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The widespread of mobile and wearable devices The power of machine learning and deep learning models
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Automated health monitoring and diagnostics

Image from: https://medium.com/@manasim.letsnurture/rise-of-wearables-and-future-of-wearable-technology-1a4e38a2fbbs,
https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964



CHALLENGHES
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DL models are data hungry

« Transfer learning

Semi-supervised and self-supervised learning

Reduce the need of training data

Reduce the need of annotation

' @ Teacher Model Training |

Labeled Dataset
(e.g. HHAR)

Raw Sensor

Measurements Labels
(HAR)

(e.g.
Accelerometers)

T

Test Set  Training Set

Teacher Model

\ 4

TCNN HAR
Core  Head

| @ Self-Labeling

Large Unlabeled Dataset

g

|

’ @ Student Model Training

Vo

Partially Frozen
CNN Core

Pre-trained Student Model

Student Model
T AR
I: Head
Noised
Task
| . Head €
“_ Flipped
Task
[ Head
|
CNN

Core

Self-labeled HAR Dataset

Raw Sensor
Measurements

Sample Filtering
by Prediction
Confidence

— | —>

9 Signal Transformation '

Generating
Multi-task (Transformation)
Samples and Labels

:

Multi-task Self-labeled Dataset

l

Evaluation Score on
Labeled Dataset

Augmented Data

Noise Negation Flipping

Transformation
Labels

HAR
Labels




GENBERATIV H Al

Generative artificial intelligence (generative Al, GenAl or GAl) is artificial intelligence capable of generating text,
images or other data using generative models. Generative Al models learn the patterns and structure of their
input training data and then generate new data that has similar characteristics.

Generative Model . li

Discriminant Model x ‘ ./
o R

Image from: https://medium.com/@jordi299/about-generative-and-discriminative-models-d8958b67ad32



- Data generation model
- VAE, GAN, Diffusion
- Examples

- Transformer based generative model
« Framework
. Examples

- Foundation model for bio-signals
- Examples




Generative model - VAE
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similarity loss = KL Divergence = Dy (N (g, 0.) || N(0,1))

loss = reconstruction loss + similarity loss

Pinheiro Cinelli, Lucas; et al. (2021). "Variational Autoencoder". Variational Methods for Machine Learning with Applications to Deep Networks



Generative model - GAN
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Train iteratively: Generation:
« Step 1: Freeze D(x) to update G(z) « Step 1: Sample z
« Step 2: Freeze G(x) to update D(x) « Step 2: Use G(z) to generate p

Xu, Dongdong, et al. "Infrared and visible image fusion with a generative adversarial network and a residual network." Applied Sciences 10.2 (2020): 554.



Generative model — Diffusion Models

q(x¢|x¢-1) = N(xs; v1-— Bixt—1, Bil)
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 Forward diffusion process: Iteratively inject given noise to the data
 Reverse diffusion process: Intractable but can be approximated by a UNet

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models."” Advances in neural information processing systems 33 (2020): 6840-6851.



Generative model — Diffusion Models

Scaling transformers for video generation

121:22,25,24:25. oiven input noisy patches (and conditioning

Sora is a diffusion mode
information like text prompts), it’s trained to predict the original “clean” patches.
Importantly, Sora is a diffusion transformer.?° Transformers have demonstrated
remarkable scaling properties across a variety of domains, including language modeling,

13,14 15,16,17,18 27,28,29

computer vision, and image generation.

Sora (openai.com)



https://openai.com/sora?ref=aihub.cn#capabilities

A comparison
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 Data quantity augmentation: enabling more data samples for downstream tasks
« Data quality enhancement:

* Removing noise/artefects Recommend reading: Cao, Hanqun, et al. "A survey on
. Imputing the missenses in the data generative diffusion models." IEEE Transactions on

«  Privacy-preserving data sharing Knowledge and Data Engineering (2024).

