Principles ot
Machine Learning Systems

5: GPUs, CUDA and Deep Learning Frameworks

Prof. Nicholas D. Lane
Dr. Titouan Parcollet

Roadmap for Today

Why do we need to understand GPUse
GPU hardware and CUDA.

Practical CUDA optimisation example.
PyTorch CUDA bindings.

W=

IT'S GONNA

BE Slllfllﬂ

Principles of Machine Learning Systems 1

Roadmap for Today

Why do we need to understand GPUs?
GPU hardware and CUDA.

Practical CUDA optimisation example.
PyTorch CUDA bindings.

W=

Principles of Machine Learning Systems 2

Why do we need to understand GPUse

RTX 3080

A vast majority of the DL models are trained with GPU:s.

Most engineers do not know what it means o train on GPU.

Principles of Machine Learning Systems 3

Why do we need to understand GPUse

As long as you are playing with MNIST or toy tasks, it does not matter.

Principles of Machine Learning Systems 4

Why do we need to understand GPUse

But the real world is different:

- Why is my training so slow while my GPU is worth £6,000¢
- Can | tfrain this 30B parameters Liama model on my RTX 3090¢
- Why is my inference so slow while my GPU is equipped with Tensorcores?

Principles of Machine Learning Systems S

Why do we need to understand GPUse

Your hardware stack, e.g. your GPU, is your secondary tool — learn to use it.

The number of issues related to the lack of hardware knowledge is infinite.

Principles of Machine Learning Systems 6

Why do we need to understand GPUse

Examples:

/0x faster matmul with a proper cuda kernel.

Kernel GFLOPs/s
1: Naive 309.0
2: GMEM Coalescing 1986.5
3: SMEM Caching 2980.3
4: 1D Blocktiling 8474.7
5: 2D Blocktiling 15971 .7

6: Vectorized Mem Access 18237.3

9: Autotuning 19721.0
10: Warptiling 21779.3
0: cuBLAS 23249.6

https://siboehm.com/articles/22/CUDA-MMM

8x faster real tfraining time of a RNN-based
speech recogniser.

Forward pass:

Batch=16 fast SLi-GRU (CUDA+PyTorch) slow SLi-GRU (PyTorch)
L=100 0.05s 0.11s

L=500 0.25s 0.55s

L=1000 0.50s 11s

L=2000 1.02s 2.26s

L=3000 1.55s 3.39s

Backward pass:

Batch=16 fast SLi-GRU (CUDA+PyTorch) slow SLi-GRU (PyTorch)

L=100 0.15s 0.25s
L=500 0.63s 1.29s
L=1000 1.27 s 3.68s
L=2000 265s 11.87 s

L=3000 3.84s 24.39s

Moumen, A., & Parcollet, T. (2023, June). Stabilising and accelerating light gated
recurrent units for autfomatic speech recognition. ICASSP 2023.

Principles of Machine Learning Systems

https://siboehm.com/articles/22/CUDA-MMM

Roadmap for Today

Why do we need to understand GPUse
GPU hardware and CUDA.

Practical CUDA optimisation example.
PyTorch CUDA bindings.

> W bh -

Principles of Machine Learning Systems 8

GPU hardware and CUDA

Any idea of what are CUDA cores?e

Principles of Machine Learning Systems 9

GPU hardware and CUDA

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

Control | ALU ALU

ALU ALU

CPU

-
I
=
.
[
.
C
I
.
.
[
|
o
|
[
|

Green = computational units Orange = memory = control

Principles of Machine Learning Systems 10

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

GPU hardware and CUDA

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

Control ALU ALU

ALU ALU

CPU

innnnnnn

Green = computational units Orange = memory = control

Very basic view.
CPU computational units are bigger - “smarter”.
GPU computational units are smaller.
These units are called “cores”.

Principles of Machine Learning Systems 11

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

GPU hardware and CUDA

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

Control ALU ALU

ALU ALU

CPU GPU
Green = computational units Orange = memory = control
CPU cores must: GPU cores must:
Perform non arithmetic ops well. Perform arithmetic ops very well.
Manage out-of-order executions. Stay simple and energy efficient.

