Machine Learning Systems

5: GPUs, CUDA and Deep Learning Frameworks

Prof. Nicholas D. Lane Dr. Titouan Parcollet

- 1. Why do we need to understand GPUs?
- 2. GPU hardware and CUDA.
- 3. Practical CUDA optimisation example.
- 4. PyTorch CUDA bindings.

- 2. GPU hardware and CUDA.
- 3. Practical CUDA optimisation example.
- 4. PyTorch CUDA bindings.

A vast majority of the DL models are trained with GPUs. Most engineers do not know what it **means** to train on GPU.

As long as you are playing with MNIST or toy tasks, it does not matter.

But the real world is different:

- Why is my training so slow while my GPU is worth \pounds 6,000?
- Can I train this 30B parameters Llama model on my RTX 3090?
- Why is my inference so slow while my GPU is equipped with Tensorcores?

Your hardware stack, e.g. your GPU, is your secondary tool — learn to use it.

The number of issues related to the lack of hardware knowledge is infinite.

Examples:

70x faster matmul with a proper cuda kernel.

Kernel	GFLOPs/s
1: Naive	309.0
2: GMEM Coalescing	1986.5
3: SMEM Caching	2980.3
4: 1D Blocktiling	8474.7
5: 2D Blocktiling	15971.7
6: Vectorized Mem Access	18237.3
9: Autotuning	19721.0
10: Warptiling	21779.3
0: cuBLAS	23249.6

8x faster real training time of a RNN-based speech recogniser.

Forward pass	::	
Batch=16	fast SLi-GRU (CUDA+PyTorch)	slow SLi-GRU (PyTorch)
L=100	0.05 s	0.11 s
L=500	0.25 s	0.55 s
L=1000	0.50 s	1.11 s
L=2000	1.02 s	2.26 s
L=3000	1.55 s	3.39 s
Backward pa	SS:	
Batch=16	fast SLi-GRU (CUDA+PyTorch)	slow SLi-GRU (PyTorch)
L=100	0.15 s	0.25 s
L=500	0.63 s	1.29 s
L=1000	1.27 s	3.68 s
L=1000 L=2000	1.27 s 2.65 s	3.68 s 11.87 s

Moumen, A., & Parcollet, T. (2023, June). Stabilising and accelerating light gated recurrent units for automatic speech recognition. ICASSP 2023.

https://siboehm.com/articles/22/CUDA-MMM

2. GPU hardware and CUDA.

- 3. Practical CUDA optimisation example.
- 4. PyTorch CUDA bindings.

Any idea of what are CUDA cores?

Green = computational units Orange = memory Yellow = control

Green = computational units Orange = memory Yellow = control

Very basic view.

CPU computational units are bigger - "smarter". GPU computational units are smaller. These units are called **"cores"**.

CPU cores must:

Perform non arithmetic ops well. Manage out-of-order executions.

GPU cores must:

Perform arithmetic ops very well. Stay simple and energy efficient.

Arithmetic intensity is maximised.

Arithmetic intensity is maximised.

Ampere architecture (GA102 — 10,496 CUDA cores).

Principles of Machine Learning Systems

Arithmetic intensity is maximised.

How are these cores managed and accessed? Let's move one step back.

Principles of Machine Learning Systems

		1	nstructi	on Buffe	r						nstructio	on Buffe	r		
			Warp Se	heduler	4						Warp So	heduler	<u>.</u>		
	Dispate	th Unit			Dispat	tch Unit			Dispate	h Unit			Dispat	tch Unit	
Register File (32,768 x 32-bit)								Regist	er File (3	32,768 x	32-bit)				
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	UP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LDIST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	OP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	0P Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	OP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
						8	Texture /	L1 Gache							
	Te	x			т	ex .			Т	IX.				Тех	

SM or Streaming Multiprocessors Contains:

Set of cores. Set of registers (storing operands). A chunk of shared memory (cores of this SM).

			nstructi	on Buffe	r				_	-	nstructio	on Buffe	r	_	
Warp Scheduler						-			Warp So	heduler					
	Dispate	th Unit		[Dispat	ch Unit			Dispate	sh Unit			Dispat	tch Unit	
Register File (32,768 x 32-bit)								Regist	er File (3	32,768 x	32-bit)				
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU.	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP. Unit	LD/ST	SFU	Core	Core	DP Unit	Care	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	0P Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	OP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	0P Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	0P Unit	Core	Core	DP Unit	LD/ST	SFU
						-	Texture /	L1 Gache	2						
	Te	x			Т	ex :			Te	IX.				Tex	

The basic execution units is called **a warp**. Contains:

32 cores. They are executed **simultaneously** by an SM.

