
Principles of Machine Learning Systemshttp://mlsys.cst.cam.ac.uk/teach 0

5: GPUs, CUDA and Deep Learning Frameworks
Prof. Nicholas D. Lane  

Dr. Titouan Parcollet

Principles of 
Machine Learning Systems



Principles of Machine Learning Systems 1

Roadmap for Today

1. Why do we need to understand GPUs?
2. GPU hardware and CUDA.
3. Practical CUDA optimisation example.
4. PyTorch CUDA bindings.
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Why do we need to understand GPUs?

A vast majority of the DL models are trained with GPUs.

Most engineers do not know what it means to train on GPU.
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Why do we need to understand GPUs?

As long as you are playing with MNIST or toy tasks, it does not matter.
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Why do we need to understand GPUs?

But the real world is different:

- Why is my training so slow while my GPU is worth £6,000?
- Can I train this 30B parameters Llama model on my RTX 3090?
- Why is my inference so slow while my GPU is equipped with Tensorcores?
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Why do we need to understand GPUs?

Your hardware stack, e.g. your GPU, is your secondary tool — learn to use it.

The number of issues related to the lack of hardware knowledge is infinite.
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Why do we need to understand GPUs?

Examples: 

https://siboehm.com/articles/22/CUDA-MMM

70x faster matmul with a proper cuda kernel.
8x faster real training time of a RNN-based 

speech recogniser.

Moumen, A., & Parcollet, T. (2023, June). Stabilising and accelerating light gated 
recurrent units for automatic speech recognition. ICASSP 2023.

https://siboehm.com/articles/22/CUDA-MMM
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GPU hardware and CUDA

Any idea of what are CUDA cores?
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GPU hardware and CUDA

Green = computational units   Orange = memory Yellow = control

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg


Principles of Machine Learning Systems 11

GPU hardware and CUDA

Green = computational units   Orange = memory Yellow = control

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

Very basic view. 
CPU computational units are bigger - “smarter”.

GPU computational units are smaller.
These units are called “cores”.

  

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg


Principles of Machine Learning Systems 12

GPU hardware and CUDA

Green = computational units   Orange = memory Yellow = control

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

CPU cores must:

Perform non arithmetic ops well.
Manage out-of-order executions.

  

GPU cores must:

Perform arithmetic ops very well.
Stay simple and energy efficient.

Arithmetic intensity is maximised.
  

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg


Principles of Machine Learning Systems 13

GPU hardware and CUDA

Arithmetic intensity is maximised.
  

Ampere architecture (GA102 — 10,496 CUDA cores).
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GPU hardware and CUDA

Arithmetic intensity is maximised.
  

How are these cores managed and accessed?
Let’s move one step back.
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GPU hardware and CUDA

SM or Streaming Multiprocessors
Contains:

Set of cores.
Set of registers (storing operands).

A chunk of shared memory (cores of this SM).



Principles of Machine Learning Systems 16

GPU hardware and CUDA

The basic execution units is called a warp.
Contains:

32 cores.
They are executed simultaneously by an SM.
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GPU hardware and CUDA

Nvidia Turing TU102 (e.g. RTX 2080 Ti — 4608 CUDA cores)
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GPU hardware and CUDA

Nvidia Ampere GA102 (e.g. RTX 3090 — 10,496 CUDA cores)
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GPU hardware and CUDA

Nvidia Ada Lovelace AD102 (e.g. H100 or RTX 4090 (smaller) — 18,432 CUDA cores)
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GPU hardware and CUDA

Ada Lovelace SM 

Tensor cores are CUDA cores on steroïds.
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GPU hardware and CUDA

Ada Lovelace SM 
(4 tensor cores per SM)

Tensor cores are CUDA cores on steroïds.

In one GPU clock, a CUDA core can:
fp32 — x += y * z

In one GPU clock, a Tensor core can:
(Turing architecture)

fp16 — (4*4) x += y * z

Each tensor core can perform 1 matrix 
multiply-accumulate operation per GPU clock.

That’s 16 times more operations per GPU clock. 
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GPU hardware and CUDA

What about CUDA programing?
And PyTorch?

And Tensorflow?
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GPU hardware and CUDA

You favorite framework is just communicating 
with your GPU’ SMs.
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GPU hardware and CUDA

CUDA or “Compute Unified Device Architecture”, merges a parallel computing platform 
(which we just saw) with a programming model (which we are about to see).

Hardware is nothing without a good software — right AMD?
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GPU hardware and CUDA

The CUDA programming model has three foundational concepts:

1. A hierarchy of thread groups (associated to kernels).
2. An ensemble of shared memories.
3. Barrier synchronization.
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GPU hardware and CUDA

A hierarchy of thread groups.

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
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GPU hardware and CUDA

A hierarchy of thread groups.

