Principles ot
Machine Learning Systems

3: Automatic Differentiation for DL Frameworks

Prof. Nicholas D. Lane
Dr. Titouan Parcollet

Roadmap for Today

Why do we care about automatic differentiatione
The different types of differentiations.

Forward and reverse mode automatic differentiation.
Automatic differentiation in PyTorch().

W=

IT'S GONNA

|
s 5
BE snnn [‘I!,Nﬂ:-:c»ra-

Principles of Machine Learning Systems 1

Roadmap for Today

Why do we care about automatic differentiation?

The different types of differentiations.

Forward and reverse mode automatic differentiation.
Automatic differentiation in PyTorch().

W=

IT'S GONNA

-
€ g
BESOOO/FUN .

Principles of Machine Learning Systems 2

Why do we care about automatic differentiation (AD)?

""‘V'
NN

Most deep learning framework rely on automatic differentiation.
(In general, on the reverse mode of AD)

Understanding AD helps understanding them.

Principles of Machine Learning Systems 3

Why do we care about automatic differentiation (AD)?

Why do we care about AD for Machine Learning and Systemse

AD is one of the key for training optimisation.

Principles of Machine Learning Systems 4

Why do we care about automatic differentiation (AD)?

Example: 4x reduction in VRAM consumption during training.

class QuaternionLinearFunction(torch.autograd.Function):

@staticmethod

def forward(ctx, input, r_weight, i_weight, j_weight, k_weight, bias=None):
ctx.save_for_backward(input, r_weight, i weight, j_weight, k_weight, bias)
check_input (input)
cat_kernels_4_r = torch.cat([r_weight, -i_weight, -j_weight, -k weightl, dim=0)
cat_kernels_4_i = torch.cat([i_weight, r_weight, -k _weight, j_weightl, dim=0)
cat_kernels_4_j = torch.cat([j_weight, k_weight, r_weight, -i_weightl]l, dim=0)
cat_kernels_4_k = torch.cat([k_weight, -j_weight, i_weight, r_weightl, dim=0)

cat_kernels_4_quaternion = torch.cat([cat_kernels_4_r, cat_kernels_4_i, cat_kernels_4_j, cat_kernels_4_k], dim=1)
output = torch.matmul(input, cat_kernels_4_quaternion) 24 Gb TO 6_8Gb.

bias None:
output+bias

output

@staticmethod
def backward(ctx, grad_output):

grad_input, grad_weight_r, grad_weight_i, grad_weight_j, grad_weight_k, grad_bias

Principles of Machine Learning Systems 5

Roadmap for Today

Why do we care about automatic differentiatione
The different types of differentiations.

Forward and reverse mode automatic differentiation.
Automatic differentiation in PyTorch().

> W bh -

Principles of Machine Learning Systems 6

The different types of differentiation.

Starting from the beginning: differentiation and gradient.

/“<

/ The gradient can be seen as
a measure of steepness or
2 -1/ 1 2 rate of change.

S — _/ 1

/|

/

Principles of Machine Learning Systems 7

The different types of differentiation.

Starting from the beginning: differentiation and gradient.

N

The gradient can be seen as
a measure of steepness or
rate of change.

A
/T T\

The gradient of a curve at a

/ given point is equal to the
gradient of the tangent at the

curve from this point.

/ Foramoveinxof 1,y

increases by roughly 0.5.
The gradient is 0.5.

N
X

-

N

/
v
\

Principles of Machine Learning Systems 8

The different types of differentiation.

Starting from the beginning: differentiation and gradient.

Defining the gradient function.

y=f(z) =22% -6z’ +z+1

A
/T T\

7

/ o
\
i

Principles of Machine Learning Systems 9

The different types of differentiation.

Starting from the beginning: differentiation and gradient.

Defining the gradient function.

y=f(z) =22% -6z’ +z+1

_______ » d ;
% = f(z) =622 — 12z + 1
e dx
2 -1/ 1 2
/ The differentiation of f w.r.t x.
or the gradient function.

The gradient at x=21is 1.

A
/T T\

/
v
\

Principles of Machine Learning Systems 10

The different types of differentiation.

Starting from the beginning: differentiation and gradient.

But wait, in DL, most functions are multivariable!

f(xg,...,T,) = dense

Principles of Machine Learning Systems 11

The different types of differentiation.

Starting from the beginning: differentiation and gradient.

The gradient stores all the partial derivatives of a multivariable function.

At any given point, we know the direction of the steepest change.

Going to the opposite direction = gradient descent.

Principles of Machine Learning Systems 12

The different types of differentiation.

Starting from the beginning: differentiation and gradient.