Nvidia Turing TU102 (e.g. RTX 2080 Ti — 4608 CUDA cores)

Principles of Machine Learning Systems

Nvidia Ampere GA102 (e.g. RTX 3090 — 10,496 CUDA cores)

Principles of Machine Learning Systems

Nvidia Ada Lovelace AD102 (e.g. H100 or RTX 4090 (smaller) — 18,432 CUDA cores)

Tensor cores are CUDA cores on steroïds.

Ada Lovelace SM

Tensor cores are CUDA cores on steroïds.

In one GPU clock, a CUDA core can: **fp32** — x += y * z

In one GPU clock, a Tensor core can: (Turing architecture) fp16 — (4*4) x += y * z

Each tensor core can perform 1 matrix multiply-accumulate operation per GPU clock.

That's 16 times more operations per GPU clock.

Ada Lovelace SM (4 tensor cores per SM)

Principles of Machine Learning Systems

You favorite framework is just communicating with your GPU' SMs.

PyTorch
torch.mm(x,x.T)
Tensorflow
tf.linalg.matmul(x, x, transpose_b=True)

CUDA or "Compute Unified Device Architecture", merges a parallel computing platform (which we just saw) with a programming model (which we are about to see).

Hardware is nothing without a good software — right AMD?

The CUDA programming model has three foundational concepts:

- 1. A hierarchy of thread groups (associated to kernels).
- 2. An ensemble of shared memories.
- 3. Barrier synchronization.

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

Not strictly true. A CUDA thread is an abstract entity that represents the execution of the kernel, it can represent a CUDA core or another logical unit.

A kernel is a function that compiles to run on a special device.

In CUDA, a kernel is a function that will run on a certain configuration of grid / blocks / threads. These architecture information are given in the invocation of the function.

```
# Kernel definition
__global___void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}
int main()
{
    # Kernel invocation with N threads
    VecAdd <<<1, N>>> (A, B, C);
}
```


threads can be identified in a 1D, 2D or 3D manner thanks to threadIdx.

This is particularly useful when manipulating vectors, matrices or volumes. This affects the corresponding thread block which also becomes 1D, 2D or 3D.

```
# Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
                                float C[N][N])
{
    int i = threadIdx.x;
    int j = threadIdx.y;
    C[i][j] = A[i][j] + B[i][j];
}
int main()
{
    # Kernel invocation with one block of N * N * 1 threads
    int numBlocks = 1;
    dim3 threadsPerBlock(N, N);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
}
```


All threads of a block resides on the same SM and share the same resources. A single block can't have more than 1,024 threads!

But we can have **multiple blocks of 1,024 threads!** Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

A hierarchy of thread groups (summary).

But we can have **multiple blocks of 1,024 threads!** Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

```
Kernel definition
 _global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N \& j < N)
        C[i][j] = A[i][j] + B[i][j];
int main()
    # Kernel invocation
    dim3 threadsPerBlock(16, 16);
    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
    MatAdd<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```


But we can have **multiple blocks of 1,024 threads!** Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

```
Kernel definition
 _global___ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N \& \& i < N)
        C[i][j] = A[i][j] + B[i][j];
int main()
    # Kernel invocation
    dim3 threadsPerBlock(16, 16);
    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
    MatAdd<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

SegFault if N is not a multiple of 16!

A hierarchy of thread groups (summary).

An ensemble of shared memories.

An ensemble of shared memories.

Usually manipulated by the Host (CPU). This is where you copy the data to work with.

	Thread Blo	ock Cluster
	Thread Block	Thread Block
Ľ	Shared Memory	Shared Memory

An ensemble of shared memories.

Much faster than local and global memories.

and	Thread Block Shared Memory	Per thread registers and local memory Per block Shared memory
Thread Shared Ma	ad Block Cluster Block Thread Block emory Shared Memory	Shared memory of all thread blocks in a cluster form Distributed Shared Memory
Grid	l with Clusters	
ead Block Cluste Block Thread Bl Iemory Shared Men	Image: system Image: system ock Thread Block tory Shared Memory	
G	ilobal Memory	Global Memory shared between all GPU kernels

Thread Shared M

An ensemble of shared memories.