Arithmetic intensity is maximised.

Principles of Machine Learning Systems 12

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg

GPU hardware and CUDA

Arithmetic intensity is maximised.

PCI Express 4.0 Host Interface

Raster Engine Raster Engine Raster Engine
o s s s s s s s s s s - s s s s
e

c P e TP TP e e e P TP e e P P e TPC e P P0 e e
e Engos PoriorhEngn P Engn P Pt tagee Poppern S P Eng Poylosh Enpee oMo Excios | Pator Exgme Poykarh Enge Py Engion Ponbaoh Eng . PG Pl Eng

s ™) ™ m ™) ™ ™ ™ ™ s ™ [

Memory Control
Jeljonu0 Kowa

18jjonu0D Aiowa

Memory Controller

Jl101U0D Alowa

Memory Controller

5
3
3
2
o
g
2
El

Memory Controller

01109 Alowa

Memory Controller

Jalionu0 Alowow

Memory Controller

Link — Four x4 Links

Ampere architecture (GA102 — 10,496 CUDA cores).

Principles of Machine Learning Systems 13

GPU hardware and CUDA

Arithmetic intensity is maximised.

PCI Express 4.0 Host Interface

GPC

Raster Engine Raster Engine Raster Engine Raster E:
s s o s s s s s s s s s s s s s

e e P e TP TP e e e P TP e e P P e TPC e P P0 e e
P Engine | Poom Enge Popomh e P Eng Popiosh Enge PonernEngne | P Eng Poylosh Engee nEncoe | Poton Exome Poylerh Enge P Engios [S— PG Pl Eng
) s ™) ™ ™) ™ ™ ™ ™)] ™ [

Memory Controlier
181101309 Asowap

18jjonu0D Aiowa

Memory Controller

RT CORE.

Memory Controller
19110309 Asowaly

5
3
3
2
o
g
2
El

Memory Controller

Joljonuog Alowap

Memory Controller

T " ™ M m

e Tre c TPe.
-

Memory Controller
19]0U0D Aowa

s va
Raster Engine

Link — Four x4 Links

How are these cores managed and accessed?
Let’'s move one step back.
Principles of Machine Learning Systems 14

GPU hardware and CUDA

Dispatch Urvt
ES

Register File (32,768 x 32-bit)

SM or Streaming Multiprocessors
Contains:

SFU
SFuU

SFU

Set of cores.
Set of registers (storing operands).
A chunk of shared memory (cores of this SM).

SFU

SFU

SFU

SFU

SFU Core

Texture /L1 Cache

64KB Shared Memory

Principles of Machine Learning Systems 15

GPU hardware and CUDA

Warp Scheduler

: Register File (32,768 x 32-bit) e 2 Register File (32,768 x 32-bit) %
— —— The basic execution units is called a warp.
— Contains:
32 cores.

They are executed simultaneously by an SM.

g

Principles of Machine Learning Systems 16

GPU hardware and CUDA

PCI Express 3.0 Host Interface

Raster Engine Raster Engine Raster Engine
s - s s

s s s s s -
c i e °C TPC

su su s s sm su su sm sm sm sm sm M M sm sm

Memory Controll
J8l1053u00 Aloweiy

rrcore [l RT CORE RTCORE rrcore Ml rrcore il wrcore [wrcore [l rrcore [l rrcore |
™ sm su s s

M su s M

Jej01u09 Kiowely

Memory Control

1u09 Kiowapy

Memory Controller

rrcore [l RTCoRE rrcore [l RTCoRE rrcore [l rrcore [l rrcore M v core | wrcore [l rrcove [l rrcore M wrcore [e core

|
5
3
3
2
o
S
2
S
g

Memory Controller

101109 Aiowapy

sm sm sm sM s sm sm s

W W W W

Memory Controller

M M s sm sm M sm sm s sm M M s M sm s s sm
PotornEngne PooonEngre PolerEngios FoMaph Enge Polocn agne oty Engine | | PoornEnone poviarsh Engine Poilomsh Engine _ Polarsh Engne Pty ngine Poorsh Potarph Engine Poyomh Enine PoMern Engioe Soon g Poyarsn Engne Plyorph Engine
TPC TPC TPC TP TPC PC TPC TPC TPC TPC TPC PC TPC TPC PC TP TP TPC