The gradient stores all the partial derivatives of a multivariable function.

f(z,y) = 2z* + 3y°

Vf(x,y) — (_7 N

Principles of Machine Learning Systems 13

The different types of differentiation.

Starting from the beginning: differentiation and gradient.

The gradient stores all the partial derivatives of a multivariable function.

f(z,y) = 2z* + 3y°

df d
Vi(z,y) = (;f, gf
df a _

If x=4 and y =5, then (15, 30) points in the direction of greatest increase
of the function f.

Principles of Machine Learning Systems 14

The different types of differentiation.

Analytical (manual) differentiation

f(z,y) = 2z* + 3y*

df d
Vi) = (5%
df daf

This would be the first type: manual differentiation.

Ok for simple functions, but fry it with a deep neural network.

Principles of Machine Learning Systems 15

The different types of differentiation.

Analytical

(Manual) Numerical Symbolic Automatic

Principles of Machine Learning Systems 16

The different types of differentiation.

Analytical

(Manual) Numerical Symbolic Automatic

Principles of Machine Learning Systems 17

The different types of differentiation.

Numerical differentiation or finite difference calculation.

We compute the partial derivatives using the Newton's quotient:

i flxzt+e) - f(z)

dx €

Problem:s:

1. It's an approximation highly dependent on the value of epsilon.

2. It epsilonis too small, we might end up in precision underflow.

3. Ifepsilonis too big, the error in the approximation will increase.

4. The complexity is O(n), with n parameters we need to compute f(x) n +1 times!

18

Principles of Machine Learning Systems

The different types of differentiation.

Numerical differentiation or finite difference calculation.

Example with: f(z,y) = 2x% + 3y°

Numerical Differentiation Error Approximation

== Manual == Approximation
6 /
4

0,8

df

f(x)

0,6 1,0

0,4

eps

Principles of Machine Learning Systems

The different types of differentiation.

Analytical

(Manual) Numerical Symbolic Automatic

Principles of Machine Learning Systems 20

The different types of differentiation.

Symbolic differentiation.

Nothing more than an automated version of the manual differentiation.

Principles of Machine Learning Systems 21

The different types of differentiation.

Symbolic differentiation.

Nothing more than an automated version of the manual differentiation.

Derivative Rules

Basic Derivatives Rules

Constant Rule: i(c) =0
dx

: d

Constant Multiple Rule: d—[cf(x)] =cf'(x)
X
Power Rule: i(.‘c’“) = nx™?
dx
.id ; ;

Sum Rule: 2] f(x)+ £(0)] = £)+ £'x)

Difference Rule: di[f(x) —g(x)] =f(x)-g'x)
ba

Product Rule: %[f(x)g(x)] - D)+ g(x)f ()

— [f(xﬂ: £ f() - F(2'®)
dx| g(x) | [g(x)])*

Chain Rule: %f(g(x)) - Fex)g @)

1.

Decompose your function.
2. Apply rules.

Principles of Machine Learning Systems

Exponential Functions
d (s x
E(e)=
%(a’): a*lna
;T(e:m): ef®g (x)

:_Y(as(n): 1n(a)a“’) g'(x)

Logarithmic Functions

;T(ln X)= %,x >0

d _g'x

iE In(g(x)) = 205)

d 1
dx(log,,.r)— xlna"x>0

d B 4(C))
E(loga g(x)= g(x)lna

Trigonometric Functions

d .
E(sm X)=cosx

_;{x (cosx)=—sinx
d 2
—(tan x) = sec? >
dx(anr) sec’ x

d
—(cscx)=—cscxcotx
dx

i(sec X)=secxtanx
dx
4,

cotx)=—csc’ x
i)

Inverse Trigonometric Functions

%(sin"x): lixl,x:tl
%(cos']x):\/l__%,x;zil
%(tan"x): 1+1x:
L)z
%(sec"x):xxlﬁ,x:il,o
%(csc'lx)=ﬁ.x*il,0

Hyperbolic Functions
di(sinh x) =coshx
x
d g
E(cosh x)=sinhx
d 2
E(tanh x)=sech’x
d
d—(csch x)=—cschxcothx
5
d
E(sech x)=—sechx tanh x

AL cothx)=—cschx
d.
X

Inverse Hyperbolic Functions

d .y 1
—(sinh'x)=
dx() A+ x?
1
SXF
Nxi-1”
1
1-x*7
-1

|x‘«)lfx:=
=1
,0<x<1
xV1-x*"

d 5 w1
E(coth x)_l—x“

%(cosh“x):

%(tanh"x):

|x|<1

%(csch“x): x#0

%(sech"x):

|x|>1

22

The different types of differentiation.

Symbolic differentiation.

