
Principles of Machine Learning Systemshttp://mlsys.cst.cam.ac.uk/teach 0

5: GPUs, CUDA and Deep Learning Frameworks
Prof. Nicholas D. Lane

Dr. Titouan Parcollet

Principles of
Machine Learning Systems

Principles of Machine Learning Systems 1

Roadmap for Today

1. Why do we need to understand GPUs?
2. GPU hardware and CUDA.
3. Practical CUDA optimisation example.
4. PyTorch CUDA bindings.

Principles of Machine Learning Systems 2

Roadmap for Today

1. Why do we need to understand GPUs?
2. GPU hardware and CUDA.
3. Practical CUDA optimisation example.
4. PyTorch CUDA bindings.

Principles of Machine Learning Systems 3

Why do we need to understand GPUs?

A vast majority of the DL models are trained with GPUs.

Most engineers do not know what it means to train on GPU.

Principles of Machine Learning Systems 4

Why do we need to understand GPUs?

As long as you are playing with MNIST or toy tasks, it does not matter.

Principles of Machine Learning Systems 5

Why do we need to understand GPUs?

But the real world is different:

- Why is my training so slow while my GPU is worth £6,000?
- Can I train this 30B parameters Llama model on my RTX 3090?
- Why is my inference so slow while my GPU is equipped with Tensorcores?

Principles of Machine Learning Systems 6

Why do we need to understand GPUs?

Your hardware stack, e.g. your GPU, is your secondary tool — learn to use it.

The number of issues related to the lack of hardware knowledge is infinite.

Principles of Machine Learning Systems 7

Why do we need to understand GPUs?

Examples:

https://siboehm.com/articles/22/CUDA-MMM

70x faster matmul with a proper cuda kernel.
8x faster real training time of a RNN-based

speech recogniser.

Moumen, A., & Parcollet, T. (2023, June). Stabilising and accelerating light gated
recurrent units for automatic speech recognition. ICASSP 2023.

https://siboehm.com/articles/22/CUDA-MMM

Principles of Machine Learning Systems 8

Roadmap for Today

1. Why do we need to understand GPUs?
2. GPU hardware and CUDA.
3. Practical CUDA optimisation example.
4. PyTorch CUDA bindings.

Principles of Machine Learning Systems 9

GPU hardware and CUDA

Any idea of what are CUDA cores?

Principles of Machine Learning Systems 10

GPU hardware and CUDA

Green = computational units Orange = memory Yellow = control

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

Principles of Machine Learning Systems 11

GPU hardware and CUDA

Green = computational units Orange = memory Yellow = control

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

Very basic view.
CPU computational units are bigger - “smarter”.

GPU computational units are smaller.
These units are called “cores”.

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

Principles of Machine Learning Systems 12

GPU hardware and CUDA

Green = computational units Orange = memory Yellow = control

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

CPU cores must:

Perform non arithmetic ops well.
Manage out-of-order executions.

GPU cores must:

Perform arithmetic ops very well.
Stay simple and energy efficient.

Arithmetic intensity is maximised.

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

Principles of Machine Learning Systems 13

GPU hardware and CUDA

Arithmetic intensity is maximised.

Ampere architecture (GA102 — 10,496 CUDA cores).

Principles of Machine Learning Systems 14

GPU hardware and CUDA

Arithmetic intensity is maximised.

How are these cores managed and accessed?
Let’s move one step back.

Principles of Machine Learning Systems 15

GPU hardware and CUDA

SM or Streaming Multiprocessors
Contains:

Set of cores.
Set of registers (storing operands).

A chunk of shared memory (cores of this SM).

Principles of Machine Learning Systems 16

GPU hardware and CUDA

The basic execution units is called a warp.
Contains:

32 cores.
They are executed simultaneously by an SM.