Jel0nu0D Aiowely

Memory Contr

~s ~s *s
Raster Engine Raster Engine Raster Engine

= = £ 3
NVLink — Two x8 Links

Nvidia Turing TU102 (e.g. RTX 2080 Ti — 4608 CUDA cores

Principles of Machine Learning Systems 17

GPU hardware and CUDA

PCI Express 4.0 Host Interface

Raster Engine Raster Engine Raster Engine e
s s s s s s s s s s s s s s

s s s -

PC PC PC i PC PC e P e PC e e e TPC e PC e PC e TPC e e TPC
PonMorsh Enine Poyorsh Engne PonMorh Eage PolMersh Engis PoMroh Engre : PolMosh Eraine Poptorn Engee PoerphEncion PoyMocph Engne Powiorsh Enine PoyMerph Engne PowMorn Eape Patosn Gngie | | Peborsn Encine Petaron Engie Pplcroh ncine Poaerph Engon Pokorph Engne Potycph Engine
M M ™ M ™ M ™ ™ ™ M M ™ M M M ™ M

Memory Controller
J9)j01u09 Aowey

™ M M M ™ M

Memory Controller
J3jj013u0D Aiowapy

Memory Controller
J8jj0au09 Aowepy

=
3
3
3
<
o
8
=
s
3

Memory Controller

Jelj0u09 Alowap

Memory Controller

sm

e

Memory Controller
Jejjonuo9 Aowey

Raster Engine

NVLink - Four x4 Links

Nvidia Ampere GA102 (e.g. RTX 3090 — 10,496 CUDA cores)

Principles of Machine Learning Systems 18

GPU hardware and CUDA

PCI Express 4.0 Host Interface

Optical Flow Accelerator C NVEN

Aiowap

Memory Controller

J8

Lowap

Memory Controller

oller

[4

o
>
o
£
]

M

Memory Controller

troller

Memory
19

Controller
Gowapy

emory C
JuoQ A

M

Nvidia Ada Lovelace AD102 (e.g. H100 or RTX 4090 (smaller) — 18,432 CUDA cores)

Principles of Machine Learning Systems 19

GPU hardware and CUDA

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ADA 4t

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 o

/ FP32 GENERATION
INT32 TENSOR CORE

LD/IST LD/IST LD/ST LD/ST

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 —

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/ST

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ——

!/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/IST

128 KB L1 Data Cache / Shared Memory

Tex

Tex

Ada Lovelace SM

Tensor cores are CUDA cores on steroids.

Principles of Machine Learning Systems

GPU hardware and CUDA

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ADA 4t

/ FP32 GENERATION
INT32 TENSOR CORE

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 e

A
/ FP32 GENERATION
INT32 TENSOR CORE

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ADA 4t

/ FP32 GENERATION
INT32 TENSOR CORE

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 .

Al
!/ FP32 GENERATION
INT32 TENSOR CORE

128 KB L1 Data Cache / Shared Memory

Ada Lovelace SM
(4 tensor cores per SM)

Tensor cores are CUDA cores on steroids.
In one GPU clock, a CUDA core can:
fp32 —x+=y *z

In one GPU clock, a Tensor core can:
(Turing architecture)
fp16 — (4*4) x+=y *z

Each tensor core can perform 1 matrix

mulfiply-accumulate operation per GPU clock.

That's 16 fimes more operations per GPU clock.

Principles of Machine Learning Systems

21

GPU hardware and CUDA

O

What about CUDA programing? i

And Tensorflow?

