Machine Learning Systems

4: Hardware Acceleration

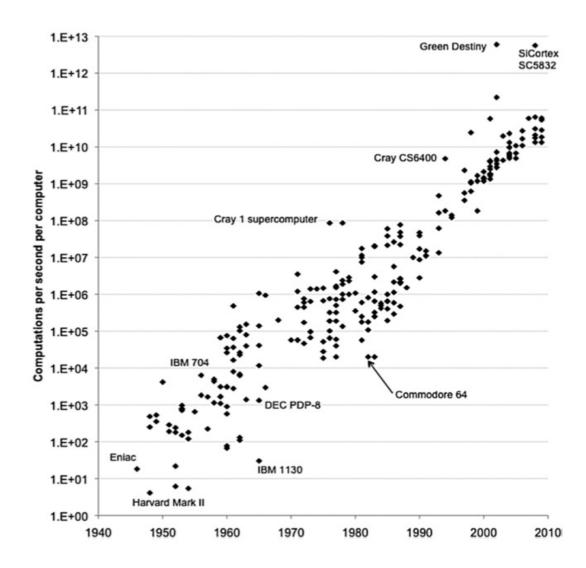
Nicholas D. Lane

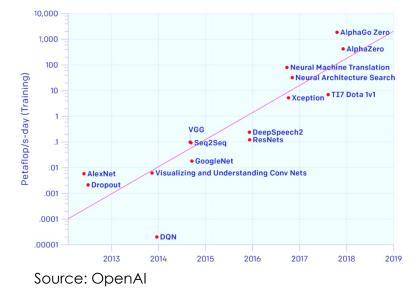
- HW enabling Deep Learning
- Performance Metrics
- Where does Energy Go?
- Hardware Efficiency Options
- Hardware Case Studies

HW enabling Deep Learning

- Performance Metrics
- Where does Energy Go?
- Hardware Efficiency Options
- Hardware Case Studies

