.
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Traditional Inference Pipeline

Sensors
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Mapping Classes with Windows

class1 class2
Groundtruth _—
Sensor channell N A _;

Sensor channel2 /\f\/\ /\J/\/W \\/\/\/\'/
Al N~ —
Sensor channel3 m/\‘/\/\/ :
S Szl [

S | Label:class1 : i
Strategy 1: e | | Label:class2 fl)Usmg The frequent
.- . : 5 abel over the sequence
Sliding window labelling ’
S, | | Label:class2 (2)Using the label

S, I I Label:class2 at the last time step

Zhang, Yong & Zhang, Yu & Zhang, Zhao & Bao, Jie & Song, Yunpeng. (2018).
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Sampling Rate

Recognition performance

Sampling rate has impact on battery 0.9 ' ‘ . ' ' 55
Here is an approach that defines a function to allow lowering 0.8} & [10.99
sampling rate while keeping a similarity with the original curve. 0.7 $ Lk
(]
, , _ £ 0.6} ¢
Histogram shows that when using this method the performance o
2] L
are not affected much. & 09
Y04}
= 0.
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Dataset #Classes  Original = Optimal sampling rates dE, 0.3F
Q(Hz2) G(8§=095)(Hz) 4(S8=0.99)(Hz) 02t
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Class Prediction Problem

* Predict activity given a window of movement data.
* Predict activity given multiple windows of movement data.

* Predict the activity sequence given multiple windows of movement
data.

* Predict activity given a sequence of movement data for a pre-
segmented activity.

* Predict activity cessation or transition given a window of movement
data.

* Predict a stationary or non-stationary activity given a window of
movement data
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Feature Extraction

* Distribution of x,y, z axis acceleration per window for various activities

overall close dishwasher open drawer drink cup
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Physical Activity using Accelerometer

* Activities: sitting, standing,
waking, running

ADC

e Feature examples:
* Mean (can help distinguish
between standing and sitting).
e Standard deviation

* Number of peaks (can help
distinguish between waking
and running).

ADC

ADC

ADC
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Classification: a Recap!

Feature extraction produces a feature vector.

The classification matches the feature vector to a pre-defined set of classes.

The classification engine is typically based on machine-learning techniques
and is trained using labelled training data.

Common classification algorithms include:
* K Nearest Neighbour.
* Naive Bayes classifier.

* Decision Trees.
 Hidden Markov Models.
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Activity Recognition Classification

opening a window

e | Q/J o Activities
\

closing a window

watering a plant
turning book pages

drinking from a bottle
cutting with a knife
chopping with a knife

stirring in a bowl

forehand
backhand

and smash
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Sensors Raw data Preprocessing Segmentation Feature Extraction Classification
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Classification Results: Person Dependence and
Multiple Sensors

°r 941 B Al data

90 b Precision
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Confusion Matrix on Activities
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Water plant
Close window
Cut

Chop

Stir

Book
Forehand
Backhand
Smash

/precision

24267
3849
3984
3984
3891
2940
2895
4947
4560
3195
3003
1860

38.29 38.64 49.59 36.13

168
39
27

330

207
57

21

& bo&
& elassification q,(‘b é\b
¢ Cd X R & 6* ‘ép €§9 dg>
¥ & F R &S
3208 48 24 60 75 45 3 85.42
291 48 12 9 24 29.26
321 3 9 41.89
3735 21 57 15 40.11
945 19.35
450 PEsEEN 46 3 61.55
153 909 | 6742 126 55.06
42 21 a74  s61 [JESSEl 207 40.60
951 34 1725 co |JEEEEN 46.09
144 609 9 66 3 969 6 3 18.17
21 3 6 24 33 1302 28.18
78 185 42 45 ise7n 137 [l 5.47
61.59 78.06 66.14 95.56 93.81 38.21 89.92 98.71

27



Gait analysis

e Gait is indicative of musculoskeletal and
neurological diseases such as Parkinson’s \..._

disease, Alzheimer’s disease, multiple
sclerosis and osteoarthritis.

M. Ullrich, A. Kuderle, J. Hannink, S. Del Din, H. GalBner, F. Marxreiter, J. Klucken, B. Eskofier,F. Kluge. Detection of Gait From
Continuous Inertial Sensor Data Using Harmonic Frequencies. JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. 2020.



The Sensor and the Setting...