Only exists during the lifes of a thread.

lifespa	in [Fhread Block Shared Memory				Per thread registers and local memory Per block Shared memory
	Thread Blo Shared Memor	d Block Clu ock Threa ory Shared	ster ad Block Memory			Shared memory of all thread blocks in a cluster form Distributed Shared Memory
	Grid v	with Clus	ters			
Thread Blog	ck Cluster	Т	hread Blo	ock Cluster		
Thread Block	Thread Block	k Throng Share	ed Block	Thread Block Shared Memory		
	Glo	bal Memor	ý		*	Global Memory shared between all GPU kernels

Thread Bl Shared Mer

Barrier synchronization.

All threads of a block are executed asynchronously.

You are guaranteed that all threads will finish before getting the result, but there is no guarantees on the order of execution.

Barrier synchronization.

All threads of a block are executed asynchronously.

You are guaranteed that all threads will finish before getting the result, but there is no guarantees on the order of execution.

What if we need to share partial results?

Barrier synchronization.

_____syncthreads() acts as a barrier at the block level.

```
_global___ void globFunction(int *arr, int N)
  ____shared____int local_array[THREADS_PER_BLOCK]; # local block memory cache
  int idx = blockIdx.x* blockDim.x+ threadIdx.x:
  # ...calculate results
  local_array[threadIdx.x] = results;
  # synchronize the local threads writing to the local memory cache
  ____syncthreads();
  # read the results of another thread in the current thread
  int val = local_array[(threadIdx.x + 1) % THREADS_PER_BLOCK];
  # write back the value to global memory
  arr[idx] = val;
```


- 1. Why do we need to understand GPUs?
- 2. GPU hardware and CUDA.
- 3. Practical CUDA optimisation example.
- 4. PyTorch CUDA bindings.

Implementing a Single precision GEneral Matrix Multiply (SGEMM).

$$C_{i,j} = \sum_{k=1}^{N} A_{i,k} \cdot B_{k,j}, \quad \forall i, j \in 1, N$$

https://siboehm.com/articles/22/CUDA-MMM

Implementing a Single precision GEneral Matrix Multiply (SGEMM). Naive solution.

One thread is responsible for one element of C

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM). Naïve solution.

Kernel	GFLOPs/s
1: Naive	309.0

One thread is responsible for one element of C

Implementing a Single precision GEneral Matrix Multiply (SGEMM). Better memory access.

One of the memory access is non-continuous due to the storage of the matrix i.e. slow

Implementing a Single precision GEneral Matrix Multiply (SGEMM). Better memory access.

Sequential memory accesses by threads in a warp can be executed as one.

Implementing a Single precision GEneral Matrix Multiply (SGEMM). Better memory access.

Naive kernel:

Principles of Machine Learning Systems

Kernel

1: Naive

2: GMEM Coalescing

Implementing a Single precision GEneral Matrix Multiply (SGEMM). Better memory access.

	<pre>const float *B, float *C) {</pre>
GFLOPs/s	<pre>const int x = blockIdx.x * BLOCKSIZE + (threadIdx.x / BLOCKSIZE); const int y = blockIdx.y * BLOCKSIZE + (threadIdx.x % BLOCKSIZE);</pre>
309.0	if (x < M & v < N)
1986.5	float tmp = 0.0 ;
	for (<i>int</i> i = 0; i < K; ++i) {
	tmp += A[x * K + i] * B[i * N + y];
	}
	C[x * N + y] = tmp
	} }
	}
	int main(int argc char *argv[]){
	// create as many blocks as necessary to map all of C
	dim3 gridDim(CEIL DIV(M, 32), CEIL DIV(N, 32), 1);
	// 32 * 32 = 1024 thread per block
	<i>dim3</i> blockDim(32, 32, 1);
	<pre>// launch the asynchronous execution of the kernel on the device</pre>
	<pre>// The function call returns immediately on the host</pre>
	<pre>sgemm_naive<<<griddim, blockdim="">>>(M, N, K, A, B, C);</griddim,></pre>
	}

*A,

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM). Using shared memory.

> Per thread registers and local memory Much faster than local and Thread Block global memories. Shared Memory Per block Shared memory Thread Block Cluster Shared memory of all Thread Block Thread Block thread blocks in a cluster Shared Memory Shared Memory form Distributed Shared Memory **Grid with Clusters Thread Block Cluster Thread Block Cluster** Thread Block Thread Block Thread Block Thread Block Shared Memory Shared Memory Shared Memory Shared Memory **Global Memory shared Global Memory** between all GPU kernels

Implementing a Single precision GEneral Matrix Multiply (SGEMM). Using shared memory.

Practical CUDA optimisation example

Allocate shared memory. 1.

Copy from global to shared 2. memory using threads.

Compute the product with 3. shared memory elements.