Image from: https://medium.com/@marija.jegorova/a-quick-dive-into-diffusion-models-part-1-fundamentals-of-the-ddpms-4de 1304d7b6f



Example 1 : Diffusion model-based EEG generation

Table 1: Quantitative evaluation

Fpz-Cz

““““““““““““““ Dataset FID | |
N Random Sample LDM LDMspec Real
with overlapping Sleep EDFx 11.933 0.308 0.015
SHHS,, 0.936 0.168 0.086
___________ » Encoder ----- - - Forward Diffusion Process -~ —
zZ, 2o 7, FID: Fréchet Inception Distance
' Attention Residual Ty
B U-Net ¢,
Attention Residual
U-Neteg
e Decoder «----- - C]
Z;

min Z Erecons (X, i) + gadv (Xa i) + Ekl(z,ua Zcr) + gspec (Xia i)a

Temporal dynamics reconstruction Spectral feature similarity

Aristimunha, Bruno, et al. "Synthetic Sleep EEG Signal Generation using Latent Diffusion Models." NeurlPS 2023 Workshop DGM4H. 2023.
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Transformer
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Figure 1: The Transformer - model architecture.

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Generative pre-trained Transformer (GPT)

Stage I: Unsupervised pre-training [ ]
Given an unsupervised corpus of tokens U = {u, ..., u, }, we use a standard language modeling
objective to maximize the following likelihood:

Li(U) = Zlogp(uz-uik,...,u“,ﬁ (1)
i Model size is important!
Stage lI: Supervised training [ ]

We assume a labeled dataset C, where each instance consists of a sequence of input tokens,
xl, ..., ™, along with a label y. The inputs are passed through our pre-trained model to obtain
the final transformer block’s activation h;", which is then fed into an added linear output layer with
parameters 11, to predict y:

Ly(C) = ) log P(yl|z',...,a™). (4)
(

x,y)

Radford, Alec, et al. "Improving language understanding by generative pre-training.” (2018).



Emergent abilities of large language models (LLMSs)

1000 ~
v GPT-3 Megatron-Turing
o (175B) NLG (530B)
@
£ 100
o
© Megatron-LM -
= (8.38) Turing-NLG
5 .
10 (17.2B)
15
(11B)

=, GPT-2
g (1.5B)
("]
© BERT-Large
S o1 (340M)
2 .

ELMo

(94M)

0.01
2018 2019 2020 2021 2022

(A) Mod. arithmetic

50

Accuracy (%)
5 B g &
= & & B

<

70
60

50
40

Accuracy (%
R
s 3

—=
o o

—o— LaMDA —a— GPT-3

10'% 10?9 1022 10

(E) TruthfulQA

1024

1022

1020

(F) Grounded mappings

Accuracy (%)

(B) IPA transliterate

70
60
50
40
30
20
10

0

10'% 1020 102 10*

1020 1022 1024

—4— Gopher

—#— Chinchilla

(C) Word unscramble

50

b (o) [y
(=] [=] =

Exact match (%)
=

10'% 10% 10°* 10%

=]

(G) Multi-task NLU
70
60
50

W
o o

Accuracy (%)
g

—_
o o

1024

1022

1020

Model scale (training FLOPs)

—@— PalLM

Exact match (%)

Accuracy (%)

=== Random

v
o

=
=)

30

20

—
o

=]

(D) Persian QA

10'% 1020 10°* 102

(H) Word in context

70

=2
=7

20
10

1020 1022 102

Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.

Wei, Jason, et al. "Emergent abilities of large language models." arXiv preprint arXiv:2206.07682 (2022).



MHA: multi-head attention

Fine-tuning LLMs

A key to success of ChatGPT t : t
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Zhao, Wayne Xin, et al. "A survey of large language models." arXiv preprint arXiv:2303.18223 (2023).



Example 2: Medical large language models

354

MedQA (USMLE) accuracy (%)

Automated and human evaluation Flan-PaLM
(540B)
*67.6
+17%
PubMed GPT
DRAGON (2.78)
BioLinkBERT ~ (360M) __— 503
. .
(340M) | — 475
PubMedBERT 45.1
(100M)
GPT-Neo ,
(2.7B) 38.1

:33.3
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—

Q: How long does it take for newborn jaundice to go away?

Med-PaLM: Newborn jaundice is when a newborn baby's skin and eyes look yellow. It is
caused by a buildup of a substance called bilirubin in the baby's blood. Bilirubin is a
byproduct of the normal process of red blood cells breaking down. Newborn jaundice is
common and typically harmless, but it can be a sign of a more serious condition. The
jaundice typically goes away on its own within a few weeks. In some cases, it may last
longer or require treatment. The time it takes for the jaundice to go away can vary
depending on the cause and the severity of the jaundice. If the jaundice is severe or
lasts longer than a few weeks, the doctor may recommend testing or treatment to
determine the cause and prevent complications.