GPU hardware and CUDA

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ADA 4%

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/ST SFU

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 ADA4™

/ FP32 GENERATION
INT32 TENSOR CORE

LDIST LD/ST LD/ST LD/ST SFU

| LOi-Cache + Warp Scheduler + Dispatch (32 thread/cik)

Register File (16,384 x 32-bit)

FP32 ADA a4t

/ FP32 GENERATION
INT32 TENSOR CORE

LD/ST LD/ST LD/ST LDIST SFU
| L0i-Cache + Warp Scheduler + Dispatch (32 threadiclk)

Register File (16,384 x 32-bit)

FP32 ADA

/ FP32 GENERATION
|NT32 TENSOR CORE

LD/ST LD/ST LD/ST LD/ST

128 KB L1 Data Cache / Shared Memory

Tex

Tex

You favorite framework is just communicating
with your GPU’ SMes.

torch.mm(x,x.T)

tf.linalg.matmul(x, x, transpose_b=Tr

Principles of Machine Learning Systems

GPU hardware and CUDA

CUDA or “Compute Unified Device Architecture”, merges a parallel computing platform
(which we just saw) with a programming model (which we are about to see).

NVIDIA.

CUDA

Hardware is nothing without a good software — right AMD?2

Principles of Machine Learning Systems 24

GPU hardware and CUDA

The CUDA programming model has three foundational concepts:
I. A hierarchy of thread groups (associated to kernels).

2. An ensemble of shared memories.
3. Barrier synchronization.

Principles of Machine Learning Systems 25

GPU hardware and CUDA

A hierarchy of thread groups.

CUDA thread CUDA core
CUDA streaming
CUDA thread block Multiprocessor(SM)

s a m

CUDA-capable GPU

CUDA kernel grid m

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

Principles of Machine Learning Systems 26

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

GPU hardware and CUDA

A hierarchy of thread groups.

CUDA thread CUDA core
: - |
CUDA streaming
CUDA thread block Multiprocessor(SM)

225050000
S5
J\?; é;;&é?

CUDA-capable GPU

CUDA kernel grid .
S |S5558 55555
S|z |

Noft strictly true. A CUDA thread is an abstract entity that represents the execution of
the kernel, it can represent a CUDA core or another logical unit.

Principles of Machine Learning Systems 27

GPU hardware and CUDA

A hierarchy of thread groups.

A kernel is a function that compiles to run on a special device.

In CUDA, a kernel is a function that will run on a certain configuration of grid / blocks /
threads. These architecture information are given in the invocation of the function.

__global__ void VecAdd(float+ A, float* B, float+ C)
{

Int threadIdx.Xx;

Cli]l = A[i] + B[i];
}

int main()

{

VecAddk<<1, N>>>/(A, B, C):

Principles of Machine Learning Systems 28

GPU hardware and CUDA

A hierarchy of thread groups.
threads can be identified in a 1D, 2D or 3D manner thanks to threadidx.

This is particularly useful when manipulating vectors, matrices or volumes. This affects
the corresponding thread block which also becomes 1D, 2D or 3D.

__global__ void MatAdd(float A[N][N], float BIN][NI,
float C[N][NI)

{

int i threadIdx.x;
int j threadIdx.y;
Cl[il[j]1 = A[il[j] + BIil[jl;

main()

int numBlocks 1D
dim3 threadsPerBlock(N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Principles of Machine Learning Systems 29

GPU hardware and CUDA

A hierarchy of thread groups.

All threads of a block resides on the same SM and share the same resources.
A single block can’t have more than 1,024 threads!

But we can have multiple blocks of 1,024 threads!
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

Principles of Machine Learning Systems 30

GPU hardware and CUDA

A hierarchy of thread groups (summary).

blockIdlx.x > Theeodldx.z | threadIdsx.x >
blockIdx.2 LlockDim.x ” /) _ ér'." ‘ ‘
— —1 & . ﬁ o $.|n<3le thread of QOMPuta't\on,
7007, —%9! : B SRR \}o" m]nd?mj its own business
(4// »/ ,7/.//’///' ‘g - (o ': R T N /
> 7 ’ volo> AU S S
. > '
X : K £ : d :
Sa [(1,0) ik ”'-"J'CE/ """" a
g | % c] I~ R R
S| % = S B R 7 . | \
v \ Y K PR A N
3ﬁo(]>im.x blockDim.x
GRID BLOCK THREAD

https://siboehm.com/articles/22/CUDA-MMM Principles of Machine Learning Systems 31

https://siboehm.com/articles/22/CUDA-MMM

GPU hardware and CUDA

A hierarchy of thread groups.