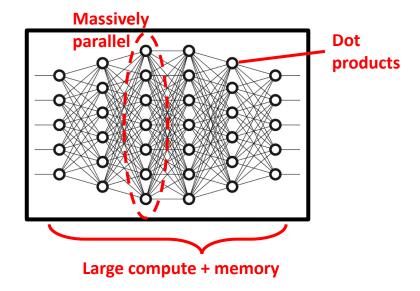
HW enables Deep Learning



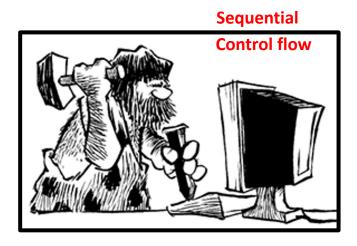


http://mlsys.cst.cam.ac.uk/teach

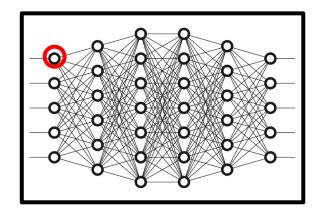
HW & Deep Learning Basics



• 1986: Backpropagation published



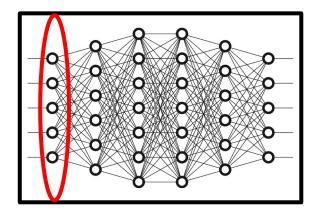
HW & Deep Learning Basics



1986: Backpropagation published
~30 years of trying this on CPUs

Sequential Complex instruction set Great for control flow

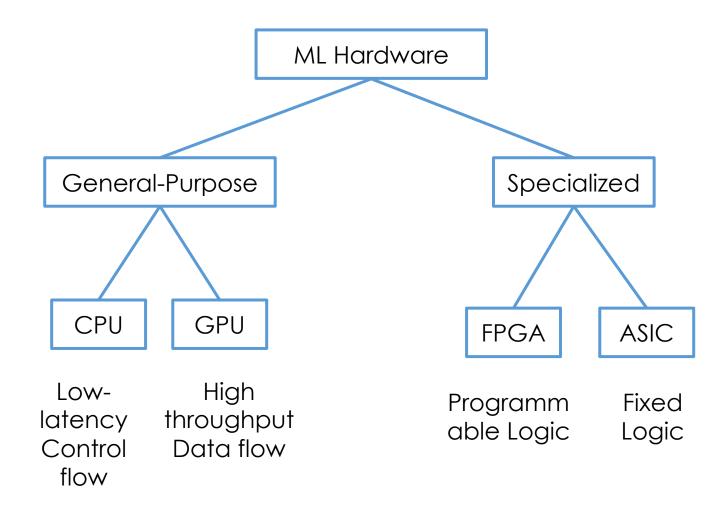
HW & Deep Learning Basics



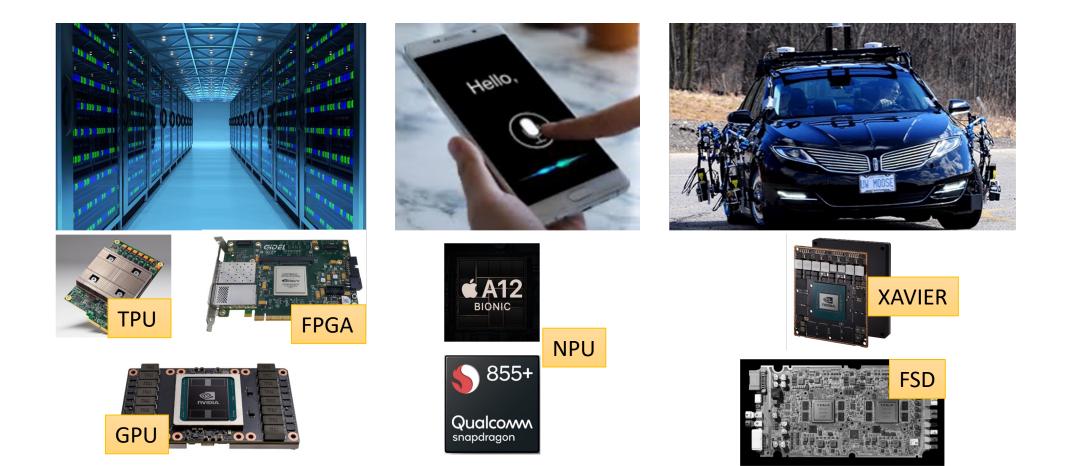
Parallel Great for matrix math Bad for control flow

- 1986: Backpropagation published
- •~30 years of trying this on CPUs
- 2012: AlexNet paper \Rightarrow +10% accuracy \Rightarrow Deep learning explosion

Hardware types

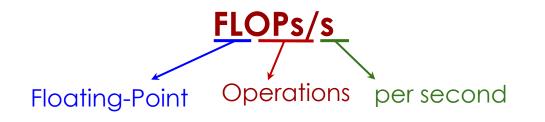


Specialized Hardware



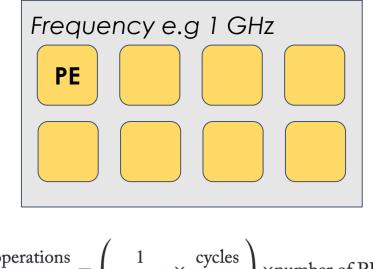
- HW enabling Deep Learning
- Performance Metrics
- Where does Energy Go?
- Hardware Efficiency Options
- Hardware Case Studies

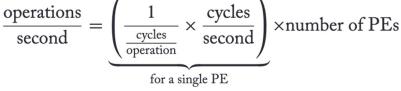
Compute Performance Metrics

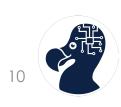


- MACs/s: Multiply-accumulate Ops/s

 Half FLOPs/s
- OPs/s: for non floating-point operations
- Chips are often labeled with "peak FLOPs/s"
 - Not achievable under normal workloads
 - Very rough indication of performance







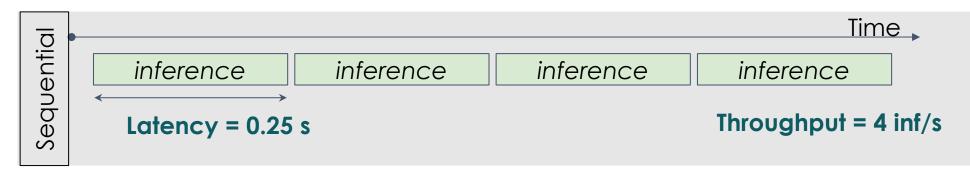
Memory Performance Metrics

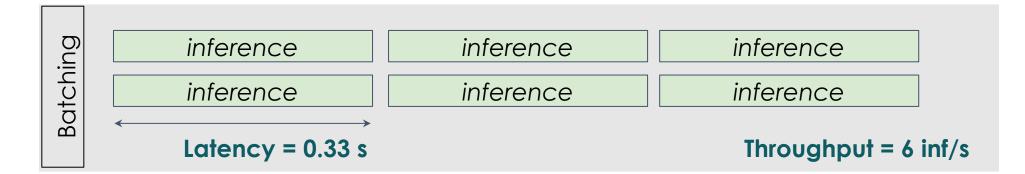
- Memory capacity [GB]
- Memory bandwidth [GB/s]
 - Transfer speed from memory chip to compute chip
- More complicated because there is a memory hierarchy
 - Showing "external"/"main" memory
 - Can have caches, local memory, registers with much higher bandwidth

Accelerator C	hip	
	Memory Bana	lwidth e.g. 20 GB/s
Memory Chip	Memory Capacity e.g. 8 GB	

DNN Performance

- Latency: Number of seconds per inference (unit = seconds)
- Throughput: Number of inferences per second (unit = inference/second)

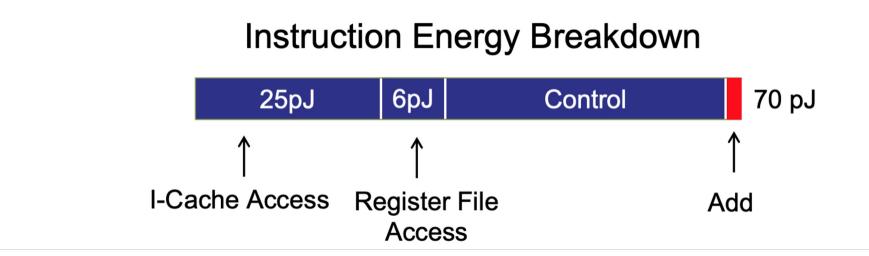




- HW enabling Deep Learning
- Performance Metrics
- Where does Energy Go?
- Hardware Efficiency Options
- Hardware Case Studies