Med-PalLM performs encouragingly
on consumer medical question answering

SOTA Flan-PaLM
80 1 78.2 79.0
s 701 67.6
>
Q
o
3 60+ 57.6
Q
< 529
50 50.3
40 I | I
MedMCQA MedQA (USMLE) PubMedQA

Fig. 2| Comparison of our method and prior state of the art. Our Flan-PaLM
540B model exceeds the previous state-of-the-art performance (SOTA) on
MedQA (four options), MedMCQA and PubMedQA datasets. The previous
state-of-the-artresults are from Galactica?*® (MedMCQA), PubMedGPTY
(MedQA) and BioGPT* (PubMedQA). The percentage accuracy is shown above
each column.

Singhal, Karan, et al. "Large language models encode clinical knowledge." Nature 620.7972 (2023): 172-180.



HOW DO LINMS PERFORNM ON
MOBILE HEALTH TASKS?




Activity Recognition Atrial Fibrillation Classification

Prompt: Response: Prompt: Response:
Classify the accelerometer data Classify the given Interbeat Interval
in meters per second squared as sequence in ms as either Atrial
either walking or running. Fibrillation or Normal Sinus.
Walking. Atrial
Fibrillation.
Running. Normal
Sinus.

Example 3: Large language models are few-shot learners

Stress

Prompt: Response:

Steps [Steps], resting heart rate:
[RHR] beats/min, sleep duration:
[SleepMinutes] mins, non-rem
heart rate: [NREMHR] beats/min,
mood last day [Mood] out of 5.

i ?
What will my stress level be Stress: 5 out of 5.

80| 80 ar
7500 00l
>000 60 60 2
2500 400f
0 40 300b— 40 ol—
Stress: Tout of 5.
7500 80 80 4
500
3000 60 60 2
2500 a00T
0 40 300— 40 ob—
M steps MINREM [ Sleep [ Rest. | Mood
HR Mins HR Prev. Day

Figure 1: Examples of question-answer pairs for our health tasks. In the prompts, data were

represented numerically rather than graphically.

Liu, Xin, et al. "Large Language Models are Few-Shot Health Learners." arXiv preprint arXiv:2305.15525 (2023).



Example 4: Large language models are few-shot learners

Input: "Classify the following accelerometer data in meters per second squared as either
walking or running: 0.052,0.052,0.052,0.051,0.052,0.055,0.051,0.056,0.06,0.064"
Label: "Running"

Table 2: Results. Comparison of performance between prompt-tuned LLMs (w/ Context-Inclusive Prompts)
and supervised neural network training across all consumer health tasks.

Supervised Baseline LLM with Context
Topic Task Metric 3-Shot 10-Shot 25-Shot 3-Shot 10-Shot 25-Shot % Improvement
HRs to Average HR MAE | (beats/min) 3.41 1.37 1.08 6.00 2.49 1.06 +1.90%
Cardio IBIs to HR MAE | (beats/min) 34.0 20.0 19.8 12.3 5.87 5.01 +74.7 %
IBIs to A.Fib. Accuracy 1 (%) 52.5 72.5 75.0 85.0 75.0 89.0 +19.7 %
IBIs to Sinus B. Accuracy 1 (%) 88.0 86.0 86.0 81.0 79.0 92.0 +7.00%
IBIs to Sinus T. Accuracy 1 (%) 56.0 53.0 61.0 65.0 82.0 88.0 +44.3%
Activity  IMU Activity Accuracy 1 (%) 56.0 60.0 64.0 62.0 80.0 85.0 +32.8%
Metabolic Calories MAE | (calories) 185 97 89 106 77 48 +46.1%
MHealth Fitbit to Stress Accuracy 1 (%) 37.5 70.5 80.0 72.5 71.5 82.5 +3.10%
Fitbit to PHQ Accuracy 1 (%) 51.0 52.0 53.0 49.0 59.0 69.0 +30.2%

Liu, Xin, et al. "Large Language Models are Few-Shot Health Learners." arXiv preprint arXiv:2305.15525 (2023).