But we can have multiple blocks of 1,024 threads!
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

__global__ void MatAdd(float A[N][N], float BIN]I[NI],
float CI[N]I[N])
{

int i blockIdx.x blockDim.x + threadIdx.x;
int j blockIdx.y * blockDim.y + threadIdx.y;
(i <N j < N)
Clil[j] = Alil[j] + B[il[jl;

}

int main()

{

dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N threadsPerBlock.x, N threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock->>(A, B, C);

Principles of Machine Learning Systems 32

GPU hardware and CUDA

A hierarchy of thread groups.

But we can have multiple blocks of 1,024 threads!
Blocks are also organized in a 1D, 2D, 3D fashion (also called grids).

__global__ void MatAdd(float A[N][N], float BIN][NI],
float C[N]I[N])
{
int i blockIdx.x blockDim.x threadIdx.x;
int j blockIdx.y blockDim.y threadIdx.y;
(i <N j N) . . .
CLil L] = ALil[§] + BLAI[§1; SegFault if N is not a multiple of 16!
I

int main()

{

dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N / threadsPerBlock.x, N threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock->>(A, B, C);

Principles of Machine Learning Systems 33

GPU hardware and CUDA

A hierarchy of thread groups (summary).

blockIdlx.x > Theeodldx.z | threadIdsx.x >
blockIdx.2 LlockDim.x ” /) _ ér'." ‘ ‘
— —1 & . ﬁ o $.|n<3le thread of QOMPuta't\on,
7007, —%9! : B SRR \}o" m]nd?mj its own business
(4// »/ ,7/.//’///' ‘g - (o ': R T N /
> 7 ’ volo> AU S S
. > '
X : K £ : d :
Sa [(1,0) ik ”'-"J'CE/ """" a
g | % c] I~ R R
S| % = S B R 7 . | \
v \ Y K PR A N
3ﬁo(]>im.x blockDim.x
GRID BLOCK THREAD

https://siboehm.com/articles/22/CUDA-MMM Principles of Machine Learning Systems 34

https://siboehm.com/articles/22/CUDA-MMM

GPU hardware and CUDA

An ensemble of shared memories.

Thread Block

Thread Block Thread Block

Grid with Clusters

1 e
e

Thread Block Thread Block Thread Block Thread Block

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memo Principles of Machine Learning Systems 35

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

GPU hardware and CUDA

An ensemble of shared memories.

l . Per thread registers and
local memory

Usually manipulated by the S
Host (CPU). This is where you SRRTEE-
copy the data to work with. W

Per block Shared memory

Thread Block Cluster

Thread Block Thread Block Shared memory of all
thread blocks in a cluster
I SUATECaEHBNy SRRSO |t N form Distributed Shared

Grid with Clusters
Thread Block Cluster Thread Block Cluster

Thread Block

Thread Block

Thread Block

Thread Block

I Shared Memory

Shared Memory I

I Shared Memory

Shared Memory

A

A

i

A

https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html#shared-memory

Principles of Machine Learning Systems

Global Memory shared

between all GPU kernels

36

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

GPU hardware and CUDA

An ensemble of shared memories.

MUCh fOSTer Thgn |OCO| Ond Thread Block
global memories. [srsdtesory

P

Thread Block Thread Block

Grid with Clusters

1 e
e

Thread Block Thread Block Thread Block Thread Block
| sharedMemory | Shared Memory | Shared Memory |

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memo Principles of Machine Learning Systems 37

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

GPU hardware and CUDA

An ensemble of shared memories.

Only exists during the lifespan I
of a thread. ey

Thread Block Thread Block

Grid with Clusters

1 e
e

Thread Block Thread Block Thread Block Thread Block
| sharedMemory | Shared Memory | Shared Memory |

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memo Principles of Machine Learning Systems 38

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

GPU hardware and CUDA

Barrier synchronization.

All threads of a block are executed asynchronously.