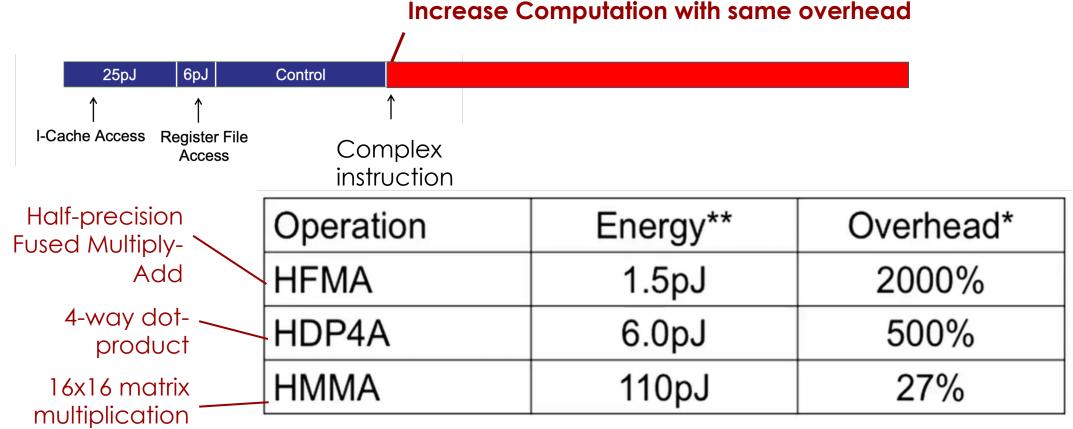
Where does the energy go?

- Energy breakdown of an add instruction in a 45nm CPU
- How can we optimize this?



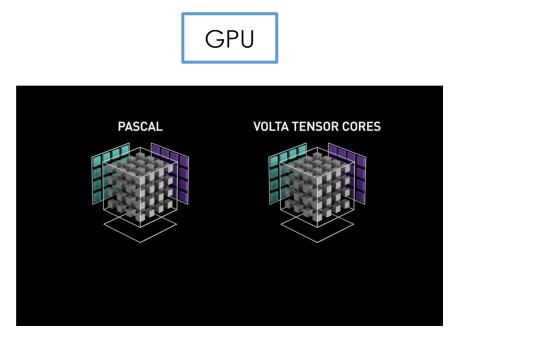
Source: Horowitz

Amortize Overhead

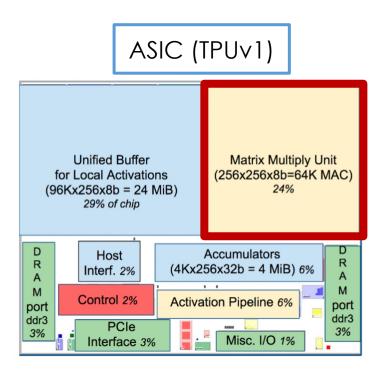


Source: Dally

"Special" Instruction Examples



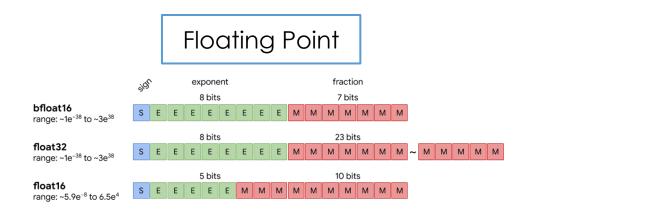
16x16 = 256* MAC/cycle *~ 500 tensor cores per GPU



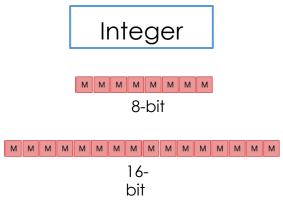
256x256 = 64 kMAC/cycle

http://mlsys.cst.cam.ac.uk/teach

Numerical Format & Precision

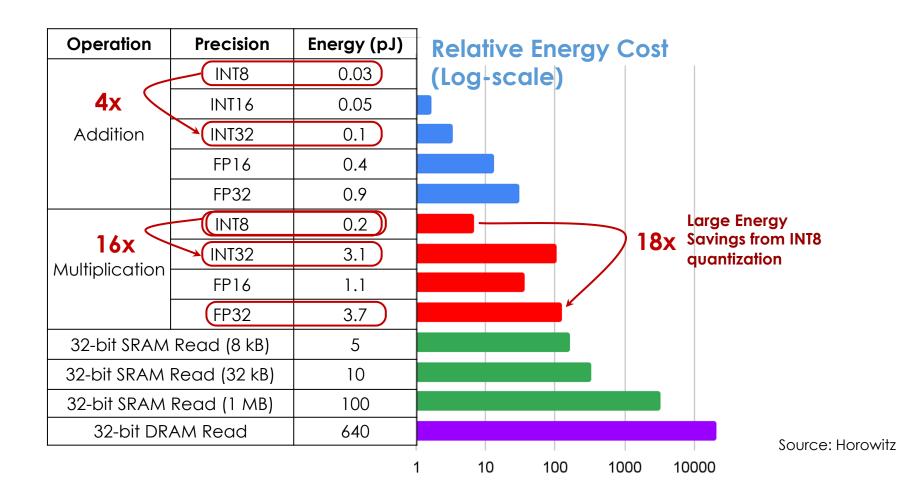


- IEEE standard includes FP32 and FP16
- Many exotic FP numbers in DNN
 - E.g. bfloat, minifloat



