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Roadmap for Today

Why do we need to understand GPUs?
GPU hardware and CUDA.

Practical CUDA optimisation example.
PyTorch CUDA bindings.
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Why do we need to understand GPUse

RTX 3080

A vast majority of the DL models are trained with GPU:s.

Most engineers do not know what it means o train on GPU.
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Why do we need to understand GPUse

As long as you are playing with MNIST or toy tasks, it does not matter.
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Why do we need to understand GPUse

But the real world is different:

- Why is my training so slow while my GPU is worth £6,000¢
- Can | tfrain this 30B parameters Liama model on my RTX 3090¢
- Why is my inference so slow while my GPU is equipped with Tensorcores?
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Why do we need to understand GPUse

Your hardware stack, e.g. your GPU, is your secondary tool — learn to use it.

The number of issues related to the lack of hardware knowledge is infinite.
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Why do we need to understand GPUse

Examples:

/0x faster matmul with a proper cuda kernel.

Kernel GFLOPs/s
1: Naive 309.0
2: GMEM Coalescing 1986.5
3: SMEM Caching 2980.3
4: 1D Blocktiling 8474.7
5: 2D Blocktiling 15971 .7

6: Vectorized Mem Access 18237.3

9: Autotuning 19721.0
10: Warptiling 21779.3
0: cuBLAS 23249.6

https://siboehm.com/articles/22/CUDA-MMM

8x faster real tfraining time of a RNN-based
speech recogniser.

Forward pass:

Batch=16 fast SLi-GRU (CUDA+PyTorch) slow SLi-GRU (PyTorch)
L=100 0.05s 0.11s

L=500 0.25s 0.55s

L=1000 0.50s 11s

L=2000 1.02s 2.26s

L=3000 1.55s 3.39s

Backward pass:

Batch=16 fast SLi-GRU (CUDA+PyTorch)  slow SLi-GRU (PyTorch)

L=100 0.15s 0.25s
L=500 0.63s 1.29s
L=1000 1.27 s 3.68s
L=2000 265s 11.87 s

L=3000 3.84s 24.39s

Moumen, A., & Parcollet, T. (2023, June). Stabilising and accelerating light gated
recurrent units for autfomatic speech recognition. ICASSP 2023.
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Roadmap for Today

Why do we need to understand GPUse
GPU hardware and CUDA.

Practical CUDA optimisation example.
PyTorch CUDA bindings.
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GPU hardware and CUDA

Any idea of what are CUDA cores?e
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GPU hardware and CUDA

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg
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Green = computational units  Orange = memory = control
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GPU hardware and CUDA

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg
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Green = computational units  Orange = memory = control

Very basic view.
CPU computational units are bigger - “smarter”.
GPU computational units are smaller.
These units are called “cores”.
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GPU hardware and CUDA

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

Control ALU ALU

ALU ALU

CPU GPU
Green = computational units  Orange = memory = control
CPU cores must: GPU cores must:
Perform non arithmetic ops well. Perform arithmetic ops very well.
Manage out-of-order executions. Stay simple and energy efficient.

Arithmetic intensity is maximised.
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GPU hardware and CUDA

Arithmetic intensity is maximised.

PCI Express 4.0 Host Interface
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Ampere architecture (GA102 — 10,496 CUDA cores).
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GPU hardware and CUDA

Arithmetic intensity is maximised.

PCI Express 4.0 Host Interface
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How are these cores managed and accessed?
Let’'s move one step back.
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GPU hardware and CUDA

Dispatch Urvt
ES

Register File (32,768 x 32-bit)

SM or Streaming Multiprocessors
Contains:

SFU
SFuU

SFU

Set of cores.
Set of registers (storing operands).
A chunk of shared memory (cores of this SM).

SFU

SFU

SFU

SFU

SFU Core

Texture /L1 Cache

64KB Shared Memory
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GPU hardware and CUDA

Warp Scheduler

: Register File (32,768 x 32-bit) e 2 Register File (32,768 x 32-bit) %
— —— The basic execution units is called a warp.
— Contains:
32 cores.