You are guaranteed that all threads will finish before getting the result, but there is no
guarantees on the order of execution.

Principles of Machine Learning Systems 39

GPU hardware and CUDA

Barrier synchronization.

All threads of a block are executed asynchronously.
You are guaranteed that all threads will finish before getting the result, but there is no
guarantees on the order of execution.

What if we need to share partial resulis?

Principles of Machine Learning Systems 40

GPU hardware and CUDA

Barrier synchronization.

__syncthreads() acts as a barrier at the block level.

__global__ void globFunction(int xarr, int N)

{
__shared__ int local_array[THREADS_PER_BLOCK];
int idx blockIdx.x* blockDim.x+ threadIdx.x;

local_array[threadIdx.x] results;

__syncthreads();

int val = local_array[(threadIdx.x + 1) % THREADS_PER_BLOCK];

arr[idx] val;

Principles of Machine Learning Systems 41

Roadmap for Today

Why do we need to understand GPUse
GPU hardware and CUDA.

Practical CUDA optimisation example.
PyTorch CUDA bindings.

ol N

IT'S GONNA

-
S
BE snnu [“«"»v net

Principles of Machine Learning Systems 42

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).

N
Cij=S Aix-Bij, Vi,jel,N
k=1

https://siboehm.com/articles/22/CUDA-MMM

Principles of Machine Learning Systems 43

https://siboehm.com/articles/22/CUDA-MMM

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Naive solution.

__global__ void sgemm_naive(int M, int N, int K, float *A,
float *B, float *C) {

uint x blockIdx.x blockDim. x threadIdx.x;
uint y = blockIdx.y * blockDim.y + threadIdx.y;

(x <M y < N) {
float tmp 0.0;
(int i = 0; i < K; i) {

tmp += Alx * K + i] % B[i * N + yl; One thread is
responsible for one
element of C

}

tmp;

int main(int argc, char xargv[]){

dim3 gridDim(CEIL_DIV(M, 32), CEIL_DIV(N, 32), 1);

dim3 blockDim(32, 32, 1);

sgemm_naive<<<gridDim, blockDim>>>(M, N, K, A, B, C);

Principles of Machine Learning Systems 44

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Naive solution.

__global__ void sgemm_naive(int M, int N, int K, float *A,
float *B, float *C) {

uint x blockIdx.x blockDim. x threadIdx.x;
Kernel GFLOPs/s uint y = blockIdx.y * blockDim.y + threadIdx.y;

1: Naive 309.0
(x <M y <N) {
float tmp = 0.0;
(int i = 0; i < K; ++i) {
tmp Alx * K + il * B[1i * N + yl;
}

tmp;

int main(int argc, char xargv[]){

dim3 gridDim(CEIL_DIV(M, 32), CEIL_DIV(N, 32), 1);

dim3 blockDim(32, 32, 1);

sgemm_naive<<<gridDim, blockDim>>>(M, N, K, A, B, C);

Principles of Machine Learning Systems

One thread is
responsible for one
element of C

45

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

One of the memory access is non-continuous due to the storage of the matrix
l.e. slow

B

both threads —— |/

loswel: saime ol non-continuous access

n memory

each thread loads
different row threadTdicse

»>
/ »> threadA: 0,0
/ | T | tivead®: <0
ont access in memory g ‘
2 ;
e - =
of ¢
o : BLOCK
\ 4
A C

Principles of Machine Learning Systems 46

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

Sequential memory accesses by threads in a warp can be executed as one.

both threads ——» [

loswel: saime ol non-continuous access

n memory

each thread loads
different row

.
/ »> threadA: 0,0
| —+A2
/ | S| | threadBi 0D 1
>
ont access in mewory ¢ ‘
Y :

rows —_ — —

of ¢

o BLOCK

v
A C

Principles of Machine Learning Systems 47

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access. et mamery ot

consecutive in mem ¢

R

X |[wow wi DA13NdISUOD-WoY

Naive kernel:

. _innen lqoﬁr

threads access non-consecutive
values = cannot coalesce values = within-warp broadeast No benefit to
putting these threads
n same warp

Coalesc‘mg ke,mel:

Ay /./;J NN

: R 77 NN
all threads access same threads access consecutive
values = within-warp broadcast values = can coalesce

Moke sure these
threads end up in same warp
to e)(plo?t cmlasciv\g

Principles of Machine Learning Systems 48

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Better memory access.