	<pre>const float *A, const float *B, float *C) {</pre>
<pre>// the output block that we want to const uint cRow = blockIdx.x; const uint cCol = blockIdx.y;</pre>	compute in this threadblock
<pre>// allocate buffer for current block // shared mem is shared between allshared float As[BLOCKSIZE * BLOCshared float Bs[BLOCKSIZE * BLOC</pre>	<pre>t in fast shared mem threads in a block CKSIZE]; CKSIZE];</pre>
<pre>// the inner row & col that we're ac const uint threadCol = threadIdx.x % const uint threadRow = threadIdx.x /</pre>	ccessing in this thread s BLOCKSIZE; / BLOCKSIZE;
<pre>// advance pointers to the starting A += cRow * BLOCKSIZE * K; B += cCol * BLOCKSIZE; C += cRow * BLOCKSIZE * N + cCol * E </pre>	positions // row=cRow, col=0 // row=0, col=cCol BLOCKSIZE; // row=cRow, col=cCol
<pre>float tmp = 0.0; for (int bkIdx = 0; bkIdx < K; bkIdx // Have each thread load one of th // Make the threadCol (=threadIdx. // to allow global memory access of As[threadRow * BLOCKSIZE + thread(Bs[threadRow * BLOCKSIZE + thread()</pre>	<pre>k += BLOCKSIZE) { he elements in A & B .x) the consecutive index coalescing Col] = A[threadRow * K + threadCol]; Col] = B[threadRow * N + threadCol];</pre>
<pre>// block threads in this block untsyncthreads(); A += BLOCKSIZE; B += BLOCKSIZE * N;</pre>	il cache is fully populated
<pre>// execute the dotproduct on the of for (int dotIdx = 0; dotIdx < BLOO tmp += As[threadRow * BLOCKSIZE Bs[dotIdx * BLOCKSIZE + 1 }</pre>	urrently cached block KSIZE; ++dotIdx) { + dotIdx] * threadCol];
<pre>// need to sync again at the end, // fetching the next block into th syncthreads(); } C[threadRow * N + threadCol] = tmp</pre>	to avoid faster threads he cache before slower threads are don

Kernel	GFLOPs/s
1: Naive	309.0
2: GMEM Coalescing	1986.5
3: SMEM Caching	2980.3

Practical CUDA optimisation example

Kernel	GFLOPs/s
1: Naive	309.0
2: GMEM Coalescing	1986.5
3: SMEM Caching	2980.3
4: 1D Blocktiling	8474.7
5: 2D Blocktiling	15971.7
6: Vectorized Mem Access	18237.3
9: Autotuning	19721.0
10: Warptiling	21779.3
0: cuBLAS	23249.6

https://siboehm.com/articles/22/CUDA-MMM

- 1. Why do we need to understand GPUs?
- 2. GPU hardware and CUDA.
- 3. Practical CUDA optimisation example.
- 4. PyTorch CUDA bindings.

PyTorch provides two ways of binding C++ code: compilation ahead of time or just in time (JIT).

- 1. Write your CUDA / C++ files.
- 2. Write the bindings to python with pybind11.
- 3. Use JIT or setuptool to compile.

1. Write your CUDA / C++ files.

2. Write the bindings to python with pybind11.

3. Use JIT or setuptool to compile.

import torch
<pre>from torch.utils.cpp_extension import load</pre>
<pre># Load the custom reduce sum operation.</pre>
<pre>custom_op = load(name="custom_add_vectors_cuda", sources=['reduce_sum.cu'])</pre>
Create an input tensor.
<pre>input1 = torch.randn(100, dtype=torch.float32, device="cuda")</pre>
<pre>input2 = torch.randn(100, dtype=torch.float32, device="cuda")</pre>
Compute the reduce sum of the input tensor.
<pre>output = custom_op.custom_add_vectors_cuda(input1, input2)</pre>
Print the output tensor.
<pre>print(output)</pre>

- 1. GPUs or accelerators are our main tool in DL we must know them.
- 2. Nvidia GPUs share the same overall architecture.
- 3. Nvidia GPUs are made of SM / warp / Arithmetic cores
- 4. GPU cores maximises arithmetic intensity.
- 5. CUDA merges a parallel computing platform with a programming model.
- 6. Key concepts are: hierarchy of threads and memory and synchronisation.
- 7. Optimising your code with CUDA may lead to massive improvements.
- 8. PyTorch (and Tensorflow) can handle custom CUDA code.

- 1. <u>https://siboehm.com/articles/22/CUDA-MMM</u>
- 2. <u>https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html</u>
- 3. <u>https://pytorch.org/tutorials/advanced/cpp_extension.html</u>