(Tokenizer for natural language

"This is a input text."

O: HONW TO REPRESENT

TEMPORAL DATA?
Tokenization @
- , : Atrial
[CLS] This is a input . [SEP] V\/\MWM o
101 2023 2003 1037 7953 1012 102
Normal
Sinus.
Embeddings 4
0.0390, -0.0558, -0.0440, 0.0119, 0069, 0.0199, -0.0788,
-0.0123, 0.0151, -0.0236, -0.0037, 0.0057, -0.0095, 0.0202,
-0.0208, 0.0031, -0.0283,

-0.0402,

-0.0016,

-0.0099, -0.0352,

Spathis, Dimitris, and Fahim Kawsar. "The first step is the hardest: Pitfalls of representing and tokenizing temporal data for large language models." arXiv preprint
arXiv:2309.06236 (2023).



Example 4: Time-LLM: Time series forecasting by reprogramming large
language models

e e e e
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Jin, Ming, et al."Time-llm: Time series forecasting by reprogramming large language models. ICLR 2024



IS THERE, ANY

PHYSIOLOGICAL DATA SPECIFIC
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Example 5: Large-scale training of foundation models for wearable bio-signals

Take Your FirstfEee 8

Recording an ECG typical
30 seconds.

First, open the ECC
Apple Watch.

Rest your arms on
lap, and hold your
Digital Crown.

Hold your finger on
the crown.

Data used to develop this foundation model

PPG ECG
Number of participants 141,207 106,643
Number of segments 19,854,101 3,743,679

Average number of calendar days per participant 92.54 23.27

Total dataset time span (days) 890 1,240
a b

Input _ MBConv1D

segment x 16 Embedding

1DAvgPool
Sigmoid

BatchNorm
BatchNorm
1DAvgPool

BatchNorm

BatchNorm

BatchNorm
1

W *II

#Parameters: 3.3M for PPG and 2.5M for ECG

|/

Figure 4: Our EfficientNet-style encoder architecture, adapted from (Tan & Le, 2020) for time-series

Salar Abbaspourazad, Oussama Elachgar, Andrew Miller, Saba Emrani, Udhyakumar Nallasamy, lan Shapiro. "Large-scale training of foundation models for wearable

biosignals.“ICLR 2024



Example 5: Large-scale training of foundation models for wearable bio-signals

O SSL training:

 Results on downstream tasks:

Prediction task
Recorded biosignal
RTXN

Embedding Representation
[R256%1 [R128x1

Augmented biosignal
RTXN

PPG

AUC (pAUC) 1 MAE |

xact
h;é\ﬁ\:: Age classification 0.976 (0.907) -
A A ¥ Encoder H—» 0 Age regression - 3.19
s / @_._ PATALA 0 MNe BMI classification 0918 (0.750) -
lHl ® BMI regression - 2.54
N\ @_._ '\/\/\/ '_ Encoder + H _,. e Sex classification 0.993 (0.967) -
=l
&5 Representation
- Subpace
. s % M A \ ﬁw ' Encoder + H _,' Prediction task ECG
/ﬁ 5. AUC (pAUC) + MAE |
N\ :J_r ' & Age classification 0.916 (0.763) -
Encoder H— O, @ g A .
/WU M . ?'5-‘0%6 Age regression - 6.33
AR BMI classification 0.797 (0.612) -
.: Augmentation module H :MLP Projection head BMI TCgression - 3.72

Sex classification

0.951 (0.841) -

Salar Abbaspourazad, Oussama Elachqar, Andrew Miller, Saba Emrani, Udhyakumar Nallasamy, lan Shapiro. "Large-scale training of foundation models for wearable

biosignals.“ICLR 2024



SUMMARY

Limited labelled data is an obstacle for high-performing DL
Now we have:
- Data generation models for data augmentation

- Pre-trained large (language) models for downstream
tasks

- SSL-empowered foundation models for bio-signals
- Open questions:

- Evaluation of fine-tuning methods and the foundation
models and on mobile health applications

- Multi-modality foundation models. ..




HUTURE

Digital health twin

LLMSs for health reasoning
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