__global__ void sgemm_naive(int M, int N, int K, float *A,
float *B, float *C) {

Kernel Jp— int x = blockIdx.x * BLOCKSIZE + (threadIdx.x / BLOCKSIZE);
- il int y = blockIdx.y * BLOCKSIZE + (threadIdx.x % BLOCKSIZE);

1: Naive 309.0
(x <M y <N) {

2: GMEM Coalescing 1986.5 float tmp = 0.0;
(int 1 = 0: 1 <K i) {
tmp Alx x K + i] B[i * N
}
CIx *x N + y] = tmp
}
I

int main(int argc, char *argv[]){
dim3 gridDim(CEIL_DIV(M, 32), CEIL_DIV(N, 32), 1);

dim3 blockDim(32, 32, 1);

sgemm_naive<<<gridDim, blockDim>>>(M, N, K, A, B, C);

}

Principles of Machine Learning Systems 49

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Using shared memory.

l . Per thread registers and
local memory

Much faster than local and
global memories.

Thread Block

Shared Memory 4

P

Thread Block Cluster

Per block Shared memory

Thread Block

Thread Block

I Shared Memory

Shared Memory |r

o

A

Grid with Clusters

Thread Block Cluster

Thread Block Cluster

Thread Block

Thread Block

Thread Block

Thread Block

I Shared Memory

Shared Memory I

I Shared Memory

Shared Memory I

A

A

A

A

Principles of Machine Learning Systems

Shared memory of all
thread blocks in a cluster
form Distributed Shared

Memory

Global Memory shared

between all GPU kernels

50

Practical CUDA optimisation example

Implementing a Single precision GEneral Matrix Multiply (SGEMM).
Using shared memory.

&B

¥32;

B
columns Outer loop;
Advance LALB by size of
cacheblock (=32+432) until € is
' . Pu“c/ caleulated
&C
‘) 32 cRow=2
A 32 a
cCol=1

Principles of Machine Learning Systems 51

Practical CUDA optimisation example

__global__ void sgemm_shared_mem_block(int M, int N, int K,
float *A, float *B,
float *C) {

uint cRow blockIdx.x;
uint cCol blockIdx.y;

] . A”OCOTe ShOred memory __shared__ float As[BLOCKSIZE % BLOCKSIZE]; Kernel GELOPs/s
__shared__ float Bs[BLOCKSIZE BLOCKSIZE];
1: Naive 309.0
uint threadCol threadIdx.x BLOCKSIZE;
uint threadRow threadIdx.x BLOCKSIZE; 2: GMEM Coalescing 1986.5
e L ChR o 3: SMEM Caching 2980.3
cCol BLOCKSIZE;
cRow BLOCKSIZE N cCol BLOCKSIZE;
float tmp 0.0;
(int bkIdx = 0; bkIdx < K; bkIdx BLOCKSIZE) {
2. Copy from global to shared
L]
memory USIng ihrequ. As [threadRow * BLOCKSIZE + threadColl AlthreadRow * K + threadColl;
Bs [threadRow * BLOCKSIZE + threadColl B[threadRow * N + threadCol];
__syncthreads();
A BLOCKSIZE;
B BLOCKSIZE \'H
3 Compufe the producf with (int dotIdx - 0; dotIdx < BLOCKSIZE; ++dotIdx) {
‘ tmp += As[threadRow * BLOCKSIZE + dotIdx]
shared memory elements. Bs[dotIdx + BLOCKSIZE + threadColl;
__syncthreads();
}
C[threadRow * N + threadCol]l = tmp 52

}

Practical CUDA optimisation example

Kernel GFLOPs/s
1: Naive 309.0
2: GMEM Coalescing 1986.5
3: SMEM Caching 2980.3
4: 1D Blocktiling 8474.7
5: 2D Blocktiling 15971.7

6: Vectorized Mem Access 18237.3

9: Autotuning 19721.0
10: Warptiling 21779.3
0: cuBLAS 23249.6

https://siboehm.com/articles/22/CUDA-MMM

Principles of Machine Learning Systems 53

https://siboehm.com/articles/22/CUDA-MMM

Roadmap for Today

Why do we need to understand GPUs<e
GPU hardware and CUDA.