- Whole numbers only
- (typically) much cheaper circuit area and power

Cost of Arithmetic Operations

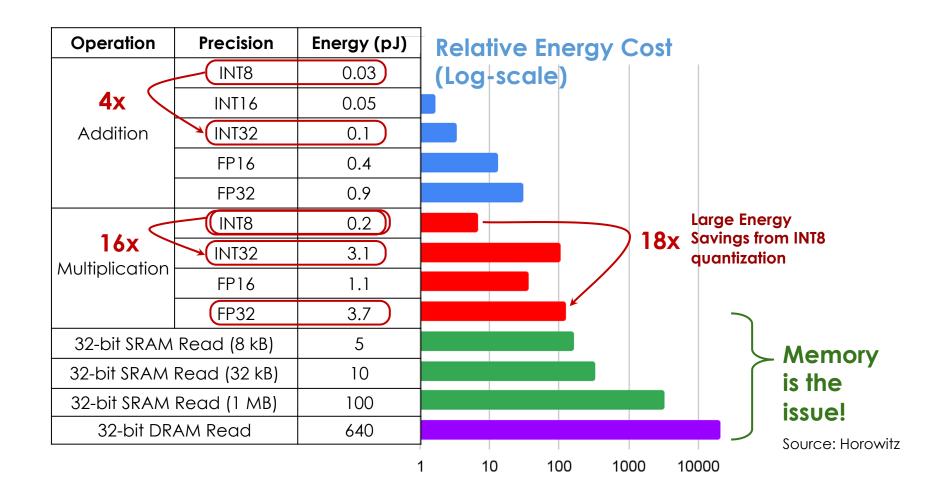


- HW enabling Deep Learning
- Performance Metrics
- Where does Energy Go?
- Hardware Efficiency Options
- Hardware Case Studies

- HW enabling Deep Learning
- Performance Metrics
- Where does Energy Go?
- Hardware Efficiency Options
 - Arithmetic
 - Memory
 - Ineffectual Operation
- Hardware Case Studies

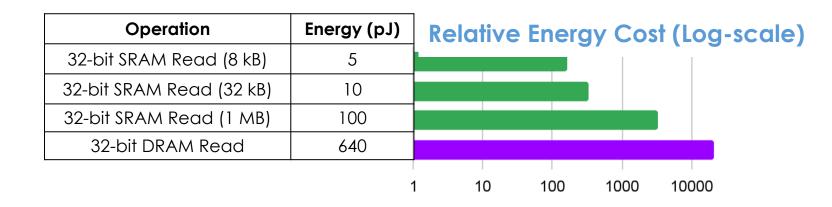
- HW enabling Deep Learning
- Performance Metrics
- Where does Energy Go?
- Hardware Efficiency Options
 - Arithmetic
 - Memory
 - Ineffectual Operation
- Hardware Case Studies

Memory is the bottleneck



Mem. Hierarchy Optimizations

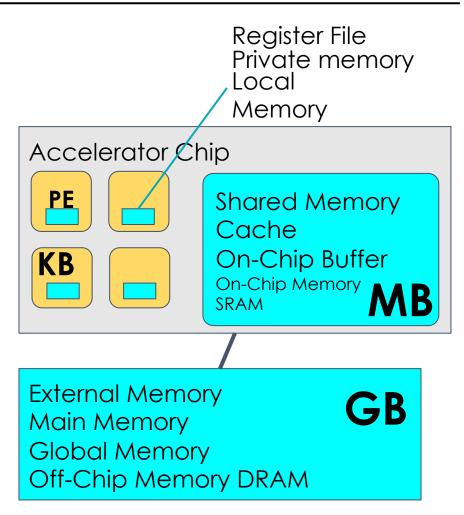
- 1. Get data close to the computation. (LOCALITY)
- 2. Once data is close perform all computations with this data. (REUSE)



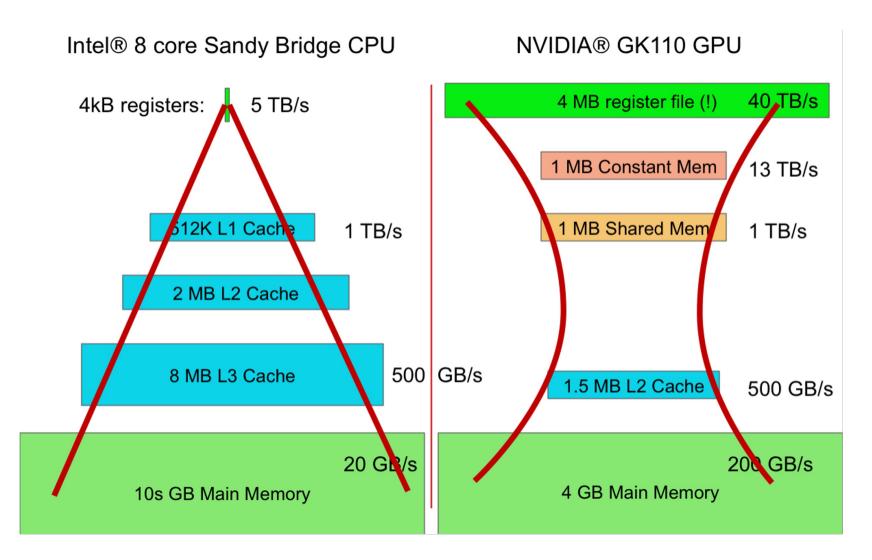
Memory Hierarchy

Why do we have a memory hierarchy?