They are executed simultaneously by an SM.

g
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GPU hardware and CUDA

PCI Express 3.0 Host Interface
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Nvidia Turing TU102 (e.g. RTX 2080 Ti — 4608 CUDA cores
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GPU hardware and CUDA

PCI Express 4.0 Host Interface
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Nvidia Ampere GA102 (e.g. RTX 3090 — 10,496 CUDA cores)
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GPU hardware and CUDA

PCI Express 4.0 Host Interface
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Nvidia Ada Lovelace AD102 (e.g. H100 or RTX 4090 (smaller) — 18,432 CUDA cores)
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GPU hardware and CUDA

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ADA 4t

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 o

/ FP32 GENERATION
INT32 TENSOR CORE

LD/IST LD/IST LD/ST LD/ST

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 —

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/ST

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ——

!/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/IST

128 KB L1 Data Cache / Shared Memory

Tex

Tex

Ada Lovelace SM

Tensor cores are CUDA cores on steroids.
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GPU hardware and CUDA

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ADA 4t

/ FP32 GENERATION
INT32 TENSOR CORE

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 e

A
/ FP32 GENERATION
INT32 TENSOR CORE

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ADA 4t

/ FP32 GENERATION
INT32 TENSOR CORE

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 .

Al
!/ FP32 GENERATION
INT32 TENSOR CORE

128 KB L1 Data Cache / Shared Memory

Ada Lovelace SM
(4 tensor cores per SM)

Tensor cores are CUDA cores on steroids.
In one GPU clock, a CUDA core can:
fp32 —x+=y *z

In one GPU clock, a Tensor core can:
(Turing architecture)
fp16 — (4*4) x+=y *z

Each tensor core can perform 1 matrix

mulfiply-accumulate operation per GPU clock.

That's 16 fimes more operations per GPU clock.

Principles of Machine Learning Systems
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GPU hardware and CUDA

O

What about CUDA programing? i

And Tensorflow?




GPU hardware and CUDA

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ADA 4%

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/ST SFU

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ADA4™

/ FP32 GENERATION
INT32 TENSOR CORE

LDIST LD/ST LD/ST LD/ST SFU

| LOi-Cache + Warp Scheduler + Dispatch (32 thread/cik)

Register File (16,384 x 32-bit)

FP32 ADA a4t

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LDIST SFU
| L0i-Cache + Warp Scheduler + Dispatch (32 threadiclk)

Register File (16,384 x 32-bit)

FP32 ADA

/ FP32 GENERATION
|NT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/ST

128 KB L1 Data Cache / Shared Memory

Tex

Tex

You favorite framework is just communicating
with your GPU’ SMes.

torch.mm(x,x.T)

tf.linalg.matmul(x, x, transpose_b=Tr
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GPU hardware and CUDA

CUDA or “Compute Unified Device Architecture”, merges a parallel computing platform
(which we just saw) with a programming model (which we are about to see).

NVIDIA.

CUDA

Hardware is nothing without a good software — right AMD?2
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GPU hardware and CUDA

The CUDA programming model has three foundational concepts:
I. A hierarchy of thread groups (associated to kernels).

2. An ensemble of shared memories.
3. Barrier synchronization.
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GPU hardware and CUDA

A hierarchy of thread groups.

CUDA thread CUDA core
CUDA streaming
CUDA thread block Multiprocessor(SM)

s a m

CUDA-capable GPU

CUDA kernel grid m

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
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GPU hardware and CUDA

A hierarchy of thread groups.

CUDA thread CUDA core
: - |
CUDA streaming
CUDA thread block Multiprocessor(SM)

225050000
S5
J\?; é;;&é?

CUDA-capable GPU

CUDA kernel grid .
S |S5558 55555
S|z |

Noft strictly true. A CUDA thread is an abstract entity that represents the execution of
the kernel, it can represent a CUDA core or another logical unit.
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GPU hardware and CUDA

A hierarchy of thread groups.

A kernel is a function that compiles to run on a special device.

In CUDA, a kernel is a function that will run on a certain configuration of grid / blocks /
threads. These architecture information are given in the invocation of the function.