* Training set: 150 gait analysis recordings of 121 patients in hospital

* Validation set: 203 gait recordings from 7 PD patients at their home

* Exercises:
1. 2x10 m walk with a break at the turning point (2x10m) 2)
2. 4x10 m walk without stops at turning points
3. (4x10m) 3) 2-minute walk back and forth along a straight path of 25 m
(2min)
4. Tapping on the ground with the heel (heel)
5. Tapping on the ground with heel and toes alternately (heel-toe)
6. Circular movement of the foot (circling) "

N
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Data Processing

* Norm of accelerometer and gyroscope for |83d| _ \/32 4 g2 4 g2
. - T Yy )
window used to detect movement. If
above a threshold accept sequence.

* Low pass filter (cut off 6Hz).

Use FFT to find important frequencies.

accuorm (Raw signal)

Uses autocorrelation to measure peaks = ol MMMMAVMMAMMM,

(and harmonic frequencies)

0 2 4 6 8 10
N—l—m Time [s]

R ( ]n> — E S ( ”) g ( n+ /7?) accporm (Frequency spectrum)

n=0

Use these to decide if to keep this window. = ;\M}\4 Jé\‘~'~é —,

7
Frequency [Hz]
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Autocorrelation to measure period

/
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Some Results

Gyroscope

deg/s]

[deg/s]

B
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Lab Data Set
Sensitivity
Specificity
Youden index

Opt. Peak Prom.

0.97 (0.03)
0.95 (0.02)
0.92 (0.02)

0.94 (0.04)
0.96 (0.01)
0.90 (0.04)

0.98 (0.01)
0.96 (0.02)
0.94 (0.01)

0.89 (0.04)
0.81 (0.04)
0.70 (0.06)
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Parkinson’s and Wrist Worn Accelerometer
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Article

Detection of Parkinson’s Disease Using Wrist Accelerometer
Data and Passive Monitoring

Elham Rastegari 1'*, Hesham Ali ? and Vivien Marmelat 3

Department of Business Intelligence and Analytics, Business College, Creighton University,

Omaha, NE 68178, USA

Department of Biomedical Informatics, College of Information Systems and Technology, University of
Nebraska at Omaha, Omaha, NE 68182, USA

Department of Biomechanics, College of Education, Health and Human Sciences, University of Nebraska at
Omaha, Omaha, NE 68182, USA

Correspondence: elhamrastegari@creighton.edu

Abstract: Parkinson’s disease is a neurodegenerative disorder impacting patients’ movement, causing
a variety of movement abnormalities. It has been the focus of research studies for early detection
based on wearable technologies. The benefit of wearable technologies in the domain rises by con-
tinuous monitoring of this population’s movement patterns over time. The ubiquity of wrist-worn
accelerometry and the fact that the wr” =" ’ ) oo

the accelerometer for continuous mor

choice for early detection of the disease Healthy Elderlies PD

use a dataset consisting of one-week w Subjects 32 28

Parkinson’s disease and healthy elderl Gender (M/F) 10/22 20/5

methods, including epoch-based statis Age 642 +7 71 + 6.2
check for were used. Using various machine lea H&Y _ 1.73 + 0.83

undates using the document-of-words method




i UNIVERSITY OF
' CAMBRIDGE

Five Minutes of Data Collected from the Wrist of an
Individual with PD
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Figure 3. First five minutes of raw data collected from the wrist of an individual with PD.
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Features: Two methods

1) Simple accelerometer features (such as magnitude)
2) A bag of words approach

Wrist data segments
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Comparison of methods

Disrtibution of Accuracy Values Using Diferent Statistical Disrtibution of Accuracy Values Using Diferent Document-
Feature Sets of-Words Feature Sets
M 3 sec M 10 sec M 3 sec M 10 sec
M 60 sec M 300 sec B 60 sec B 300 sec
M 900 sec M All Features B 900 sec M All Features

M Reduced Set out of All Features B Rediicad Satcitof Al Faatures
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How many days of data are needed?

* Battery on devices is important
e Can this classification be done with less data?

* |t seems that “at least 3 days of data” are needed to obtain similar
performance (wrt to 7 days tried).
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Public Health (1): Physical Activity

ARTICLE M) Check for updates
Wearable accelerometer-derived physical activity and incident
disease

Shaan Khurshid ("*3, Lu-Chen Weng'-?, Victor Nauffal>*, James P. Pirruccello’>®, Rachael A. Venn'>°, Mostafa A. Al-Alusi’>>,
Emelia J. Benjamin %7, Patrick T. Ellinor '*® and Steven A. Lubitz®">>®