Principles of Machine Learning Systems 17

GPU hardware and CUDA

Nvidia Turing TU102 (e.g. RTX 2080 Ti — 4608 CUDA cores)

Principles of Machine Learning Systems 18

GPU hardware and CUDA

Nvidia Ampere GA102 (e.g. RTX 3090 — 10,496 CUDA cores)

Principles of Machine Learning Systems 19

GPU hardware and CUDA

Nvidia Ada Lovelace AD102 (e.g. H100 or RTX 4090 (smaller) — 18,432 CUDA cores)

Principles of Machine Learning Systems 20

GPU hardware and CUDA

Ada Lovelace SM

Tensor cores are CUDA cores on steroïds.

Principles of Machine Learning Systems 21

GPU hardware and CUDA

Ada Lovelace SM
(4 tensor cores per SM)

Tensor cores are CUDA cores on steroïds.

In one GPU clock, a CUDA core can:
fp32 — x += y * z

In one GPU clock, a Tensor core can:
(Turing architecture)

fp16 — (4*4) x += y * z

Each tensor core can perform 1 matrix
multiply-accumulate operation per GPU clock.

That’s 16 times more operations per GPU clock.

Principles of Machine Learning Systems 22

GPU hardware and CUDA

What about CUDA programing?
And PyTorch?

And Tensorflow?

Principles of Machine Learning Systems 23

GPU hardware and CUDA

You favorite framework is just communicating
with your GPU’ SMs.

Principles of Machine Learning Systems 24

GPU hardware and CUDA

CUDA or “Compute Unified Device Architecture”, merges a parallel computing platform
(which we just saw) with a programming model (which we are about to see).

Hardware is nothing without a good software — right AMD?

Principles of Machine Learning Systems 25

GPU hardware and CUDA

The CUDA programming model has three foundational concepts:

1. A hierarchy of thread groups (associated to kernels).
2. An ensemble of shared memories.
3. Barrier synchronization.

Principles of Machine Learning Systems 26

GPU hardware and CUDA

A hierarchy of thread groups.

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

Principles of Machine Learning Systems 27

GPU hardware and CUDA

A hierarchy of thread groups.

Not strictly true. A CUDA thread is an abstract entity that represents the execution of
the kernel, it can represent a CUDA core or another logical unit.

Principles of Machine Learning Systems 28

GPU hardware and CUDA

A hierarchy of thread groups.

A kernel is a function that compiles to run on a special device.

In CUDA, a kernel is a function that will run on a certain configuration of grid / blocks /
threads. These architecture information are given in the invocation of the function.

Principles of Machine Learning Systems 29

GPU hardware and CUDA

A hierarchy of thread groups.
threads can be identified in a 1D, 2D or 3D manner thanks to threadIdx.

This is particularly useful when manipulating vectors, matrices or volumes. This affects
the corresponding thread block which also becomes 1D, 2D or 3D.

Principles of Machine Learning Systems 30

GPU hardware and CUDA

A hierarchy of thread groups.

All threads of a block resides on the same SM and share the same resources.
A single block can’t have more than 1,024 threads!

But we can have multiple blocks of 1,024 threads!
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

Principles of Machine Learning Systems 31

GPU hardware and CUDA

A hierarchy of thread groups (summary).

https://siboehm.com/articles/22/CUDA-MMM

https://siboehm.com/articles/22/CUDA-MMM

Principles of Machine Learning Systems 32

GPU hardware and CUDA

A hierarchy of thread groups.

But we can have multiple blocks of 1,024 threads!
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

Principles of Machine Learning Systems

GPU hardware and CUDA

A hierarchy of thread groups.

But we can have multiple blocks of 1,024 threads!
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

SegFault if N is not a multiple of 16!

33

Principles of Machine Learning Systems 34

GPU hardware and CUDA

A hierarchy of thread groups (summary).

https://siboehm.com/articles/22/CUDA-MMM

https://siboehm.com/articles/22/CUDA-MMM

Principles of Machine Learning Systems 35

GPU hardware and CUDA

An ensemble of shared memories.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Principles of Machine Learning Systems 36

GPU hardware and CUDA

An ensemble of shared memories.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Usually manipulated by the
Host (CPU). This is where you
copy the data to work with.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Principles of Machine Learning Systems 37

GPU hardware and CUDA

An ensemble of shared memories.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Much faster than local and
global memories.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Principles of Machine Learning Systems 38

GPU hardware and CUDA

An ensemble of shared memories.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Only exists during the lifespan
of a thread.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

Principles of Machine Learning Systems 39

GPU hardware and CUDA

Barrier synchronization.