Practical CUDA optimisation example.
PyTorch CUDA bindings.

W=

IT'S GONNA

|
s 5
BE snnn [‘I!,Nﬂ:-:c»ra-

Principles of Machine Learning Systems 54

PyTorch CUDA bindings.

PyTorch provides two ways of binding C++ code:
compilation ahead of time or just in time (JIT).

1. Write your CUDA / C++ files.
2. Write the bindings to python with pybindl 1.
3. Use JIT or setuptool to compile.

Principles of Machine Learning Systems 55

PyTorch CUDA bindings.

1. Write your CUDA / C++ files.

<torch/extension.h>

_global__ void vecAdd(float *a, float *b, float *c, int n)
{
int id blockIdx.x+blockDim. x+threadIdx.x;
(id < n)
c[id] = alid] + b[id];
torch::Tensor custom_add_vectors_cuda(torch::Tensor inputl, torch::Tensor input2) {
int64_t num_elements inputl.numel();
torch::Tensor output = torch::empty({num_elements}, torch::dtype(torch::kFloat32).device(torch::kCUDA, 0));
vecAdd<<<1, 1024>>>(inputl.data_ptr<float>(), input2.data_ptr<float>(), output.data_ptr<float>(), num_elements);
torch::cuda::synchronize();

output;

PYBIND11_MODULE (TORCH_EXTENSION_NAME, m) {
m.def("custom_add_vectors_cuda", &custom_add_vectors_cuda);

}

Principles of Machine Learning Systems 56

PyTorch CUDA bindings.

2. Write the bindings to python with pybind11.

<torch/extension.h>
global__ void vecAdd(float *a, float *b, float *c, int n)

int id blockIdx.x+blockDim. x+threadIdx.x;
(id < n)
c[id] = alid] + b[id];
torch::Tensor custom_add_vectors_cuda(torch::Tensor inputl, torch::Tensor input2) {
int64_t num_elements inputl.numel();
torch::Tensor output = torch::empty({num_elements}, torch::dtype(torch::kFloat32).device(torch::kCUDA, 0));
vecAdd<<<1, 1024>>>(inputl.data_ptr<float>(), input2.data_ptr<float>(), output.data_ptr<float>(), num_elements);
torch::cuda::synchronize();

output;

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("custom_add_vectors_cuda", &custom_add_vectors_cuda);

r

Principles of Machine Learning Systems 57

PyTorch CUDA bindings.

3. Use JIT or setuptool to compile.

torch
torch.utils.cpp_extension load

custom_op load(name=""custom_add_vectors_cuda", sources=['reduce_sum.cu'])

inputl = torch.randn(100, dtype=torch.float32, device="cuda")
input2 = torch.randn(100, dtype=torch.float32, device="cuda")

output custom_op.custom_add_vectors_cuda(inputl, input2)

print(output)

Principles of Machine Learning Systems 58

In brief

©® N O Ok W~

GPUs or accelerators are our main tool in DL — we must know them.
Nvidia GPUs share the same overall architecture.

Nvidia GPUs are made of SM / warp / Arithmetic cores

GPU cores maximises arithmetic intensity.

CUDA merges a parallel computing platform with a programming model.
Key concepts are: hierarchy of threads and memory and synchronisation.
Opftimising your code with CUDA may lead to massive improvements.
PyTorch (and Tensorflow) can handle custom CUDA code.

Principles of Machine Learning Systems 59

To go beyond the lecture

1. https://siboehm.com/articles/22/CUDA-MMM
2. https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.himl

3. hitps://pytorch.org/tutorials/advanced/cpp extension.himl

Principles of Machine Learning Systems 60