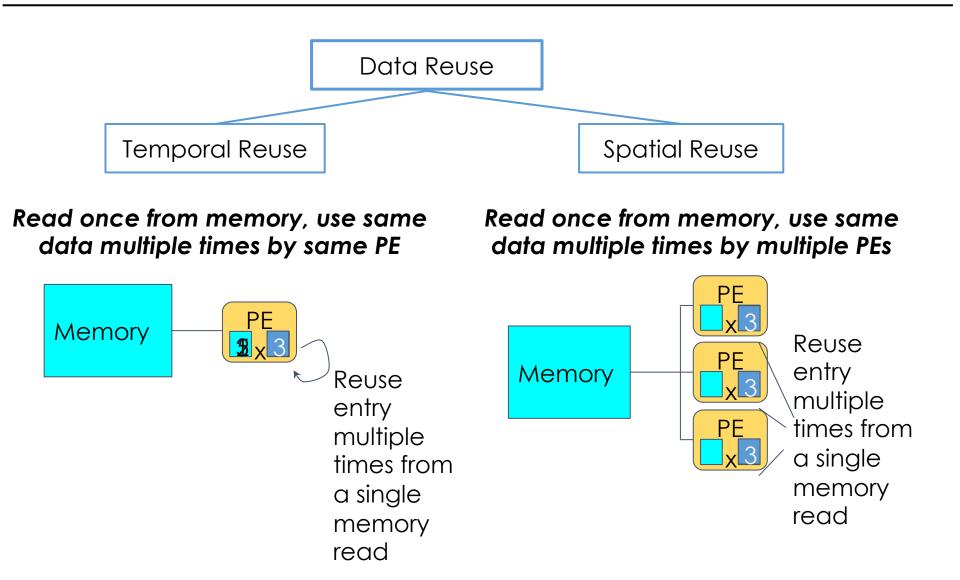
- The closer you get to compute, the more \$\$ and scarce the memory resource becomes
- In most cases, the DNN parameters live off chip and are fetched layerby-layer or tile-by-tile
- Data locality: how to get data close to the PEs (to keep them fully utilized)



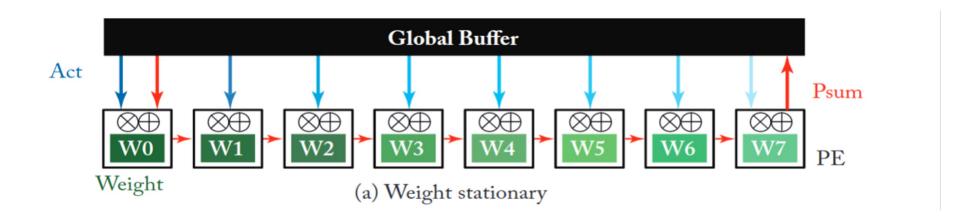
Memory Hierarchy Examples

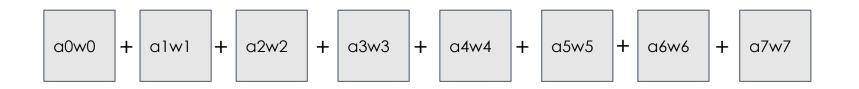


Data Reuse

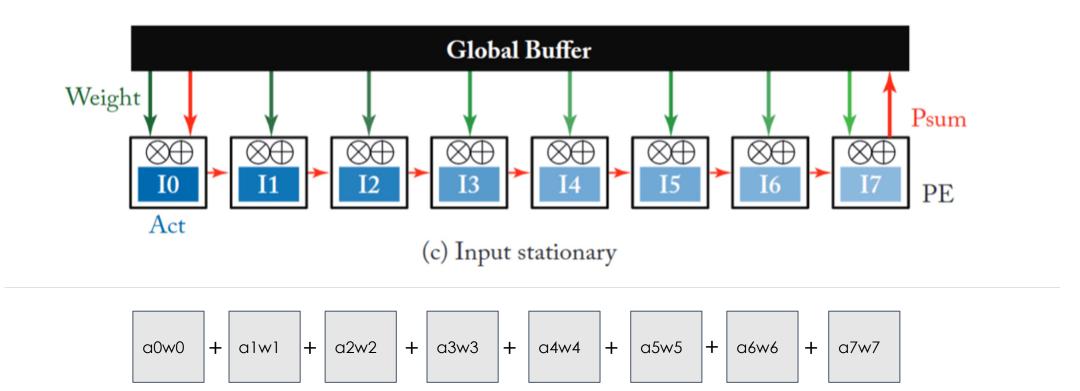


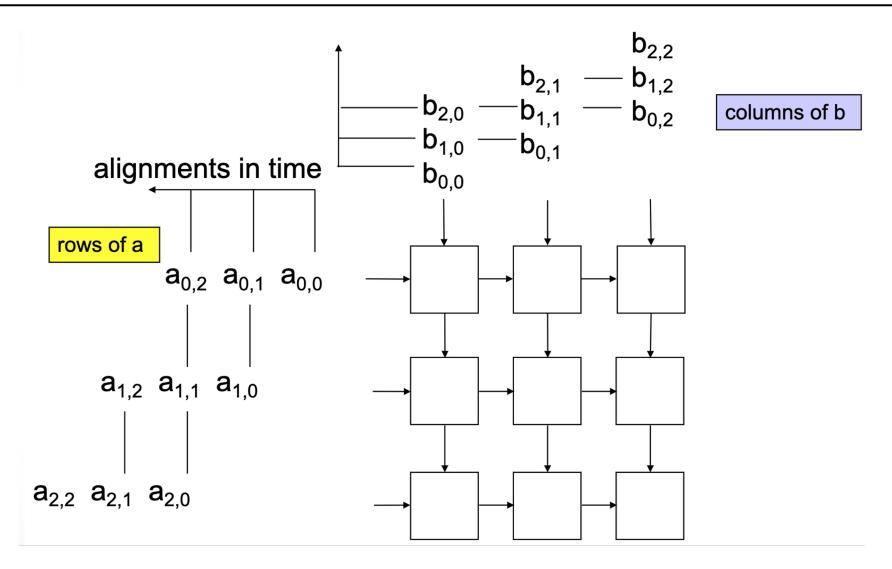
Stationary Weights?