__global__ void VecAdd(float+ A, float* B, float+ C)
{

Int threadIdx.Xx;

Cli]l = A[i] + B[i];
}

int main()

{

VecAddk<<1, N>>>/(A, B, C):
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GPU hardware and CUDA

A hierarchy of thread groups.
threads can be identified in a 1D, 2D or 3D manner thanks to threadidx.

This is particularly useful when manipulating vectors, matrices or volumes. This affects
the corresponding thread block which also becomes 1D, 2D or 3D.

__global__ void MatAdd(float A[N][N], float BIN][NI,
float C[N][NI)

{

int i threadIdx.x;
int j threadIdx.y;
Cl[il[j]1 = A[il[j] + BIil[jl;

main()

int numBlocks 1D
dim3 threadsPerBlock(N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
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GPU hardware and CUDA

A hierarchy of thread groups.

All threads of a block resides on the same SM and share the same resources.
A single block can’t have more than 1,024 threads!

But we can have multiple blocks of 1,024 threads!
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).
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GPU hardware and CUDA

A hierarchy of thread groups (summary).

blockIdlx.x > Theeodldx.z | threadIdsx.x >
blockIdx.2 LlockDim.x ” /) _ ér'." ‘ ‘
— —1 & . ﬁ o $.|n<3le thread of QOMPuta't\on,
7007, —%9! : B SRR \}o" m]nd?mj its own business
( 4// »/ ,7/.//’///' ‘g - ( o ': R T N /
> 7 ’ volo> AU S S
. > '
X : K £ : d :
Sa [ (1,0) ik ”'-"J'CE/ """" a
g | % c ] I~ R R
S| % = S B R 7 . | \
v \ Y K PR A N
3ﬁo(]>im.x blockDim.x
GRID BLOCK THREAD
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GPU hardware and CUDA

A hierarchy of thread groups.

But we can have multiple blocks of 1,024 threads!
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

__global__ void MatAdd(float A[N][N], float BIN]I[NI],
float CI[N]I[N])
{

int i blockIdx.x blockDim.x + threadIdx.x;
int j blockIdx.y * blockDim.y + threadIdx.y;
(i <N j < N)
Clil[j] = Alil[j] + B[il[jl;

}

int main()

{

dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N threadsPerBlock.x, N threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock->>(A, B, C);
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GPU hardware and CUDA

A hierarchy of thread groups.

But we can have multiple blocks of 1,024 threads!
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

__global__ void MatAdd(float A[N][N], float BIN][NI],
float C[N]I[N])
{
int i blockIdx.x blockDim.x threadIdx.x;
int j blockIdx.y blockDim.y threadIdx.y;
(i <N j N) . . .
CLil L] = ALil[§] + BLAI[§1; SegFault if N is not a multiple of 16!
I

int main()

{

dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N / threadsPerBlock.x, N threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock->>(A, B, C);
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GPU hardware and CUDA

A hierarchy of thread groups (summary).

blockIdlx.x > Theeodldx.z | threadIdsx.x >
blockIdx.2 LlockDim.x ” /) _ ér'." ‘ ‘
— —1 & . ﬁ o $.|n<3le thread of QOMPuta't\on,
7007, —%9! : B SRR \}o" m]nd?mj its own business
( 4// »/ ,7/.//’///' ‘g - ( o ': R T N /
> 7 ’ volo> AU S S
. > '
X : K £ : d :
Sa [ (1,0) ik ”'-"J'CE/ """" a
g | % c ] I~ R R
S| % = S B R 7 . | \
v \ Y K PR A N
3ﬁo(]>im.x blockDim.x
GRID BLOCK THREAD

https://siboehm.com/articles/22/CUDA-MMM Principles of Machine Learning Systems 34



https://siboehm.com/articles/22/CUDA-MMM

GPU hardware and CUDA

An ensemble of shared memories.