All threads of a block are executed asynchronously.

You are guaranteed that all threads will finish before getting the result, but there is no
guarantees on the order of execution.

Principles of Machine Learning Systems 40

GPU hardware and CUDA

Barrier synchronization.

All threads of a block are executed asynchronously.

You are guaranteed that all threads will finish before getting the result, but there is no
guarantees on the order of execution.

What if we need to share partial results?

Principles of Machine Learning Systems 41

GPU hardware and CUDA

Barrier synchronization.

__syncthreads() acts as a barrier at the block level.

Principles of Machine Learning Systems 42

Roadmap for Today

1. Why do we need to understand GPUs?
2. GPU hardware and CUDA.
3. Practical CUDA optimisation example.
4. PyTorch CUDA bindings.

Principles of Machine Learning Systems 43

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).

https://siboehm.com/articles/22/CUDA-MMM

https://siboehm.com/articles/22/CUDA-MMM

Principles of Machine Learning Systems 44

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Naïve solution.

One thread is
responsible for one

element of C

Principles of Machine Learning Systems 45

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Naïve solution.

One thread is
responsible for one

element of C

Principles of Machine Learning Systems 46

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

One of the memory access is non-continuous due to the storage of the matrix
i.e. slow

Principles of Machine Learning Systems 47

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

Sequential memory accesses by threads in a warp can be executed as one.

Principles of Machine Learning Systems 48

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

Principles of Machine Learning Systems 49

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

Principles of Machine Learning Systems 50

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Using shared memory.

Much faster than local and
global memories.

Principles of Machine Learning Systems 51

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Using shared memory.

Principles of Machine Learning Systems 52

Practical CUDA optimisation example

1. Allocate shared memory.

2. Copy from global to shared
memory using threads.

3. Compute the product with
shared memory elements.

Principles of Machine Learning Systems 53

Practical CUDA optimisation example

https://siboehm.com/articles/22/CUDA-MMM

https://siboehm.com/articles/22/CUDA-MMM

Principles of Machine Learning Systems 54

Roadmap for Today

1. Why do we need to understand GPUs?
2. GPU hardware and CUDA.
3. Practical CUDA optimisation example.
4. PyTorch CUDA bindings.

Principles of Machine Learning Systems 55

PyTorch CUDA bindings.

1. Write your CUDA / C++ files.
2. Write the bindings to python with pybind11.
3. Use JIT or setuptool to compile.

PyTorch provides two ways of binding C++ code:
compilation ahead of time or just in time (JIT).

Principles of Machine Learning Systems 56

PyTorch CUDA bindings.

1. Write your CUDA / C++ files.

Principles of Machine Learning Systems 57

PyTorch CUDA bindings.

2. Write the bindings to python with pybind11.

Principles of Machine Learning Systems 58

PyTorch CUDA bindings.

3. Use JIT or setuptool to compile.

Principles of Machine Learning Systems 59

In brief

1. GPUs or accelerators are our main tool in DL — we must know them.
2. Nvidia GPUs share the same overall architecture.
3. Nvidia GPUs are made of SM / warp / Arithmetic cores
4. GPU cores maximises arithmetic intensity.
5. CUDA merges a parallel computing platform with a programming model.
6. Key concepts are: hierarchy of threads and memory and synchronisation.
7. Optimising your code with CUDA may lead to massive improvements.
8. PyTorch (and Tensorflow) can handle custom CUDA code.

Principles of Machine Learning Systems 60

To go beyond the lecture

1. https://siboehm.com/articles/22/CUDA-MMM
2. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
3. https://pytorch.org/tutorials/advanced/cpp_extension.html