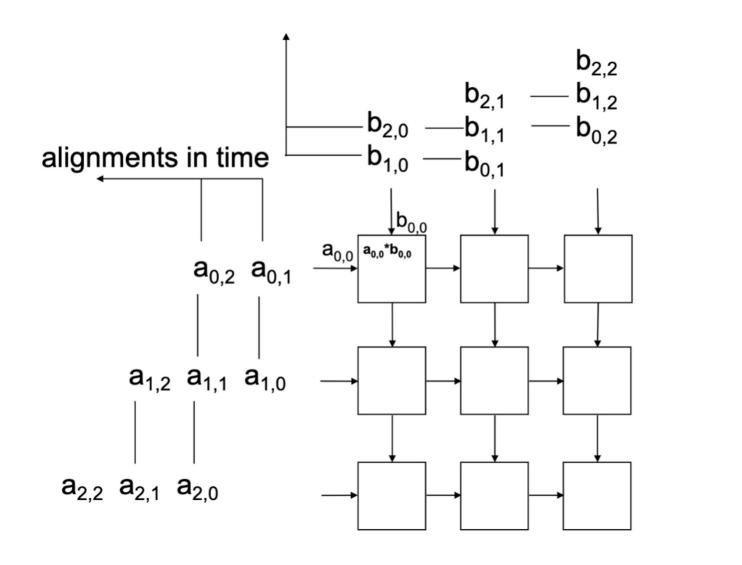


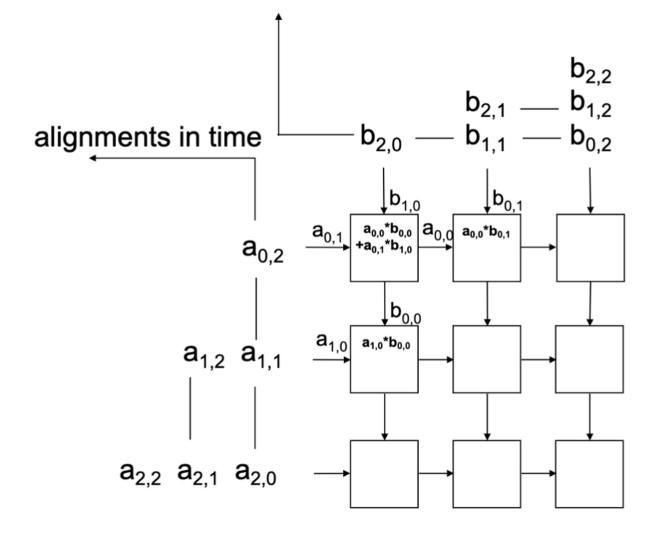


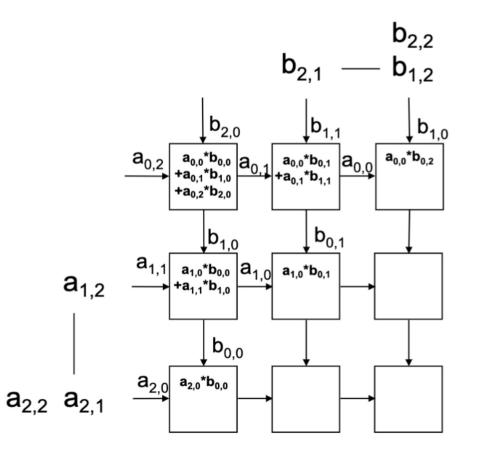
Stationary Inputs?