Thread Block

Thread Block Thread Block

Grid with Clusters

1 e
e

Thread Block Thread Block Thread Block Thread Block

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memo Principles of Machine Learning Systems 35



https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

GPU hardware and CUDA

An ensemble of shared memories.

l . Per thread registers and
local memory

Usually manipulated by the S
Host (CPU). This is where you SRRTEE-
copy the data to work with. W

Per block Shared memory

Thread Block Cluster

Thread Block Thread Block Shared memory of all
thread blocks in a cluster
I SUATECaEHBNy SRRSO |t N form Distributed Shared

Grid with Clusters
Thread Block Cluster Thread Block Cluster

Thread Block

Thread Block

Thread Block

Thread Block

I Shared Memory

Shared Memory I

I Shared Memory

Shared Memory

A

A

i

A

https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html#shared-memory
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between all GPU kernels
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GPU hardware and CUDA

An ensemble of shared memories.

MUCh fOSTer Thgn |OCO| Ond Thread Block
global memories. [ srsdtesory

P

Thread Block Thread Block

Grid with Clusters

1 e
e

Thread Block Thread Block Thread Block Thread Block
| sharedMemory | Shared Memory |  Shared Memory |

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memo Principles of Machine Learning Systems 37
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GPU hardware and CUDA

An ensemble of shared memories.

Only exists during the lifespan I
of a thread. ey

Thread Block Thread Block

Grid with Clusters

1 e
e

Thread Block Thread Block Thread Block Thread Block
| sharedMemory | Shared Memory |  Shared Memory |

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memo Principles of Machine Learning Systems 38
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GPU hardware and CUDA

Barrier synchronization.

All threads of a block are executed asynchronously.

You are guaranteed that all threads will finish before getting the result, but there is no
guarantees on the order of execution.
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GPU hardware and CUDA

Barrier synchronization.

All threads of a block are executed asynchronously.
You are guaranteed that all threads will finish before getting the result, but there is no
guarantees on the order of execution.

What if we need to share partial resulis?
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GPU hardware and CUDA

Barrier synchronization.

__syncthreads() acts as a barrier at the block level.

__global__ void globFunction(int xarr, int N)

{
__shared__ int local_array[THREADS_PER_BLOCK];
int idx blockIdx.x* blockDim.x+ threadIdx.x;

local_array[threadIdx.x] results;

__syncthreads();

int val = local_array[(threadIdx.x + 1) % THREADS_PER_BLOCK];

arr[idx] val;
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Roadmap for Today

Why do we need to understand GPUse
GPU hardware and CUDA.

Practical CUDA optimisation example.
PyTorch CUDA bindings.
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).

N
Cij=S Aix-Bij, Vi,jel,N
k=1

https://siboehm.com/articles/22/CUDA-MMM
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Naive solution.

__global__ void sgemm_naive(int M, int N, int K, float *A,
float *B, float *C) {

uint x blockIdx.x blockDim. x threadIdx.x;
uint y = blockIdx.y * blockDim.y + threadIdx.y;

(x <M y < N) {
float tmp 0.0;
(int i = 0; i < K; i) {

tmp += Alx * K + i] % B[i * N + yl; One thread is
responsible for one
element of C

}

tmp;

int main(int argc, char xargv[]){

dim3 gridDim(CEIL_DIV(M, 32), CEIL_DIV(N, 32), 1);

dim3 blockDim(32, 32, 1);

sgemm_naive<<<gridDim, blockDim>>>(M, N, K, A, B, C);
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Naive solution.

__global__ void sgemm_naive(int M, int N, int K, float *A,
float *B, float *C) {

uint x blockIdx.x blockDim. x threadIdx.x;
Kernel GFLOPs/s uint y = blockIdx.y * blockDim.y + threadIdx.y;

1: Naive 309.0
(x <M y <N) {
float tmp = 0.0;
(int i = 0; i < K; ++i) {
tmp Alx * K + il * B[1i * N + yl;
}

tmp;

int main(int argc, char xargv[]){

dim3 gridDim(CEIL_DIV(M, 32), CEIL_DIV(N, 32), 1);

dim3 blockDim(32, 32, 1);

sgemm_naive<<<gridDim, blockDim>>>(M, N, K, A, B, C);

Principles of Machine Learning Systems

One thread is
responsible for one
element of C
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

One of the memory access is non-continuous due to the storage of the matrix
l.e. slow

B

both threads —— |/

loswel: saime ol non-continuous access

n memory

each thread loads
different row threadTdicse

»>
/ »> threadA: 0,0
/ | T | tivead®: <0
ont access in memory g ‘
2 ;
e - =
of ¢
o : BLOCK
\ 4
A C
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