Not strictly true. A CUDA thread is an abstract entity that represents the execution of 
the kernel, it can represent a CUDA core or another logical unit.
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GPU hardware and CUDA

A hierarchy of thread groups.

A kernel is a function that compiles to run on a special device.

In CUDA, a kernel is a function that will run on a certain configuration of grid / blocks / 
threads. These architecture information are given in the invocation of the function.
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GPU hardware and CUDA

A hierarchy of thread groups.
threads can be identified in a 1D, 2D or 3D manner thanks to threadIdx.

This is particularly useful when manipulating vectors, matrices or volumes. This affects 
the corresponding thread block which also becomes 1D, 2D or 3D.
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GPU hardware and CUDA

A hierarchy of thread groups.

All threads of a block resides on the same SM and share the same resources.
A single block can’t have more than 1,024 threads!

But we can have multiple blocks of 1,024 threads! 
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).
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GPU hardware and CUDA

A hierarchy of thread groups (summary).

https://siboehm.com/articles/22/CUDA-MMM

https://siboehm.com/articles/22/CUDA-MMM
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GPU hardware and CUDA

A hierarchy of thread groups.

But we can have multiple blocks of 1,024 threads! 
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).
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GPU hardware and CUDA

A hierarchy of thread groups.

But we can have multiple blocks of 1,024 threads! 
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

SegFault if N is not a multiple of 16!

33
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GPU hardware and CUDA

A hierarchy of thread groups (summary).

https://siboehm.com/articles/22/CUDA-MMM

https://siboehm.com/articles/22/CUDA-MMM
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GPU hardware and CUDA

An ensemble of shared memories.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
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GPU hardware and CUDA

An ensemble of shared memories.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Usually manipulated by the 
Host (CPU). This is where you 
copy the data to work with.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
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GPU hardware and CUDA

An ensemble of shared memories.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Much faster than local and 
global memories.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
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GPU hardware and CUDA

An ensemble of shared memories.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Only exists during the lifespan 
of a thread.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
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GPU hardware and CUDA

Barrier synchronization.

All threads of a block are executed asynchronously.

You are guaranteed that all threads will finish before getting the result, but there is no 
guarantees on the order of execution.
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GPU hardware and CUDA

Barrier synchronization.

All threads of a block are executed asynchronously.

You are guaranteed that all threads will finish before getting the result, but there is no 
guarantees on the order of execution.

What if we need to share partial results?
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GPU hardware and CUDA

Barrier synchronization.

__syncthreads() acts as a barrier at the block level.
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Roadmap for Today

1. Why do we need to understand GPUs?
2. GPU hardware and CUDA.
3. Practical CUDA optimisation example.
4. PyTorch CUDA bindings.
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).

https://siboehm.com/articles/22/CUDA-MMM

https://siboehm.com/articles/22/CUDA-MMM
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Naïve solution.

One thread is 
responsible for one 

element of C
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

One of the memory access is non-continuous due to the storage of the matrix
i.e. slow
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

Sequential memory accesses by threads in a warp can be executed as one. 
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Practical CUDA optimisation example
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Practical CUDA optimisation example
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Using shared memory.

Much faster than local and 
global memories.
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Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Using shared memory.
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Practical CUDA optimisation example

1. Allocate shared memory.

2. Copy from global to shared 
memory using threads.

3. Compute the product with 
shared memory elements.
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Practical CUDA optimisation example

https://siboehm.com/articles/22/CUDA-MMM

https://siboehm.com/articles/22/CUDA-MMM
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Roadmap for Today
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PyTorch CUDA bindings.

1. Write your CUDA / C++ files.
2. Write the bindings to python with pybind11.
3. Use JIT or setuptool to compile.

PyTorch provides two ways of binding C++ code: 
compilation ahead of time or just in time (JIT). 
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PyTorch CUDA bindings.

1. Write your CUDA / C++ files.
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PyTorch CUDA bindings.

2. Write the bindings to python with pybind11.
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PyTorch CUDA bindings.

3. Use JIT or setuptool to compile.
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In brief

1. GPUs or accelerators are our main tool in DL — we must know them.
2. Nvidia GPUs share the same overall architecture.
3. Nvidia GPUs are made of SM / warp / Arithmetic cores
4. GPU cores maximises arithmetic intensity.
5. CUDA merges a parallel computing platform with a programming model.
6. Key concepts are: hierarchy of threads and memory and synchronisation.
7. Optimising your code with CUDA may lead to massive improvements.
8. PyTorch (and Tensorflow) can handle custom CUDA code. 
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To go beyond the lecture

1. https://siboehm.com/articles/22/CUDA-MMM
2. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
3. https://pytorch.org/tutorials/advanced/cpp_extension.html