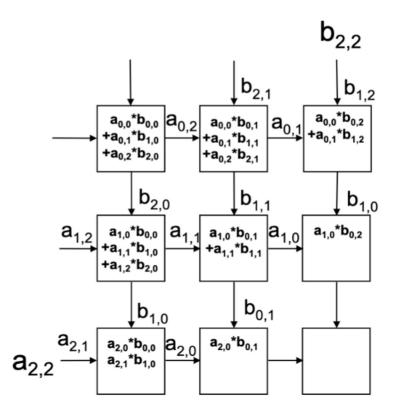


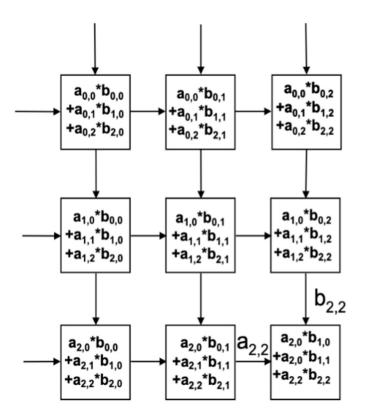






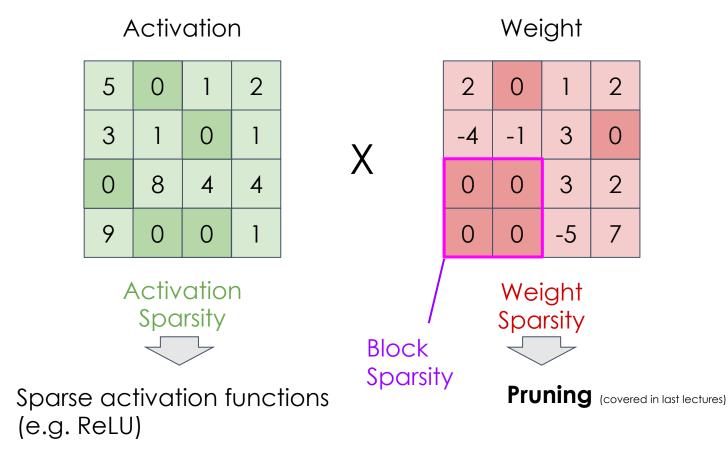
http://mlsys.cst.cam.ac.uk/teach





- HW enabling Deep Learning
- Performance Metrics
- Where does Energy Go?
- Hardware Efficiency Options
 - Arithmetic
 - Memory
 - Ineffectual Operation
- Hardware Case Studies

Kinds of Sparsity

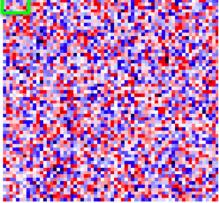


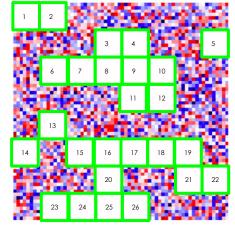
36

Coarse-grained "Block" Sparsity

- All DNN accelerators are parallel
 - Multiple MACs/cycle
- The smallest unit of computation that can be skipped is a large block (recall <u>amortized overhead</u>)
- Example:
 - Systolic array with 64 MACs/cycle
 - 8x8 pattern
 - 64x64 matrix = 4096 MACs
 - Total # cycles = 64 cycles
 - Block sparsity pattern needs to skip blocks of 8x8
 - Speedup = 64/(64-26) = 1.7X
 faster

64 MACs/cycle





Dense weights

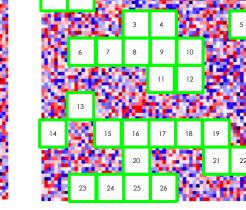
Block-sparse weights

http://mlsys.cst.cam.ac.uk/teach

Coarse-grained "Block" Sparsity

- All DNN accelerators are parallel
 - Multiple MACs/cycle
- The smallest unit of computation that can be skipped is a large block (recall <u>amortized overhead</u>)
- Example:
 - Systolic array with 64 MACs/cycle
 - 8x8 pattern
 - 64x64 matrix = 4096 MACs
 - Total # cycles = 64 cycles
 - Block sparsity pattern needs to skip blocks of 8x8
 - Speedup = 64/(64-26) = 1.7X
 faster

64 MACs/cycle



Dense weights

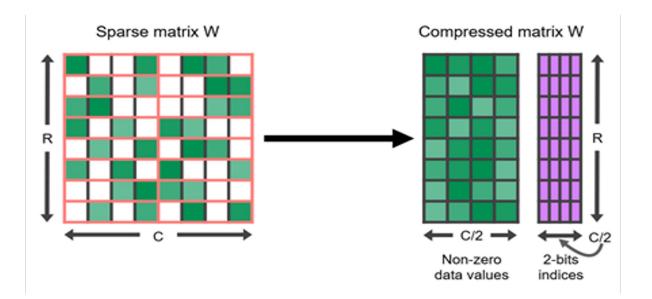
Block-sparse weights

Simplest way to leverage sparsity with low overhead

- ⇒ Single bit per 8x8 block (1/64 = 1.6% overhead)
- ⇒ Simple control logic because entire block is skipped

Fine-grained Sparsity (Ampere GPUs)

- Very recently, fine-grained sparsity was added to Tensor Cores on Nvidia GPUs
- 2 elements for every block of 4 elements can be zero
- Requires retraining to regain accuracy
- Overhead?
 - 2 bits per 8-bit element
 - 12.5% memory overhead
 - Control logic? Performance improvement? Power savings?

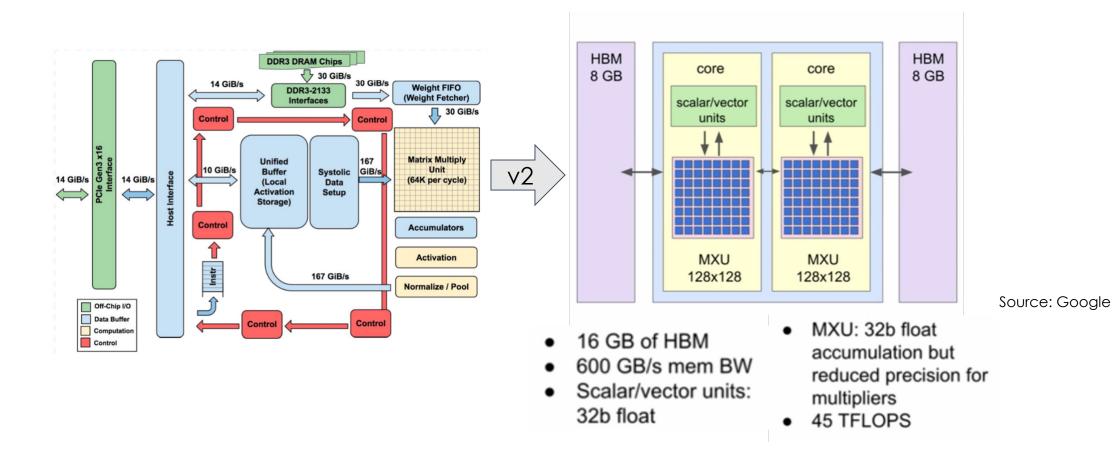


- HW enabling Deep Learning
- Performance Metrics
- Where does Energy Go?
- Hardware Efficiency Options
- Hardware Case Studies