Sequential memory accesses by threads in a warp can be executed as one.

both threads ——» [

loswel: saime ol non-continuous access

n memory

each thread loads
different row

.
/ »> threadA: 0,0
| —+A2
/ | S| | threadBi 0D 1
>
ont access in mewory ¢ ‘
Y :

rows —_ — —

of ¢

o BLOCK

v
A C
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access. et mamery ot

consecutive in mem ¢

R

X |[wow wi DA13NdISUOD-WoY

Naive kernel:

. _innen lqoﬁr

threads access non-consecutive
values = cannot coalesce  values = within-warp broadeast No benefit to
putting these threads
n same warp

Coalesc‘mg ke,mel:

Ay /./;J NN

: R 77 NN
all threads access same threads access consecutive
values = within-warp broadcast  values = can coalesce

Moke sure these
threads end up in same warp
to e)(plo?t cmlasciv\g
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

__global__ void sgemm_naive(int M, int N, int K, float *A,
float *B, float *C) {

Kernel Jp— int x = blockIdx.x * BLOCKSIZE + (threadIdx.x / BLOCKSIZE);
- il int y = blockIdx.y * BLOCKSIZE + (threadIdx.x % BLOCKSIZE);

1: Naive 309.0
(x <M y <N) {

2: GMEM Coalescing 1986.5 float tmp = 0.0;
(int 1 = 0: 1 <K i) {
tmp Alx x K + i] B[i * N
}
CIx *x N + y] = tmp
}
I

int main(int argc, char *argv[]){
dim3 gridDim(CEIL_DIV(M, 32), CEIL_DIV(N, 32), 1);

dim3 blockDim(32, 32, 1);

sgemm_naive<<<gridDim, blockDim>>>(M, N, K, A, B, C);

}
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Using shared memory.

l . Per thread registers and
local memory

Much faster than local and
global memories.

Thread Block

Shared Memory 4

P

Thread Block Cluster

Per block Shared memory

Thread Block

Thread Block

I Shared Memory

Shared Memory |r

o

A

Grid with Clusters

Thread Block Cluster

Thread Block Cluster

Thread Block

Thread Block

Thread Block

Thread Block

I Shared Memory

Shared Memory I

I Shared Memory

Shared Memory I

A

A

A

A
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Shared memory of all
thread blocks in a cluster
form Distributed Shared

Memory

Global Memory shared

between all GPU kernels
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Using shared memory.

&B

¥32;

B
columns Outer loop;
Advance LALB by size of
cacheblock (=32+432) until € is
' . Pu“c/ caleulated
&C
‘ ) 32 cRow=2
A 32 a
cCol=1
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Practical CUDA optimisation example

__global__ void sgemm_shared_mem_block(int M, int N, int K,
float *A, float *B,
float *C) {

uint cRow blockIdx.x;
uint cCol blockIdx.y;

] . A”OCOTe ShOred memory __shared__ float As[BLOCKSIZE % BLOCKSIZE]; Kernel GELOPs/s
__shared__ float Bs[BLOCKSIZE BLOCKSIZE];
1: Naive 309.0
uint threadCol threadIdx.x BLOCKSIZE;
uint threadRow threadIdx.x BLOCKSIZE; 2: GMEM Coalescing 1986.5
e L ChR o 3: SMEM Caching 2980.3
cCol BLOCKSIZE;
cRow BLOCKSIZE N cCol BLOCKSIZE;
float tmp 0.0;
(int bkIdx = 0; bkIdx < K; bkIdx BLOCKSIZE) {
2. Copy from global to shared
L]
memory USIng ihrequ. As [threadRow * BLOCKSIZE + threadColl AlthreadRow * K + threadColl;
Bs [threadRow * BLOCKSIZE + threadColl B[threadRow * N + threadCol];
__syncthreads();
A BLOCKSIZE;
B BLOCKSIZE \'H
3 Compufe the producf with (int dotIdx - 0; dotIdx < BLOCKSIZE; ++dotIdx) {
‘ tmp += As[threadRow * BLOCKSIZE + dotIdx]
shared memory elements. Bs[dotIdx + BLOCKSIZE + threadColl;
__syncthreads();
}
C[threadRow * N + threadCol]l = tmp 52