Physical activity is regarded as favorable to health but effects across the spectrum of human disease are poorly quantified. In
contrast to self-reported measures, wearable accelerometers can provide more precise and reproducible activity quantification.
Using wrist-worn accelerometry data from the UK Biobank prospective cohort study, we test associations between moderate-to-
vigorous physical activity (MVPA) - both total MVPA minutes and whether MVPA is above a guideline-based threshold of =150 min/
week—and incidence of 697 diseases using Cox proportional hazards models adjusted for age, sex, body mass index, smoking,
Townsend Deprivation Index, educational attainment, diet quality, alcohol use, blood pressure, anti-hypertensive use. We correct for
multiplicity at a false discovery rate of 1%. We perform analogous testing using self-reported MVPA. Among 96,244 adults wearing
accelerometers for one week (age 62 + 8 years), MVPA is associated with 373 (54%) tested diseases over a median 6.3 years of
follow-up. Greater MVPA is overwhelmingly associated with lower disease risk (98% of associations) with hazard ratios (HRs) ranging
0.70-0.98 per 150 min increase in weekly MVPA, and associations spanning all 16 disease categories tested. Overall, associations
with lower disease risk are enriched for cardiac (16%), digestive (14%), endocrine/metabolic (10%), and respiratory conditions (8%)
(chi-square p < 0.01). Similar patterns are observed using the guideline-based threshold of =150 MVPA min/week. Some of the
strongest associations with guideline-adherent activity include lower risks of incident heart failure (HR 0.65, 95% Cl 0.55-0.77), type
2 diabetes (HR 0.64, 95% Cl 0.58-0.71), cholelithiasis (HR 0.61, 95% Cl 0.54-0.70), and chronic bronchitis (HR 0.42, 95% Cl 0.33-0.54).
When assessed within 456,374 individuals providing self-reported MVPA, effect sizes for guideline-adherent activity are
substantially smaller (e.g., heart failure HR 0.84, 95% Cl 0.80-0.88). Greater wearable device-based physical activity is robustly
associated with lower disease incidence. Future studies are warranted to identify potential mechanisms linking physical activity and
disease, and assess whether optimization of measured activity can reduce disease risk.

npj Digital Medicine (2022)5:131; https://doi.org/10.1038/5s41746-022-00676-9




Accelerometer measured activity 50262 Self reported activity

Individuals in UK Biobank

103,695

459,862 ®
Provided accelerometer data Provided self-reported & 00—
activity data 0—
6,996
Insufficient wear time
3,419
—
4 Missing covariates
Failure of calibration Self-reported
Accelerometer activity sample
sample
432
Missing covariates
4,146 92,098 364,276 69
—
Withdrawn consent
19
Withdrawn consent
96,244 456,374
Primary accelerometer Self-reported
analysis

activity analysis

Disease association testing

{ Moderate-vigorous activity
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Disease association testing
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Public Health (2): Transport Mode Detection

Accelerometer-Based Transportation Mode
Detection on Smartphones /

KNEMATICMOTION | = \
Samuli Hemminki, Petteri Nurmi, Sasu Tarkoma CLASSIFIER
Helsinki Insitute for Information Technology HIIT
PO Box 68, Department of Computer Science A
FI-00014, University of Helsinki, Finland
firstname.lastname@cs.helsinki.fi
STATIONARY
e CLASSIFIER
A L
MOTORISED
CLASSIFIER

\_  s=fkEe
7 UNIVERSITY OF




Method

Low pass filter (retaining 90% of data)

Sliding window of 50%, duration 1.2 secs
 Estimation of gravity component
* Feature extraction

Domain Features

Cl assification(s) Statistical Mean, STD, Variance, Median, Min,

Max, Range, Interquartile range
Kurtosis, Skewness, RMS

Time Integral, Double integral, Auto-Correlation,
Mean-Crossing Rate,

Frequency FFT DC,1,2,3,4,5,6 Hz, Spectral Energy,
Spectral Entropy, Spectrum peak position,
Wavelet Entropy, Wavelet Magnitude

Peak Volume (AuC), Intensity, Length,
Kurtosis, Skewness

Segment Variance of peak features (10 features),

B UNIVERSITY OF Peak frequency (2 features),

4P CAMBRIDGE Stationary duration, Stationary frequency




Scenarios and Patterns

COMPARISON OF STATIONARY AND MOTORISED MODALITIES
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Public Health (3): Mood and Activity

Happier People Live More Active Lives: Using Smartphones to Link
E 7 UNIVERSITY OF Happiness and Physical Activity. PLoS ONE. July 2016. N. Lathia, G. M.

4P CAMBRIDGE Sandstrom, C. Mascolo, P. J. Rentfrow.




Happiness and Accelerometer

Weekday Average Weekend Average
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Questions
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