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HW enables Deep Learning

Source: OpenAI
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HW & Deep Learning Basics

●1986: Backpropagation published

Sequential
Control flowDot 

products

Massively 
parallel

Large compute + memory
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HW & Deep Learning Basics

●1986: Backpropagation published
●~30 years of trying this on CPUs

Sequential
Complex instruction set
Great for control flow
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HW & Deep Learning Basics

Parallel
Great for matrix math
Bad for control flow●1986: Backpropagation published

●~30 years of trying this on CPUs
●2012: AlexNet paper ⇨ +10% accuracy ⇨ Deep learning explosion
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Hardware types

SpecializedGeneral-Purpose

CPU GPU FPGA ASIC

Programm
able Logic

Fixed 
Logic

Low-
latency
Control 

flow

High 
throughput
Data flow

ML Hardware
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Specialized Hardware

TPU

GPU

FPGA
NPU

FSD

XAVIER
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Compute Performance Metrics

FLOPs/s

Floating-Point Operations per second

● MACs/s: Multiply-accumulate Ops/s
○ Half FLOPs/s

● OPs/s: for non floating-point operations
● Chips are often labeled with “peak 

FLOPs/s”
○ Not achievable under normal workloads
○ Very rough indication of performance 

Frequency e.g 1 GHz

PE
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Memory Performance Metrics

Accelerator Chip

PE

Memory Chip

Memory Bandwidth e.g. 20 GB/s

Memory 
Capacity 
e.g. 8 GB

● Memory capacity [GB]
● Memory bandwidth [GB/s]

○ Transfer speed from memory chip 
to compute chip

● More complicated because there is a 
memory hierarchy
○ Showing “external”/”main” 

memory
○ Can have caches, local memory, 

registers with much higher 
bandwidth
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DNN Performance

inference inference inference inference

Latency = 0.25 s

Time

Se
qu

en
tia

l

Throughput = 4 inf/s

inference

inference

Ba
tc

hi
ng

Throughput = 6 inf/sLatency = 0.33 s

inference

inference

inference

inference

● Latency: Number of seconds per inference (unit = seconds)
● Throughput: Number of inferences per second (unit = inference/second)
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• Energy breakdown of an add instruction in a 45nm 
CPU
• How can we optimize this?
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Where does the energy go?

Source: Horowitz
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Amortize Overhead

Source: Dally

Increase Computation with same overhead

Half-precision 
Fused Multiply-

Add

4-way dot-
product

16x16 matrix 
multiplication

Complex 
instruction
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”Special” Instruction Examples

GPU ASIC (TPUv1)

16x16 = 256* 
MAC/cycle 256x256 = 64 

kMAC/cycle
*~ 500 tensor cores per GPU
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Numerical Format & Precision

Floating Point Integer

● IEEE standard includes FP32 and 
FP16

● Many exotic FP numbers in DNN
○ E.g. bfloat, minifloat

● Whole numbers only
● (typically) much cheaper 

circuit area and power

8-bit

16-
bit
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Cost of Arithmetic Operations

Operation Precision Energy (pJ)

Addition

INT8 0.03

INT16 0.05

INT32 0.1

FP16 0.4

FP32 0.9

Multiplication

INT8 0.2

INT32 3.1

FP16 1.1

FP32 3.7

32-bit SRAM Read (8 kB) 5

32-bit SRAM Read (32 kB) 10
32-bit SRAM Read (1 MB) 100

32-bit DRAM Read 640

Relative Energy Cost 
(Log-scale)

4x

16x 18x
Large Energy 
Savings from INT8 
quantization

Source: Horowitz
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• Arithmetic
• Memory
• Ineffectual Operation

• Hardware Case Studies
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Memory is the bottleneck

Operation Precision Energy (pJ)

Addition

INT8 0.03

INT16 0.05

INT32 0.1

FP16 0.4

FP32 0.9

Multiplication

INT8 0.2

INT32 3.1

FP16 1.1

FP32 3.7

32-bit SRAM Read (8 kB) 5

32-bit SRAM Read (32 kB) 10
32-bit SRAM Read (1 MB) 100

32-bit DRAM Read 640

Relative Energy Cost 
(Log-scale)

4x

16x 18x
Large Energy 
Savings from INT8 
quantization

Source: Horowitz

Memory 
is the 
issue!
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Mem. Hierarchy Optimizations

1. Get data close to the computation. (LOCALITY)
2. Once data is close - perform all computations 

with this data. (REUSE)

Operation Energy (pJ)
32-bit SRAM Read (8 kB) 5

32-bit SRAM Read (32 kB) 10
32-bit SRAM Read (1 MB) 100

32-bit DRAM Read 640

Relative Energy Cost (Log-scale)
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Memory Hierarchy

Accelerator Chip

PE

External Memory
Main Memory
Global Memory
Off-Chip Memory DRAM

Shared Memory
Cache
On-Chip Buffer
On-Chip Memory
SRAM

Register File
Private memory

GB

MB
KB

Local 
MemoryWhy do we have a memory hierarchy?