}




Practical CUDA optimisation example

Kernel GFLOPs/s
1: Naive 309.0
2: GMEM Coalescing 1986.5
3: SMEM Caching 2980.3
4: 1D Blocktiling 8474.7
5: 2D Blocktiling 15971.7

6: Vectorized Mem Access 18237.3

9: Autotuning 19721.0
10: Warptiling 21779.3
0: cuBLAS 23249.6

https://siboehm.com/articles/22/CUDA-MMM
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https://siboehm.com/articles/22/CUDA-MMM

Roadmap for Today

Why do we need to understand GPUs<e
GPU hardware and CUDA.

Practical CUDA optimisation example.
PyTorch CUDA bindings.

W=

IT'S GONNA

|
s 5
BE snnn [‘I!,Nﬂ:-:c»ra-
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PyTorch CUDA bindings.

PyTorch provides two ways of binding C++ code:
compilation ahead of time or just in time (JIT).

1. Write your CUDA / C++ files.
2. Write the bindings to python with pybindl 1.
3. Use JIT or setuptool to compile.
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PyTorch CUDA bindings.

1. Write your CUDA / C++ files.

<torch/extension.h>

_global__ void vecAdd(float *a, float *b, float *c, int n)
{
int id blockIdx.x+blockDim. x+threadIdx.x;
(id < n)
c[id] = alid] + b[id];
torch::Tensor custom_add_vectors_cuda(torch::Tensor inputl, torch::Tensor input2) {
int64_t num_elements inputl.numel();
torch::Tensor output = torch::empty({num_elements}, torch::dtype(torch::kFloat32).device(torch::kCUDA, 0));
vecAdd<<<1, 1024>>>(inputl.data_ptr<float>(), input2.data_ptr<float>(), output.data_ptr<float>(), num_elements);
torch::cuda::synchronize();

output;

PYBIND11_MODULE (TORCH_EXTENSION_NAME, m) {
m.def("custom_add_vectors_cuda", &custom_add_vectors_cuda);

}
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PyTorch CUDA bindings.

2. Write the bindings to python with pybind11.

<torch/extension.h>
global__ void vecAdd(float *a, float *b, float *c, int n)

int id blockIdx.x+blockDim. x+threadIdx.x;
(id < n)
c[id] = alid] + b[id];
torch::Tensor custom_add_vectors_cuda(torch::Tensor inputl, torch::Tensor input2) {
int64_t num_elements inputl.numel();
torch::Tensor output = torch::empty({num_elements}, torch::dtype(torch::kFloat32).device(torch::kCUDA, 0));
vecAdd<<<1, 1024>>>(inputl.data_ptr<float>(), input2.data_ptr<float>(), output.data_ptr<float>(), num_elements);
torch::cuda::synchronize();

output;

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("custom_add_vectors_cuda", &custom_add_vectors_cuda);

r
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PyTorch CUDA bindings.

3. Use JIT or setuptool to compile.

torch
torch.utils.cpp_extension load

custom_op load(name=""custom_add_vectors_cuda", sources=['reduce_sum.cu'])

inputl = torch.randn(100, dtype=torch.float32, device="cuda")
input2 = torch.randn(100, dtype=torch.float32, device="cuda")

output custom_op.custom_add_vectors_cuda(inputl, input2)

print(output)
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In brief

©® N O Ok W~

GPUs or accelerators are our main tool in DL — we must know them.
Nvidia GPUs share the same overall architecture.

Nvidia GPUs are made of SM / warp / Arithmetic cores

GPU cores maximises arithmetic intensity.

CUDA merges a parallel computing platform with a programming model.
Key concepts are: hierarchy of threads and memory and synchronisation.
Opftimising your code with CUDA may lead to massive improvements.
PyTorch (and Tensorflow) can handle custom CUDA code.
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To go beyond the lecture

1. https://siboehm.com/articles/22/CUDA-MMM
2. https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.himl

3. hitps://pytorch.org/tutorials/advanced/cpp extension.himl
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