Nvidia GPU Progression

Source: Dally

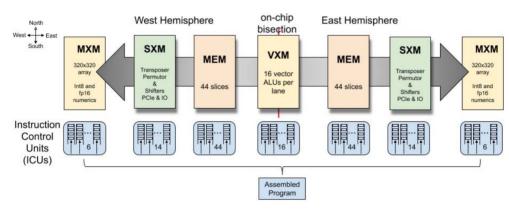
Google TPU

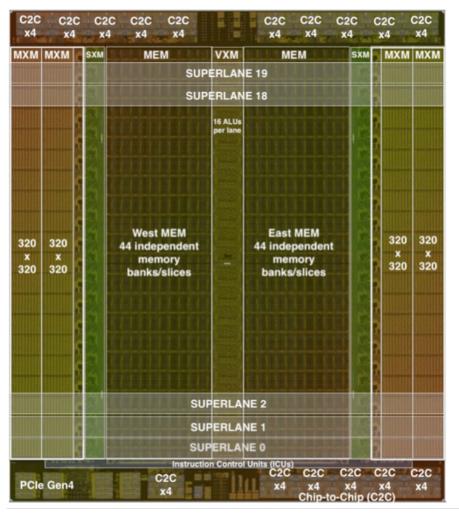


Source: D. Harris

Groq

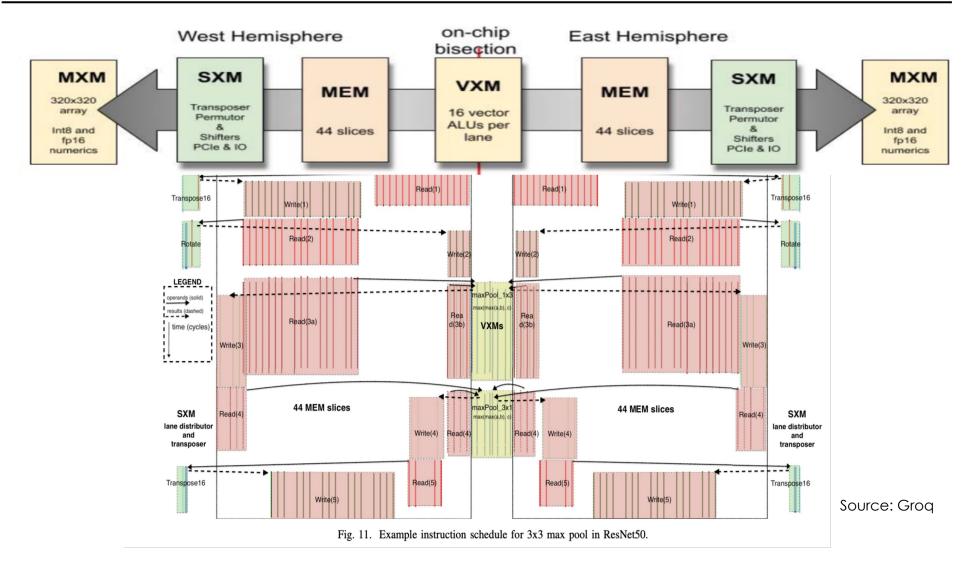
- Programmable dataflow architecture
- 1000 TOPs/s peak INT8 performance
- 200 MB on-chip SRAM (80 TB/s)
 - No external memory, scales by increasing number of chips
- FP16 and INT8 precision
- Philosophy: "unroll" a multicore architecture on-chip spatially to allow for custom instructions



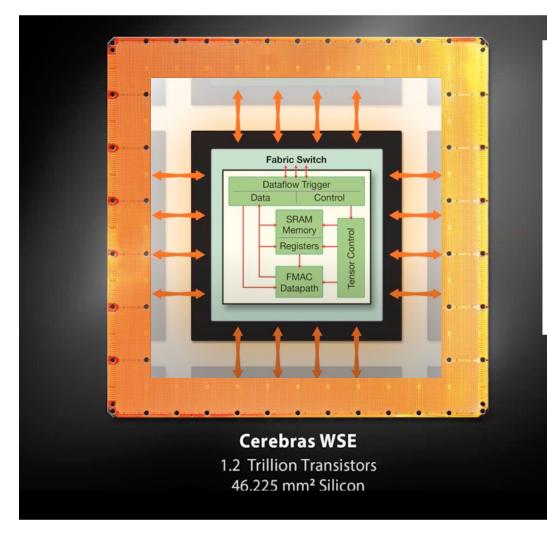


Source: Groq

Groq



Cerebras



Largest Chip Ever Built

- 46,225 mm² silicon
- 1.2 trillion transistors
- 400,000 AI optimized cores
- 18 Gigabytes of On-chip Memory
- 9 PByte/s memory bandwidth
- 100 Pbit/s fabric bandwidth
- TSMC 16nm process

Largest GPU 21.1 Billion Transistors 815 mm² Silicon

Source:Cerebras

Summary of the Day

- HW enabling Deep Learning
- Performance Metrics
- Where does Energy Go?
- Hardware Efficiency Options
- Hardware Case Studies