● The closer you get to compute, the 
more $$ and scarce the memory 
resource becomes

● In most cases, the DNN parameters 
live off chip and are fetched layer-
by-layer or tile-by-tile

● Data locality: how to get data close 
to the PEs (to keep them fully 
utilized)
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Memory Hierarchy Examples
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Data Reuse

Temporal Reuse

Read once from memory, use same 
data multiple times by same PE

Memory PE
x

Spatial Reuse

Read once from memory, use same 
data multiple times by multiple PEs

Memory

PE
x

PE
x

PE
x

3125
Reuse 
entry 
multiple 
times from 
a single 
memory 
read

3

3

3

Reuse 
entry 
multiple 
times from 
a single 
memory 
read

Data Reuse
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Stationary Weights?

a0w0 a1w1 a2w2 a3w3 a4w4 a5w5 a6w6 a7w7+ + + + + + +
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Stationary Inputs?

a0w0 a1w1 a2w2 a3w3 a4w4 a5w5 a6w6 a7w7+ + + + + + +
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Systolic Array: Matrix Mults.
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Systolic Array: Matrix Mults.
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Kinds of Sparsity

5 1 2

3 1 1

8 4 4

9

0

0

0

0 0 1

2 1 2

-4 -1 3

3 2

0

0

0 0

0 0 -5 7

X

Activation Weight

0

0

0

0 0

Activation 
Sparsity

0

0

0 0

0 0

Weight 
Sparsity

Block 
Sparsity

Sparse activation functions 
(e.g. ReLU)

Pruning (covered in last lectures)
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Coarse-grained “Block” Sparsity

64 MACs/cycle

1 2

3 4

6 7 8 10

11

9
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13

19

20 21

1817161514

252423

22

5

26

● All DNN accelerators are parallel
○ Multiple MACs/cycle

● The smallest unit of computation that 
can be skipped is a large block 
(recall amortized overhead)

● Example:
○ Systolic array with 64 MACs/cycle

■ 8x8 pattern
○ 64x64 matrix = 4096 MACs
○ Total # cycles = 64 cycles
○ Block sparsity pattern needs to 

skip blocks of 8x8
○ Speedup = 64/(64-26) = 1.7X 

faster
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Coarse-grained “Block” Sparsity

64 MACs/cycle
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● All DNN accelerators are parallel
○ Multiple MACs/cycle

● The smallest unit of computation that 
can be skipped is a large block 
(recall amortized overhead)

● Example:
○ Systolic array with 64 MACs/cycle

■ 8x8 pattern
○ 64x64 matrix = 4096 MACs
○ Total # cycles = 64 cycles
○ Block sparsity pattern needs to 

skip blocks of 8x8
○ Speedup = 64/(64-26) = 1.7X 

faster

Simplest way to leverage sparsity with low 
overhead
⇨ Single bit per 8x8 block (1/64 = 1.6% 
overhead)
⇨ Simple control logic because entire 
block is skipped
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Fine-grained Sparsity (Ampere GPUs)

● Very recently, fine-grained sparsity was 
added to Tensor Cores on Nvidia GPUs

● 2 elements for every block of 4 elements 
can be zero

● Requires retraining to regain accuracy
● Overhead?

○ 2 bits per 8-bit element
○ 12.5% memory overhead
○ Control logic? Performance 

improvement? Power savings?
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Nvidia GPU Progression

Source: Dally
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Google TPU

Source: D. Harris

v2

Source: Google
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Groq

Source: Groq

● Programmable dataflow 
architecture

● 1000 TOPs/s peak INT8 
performance

● 200 MB on-chip SRAM (80 TB/s)
○ No external memory, scales 

by increasing number of chips
● FP16 and INT8 precision
● Philosophy: “unroll” a multicore 

architecture on-chip spatially to 
allow for custom instructions
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Groq

Source: Groq
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Cerebras

Source:Cerebras
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Summary of the Day
• HW enabling Deep Learning
• Performance Metrics
• Where does Energy Go?
• Hardware Efficiency Options
• Hardware Case Studies