Nothing more than an automated version of the manual differentiation.

Derivative Rules

Exponential Functions Logarithmic Functions

Basic Derivatives Rules e T s .0
dx dx x

Ty 1. Decompose your function. E)) *
i 4 ()= erg o) Z_(log, x)=
2. Apply rules. ' :

—. x>0
dx xlna

d £(x) x | d g '(x)
ey =1 £(x) 3 = = o
dx (a) Sk g™ dx(lcgag(x)) g(x)lna

Constant Multiple Rule: di[cf(x)] =cf'(x)
X

Trigonometric Functions Inverse Trigonometric Functions
i(siﬂx)=cosx %(Sin"x): 1 =.x= £l
Power Rule: %(.\:”)=nx”'1 ‘31"(. ‘Z(P ‘/1:? 1
E COsSX)=—sinx == cos™ x :m,x:i
d ;T(tan)= %(tan"x):l_:x:
Sum Rule: 2] f(x)+ £(0)] = £)+ £'x) & ny o ||
PrOS: %(x)= tan %(sec"x): X\/Xlz__l,x:il,O
Diff Rule: d _ PN ot _I_ | . | o I i(co”):_csc » %(csc"x): X\%.xailﬁ
ifference Rule: o[f(x)-g(@)] = £() - 2') Exact value up to numerica precision: &
Hyperbolic Functions Inverse Hyperbolic Functions
d d s 1
Product Rule: —[f(x)g(x)]: f()g(x)+g(x)f(x) 2 (sinh x) = cosh x E(snnh"x)=ﬁ
d. L4 X 1+ x
i ConS. Ed;(cashx)=sinhx T5%(00311“\'):\’%:x>l
Quoient Rale [)], £/ 0= 12056 Expression swell... o sy o e
@ 3 21 1 [4 = —cschxcoth x 4 (eseh™ x)= — =L =. X *
e o) The derivative becomes much more complex e || Gl gy et
o« e . E(sechx):—sechxtanhx E(sech")r):.‘(\/-_17;0<r<1
e s % R S S that the initial function. i %(wm“x>=1-“1”>l

Principles of Machine Learning Systems 23

The different types of differentiation.

Symbolic differentiation.

Expression swell.

h(z) = f(z)g(z)
h(z) = f'(z)g(z) + f(z)g' (x)

Principles of Machine Learning Systems 24

The different types of differentiation.

Symbolic differentiation.

Expression swell.
h(z) = f(z)g(z)
R (z) = f'(z)g(z) + f(2)g'(z)

f(z) = u(z)v(z)
h'(z) = (u'(z)o(z) + V' (z)u(z))g(z) + (z)v(z)g (z)

Can become intractable.
Also, it requires closed form expressions! (no loop, if statements etc...)

Principles of Machine Learning Systems 25

The different types of differentiation.

Analytical

(Manual) Numerical Symbolic Automatic

Principles of Machine Learning Systems 26

The different types of differentiation.

Automatic differentiation.

The key behind AD:

Implemented differentiable functions are composed of primitive
operations whose derivatives are known and the chain rule enables us to
compose them.

def softmax(x):

Computes the softmax function.

Args:
X: A numpy array.

Returns:
A numpy array containing the softmax of the input.

e_x = np.exp(x)
e_X / np.sum(e_x, axis=0)

Principles of Machine Learning Systems 27

The different types of differentiation.

Automatic differentiation.

The key behind AD:

Implemented differentiable functions are composed of primifive
operations whose derivatives are known and the chain rule enables us to
compose them.

def softmax(x):

Computes the softmax function.

Args:
X: A numpy array.

Returns:
A numpy array containing the softmax of the input.

e_Xx = np.exp(x)
e_Xx /| np.sum(e_x, axis=0)

Principles of Machine Learning Systems 28

The different types of differentiation.

Automatic differentiation.

The key behind AD:

Implemented differentiable functions are composed of primitive
operations whose derivatives are known and the chain rule enables us to
compose them.

y = cos(x?) u = 1 y = cos(u)

Principles of Machine Learning Systems 29

The different types of differentiation.

Automatic differentiation.

The key behind AD:

Implemented differentiable functions are composed of primitive
operations whose derivatives are known and the chain rule enables us to
compose them.

y = cos(x?) u = 1 y = cos(u)
du dy .
o= 2% o = —sin(u)

Principles of Machine Learning Systems 30

The different types of differentiation.

Automatic differentiation.

The key behind AD:

Implemented differentiable functions are composed of primitive
operations whose derivatives are known and the chain rule enables us to
compose them.

y = cos(x?) u = 1 y = cos(u)
du d .
= 2 o —sin(u)
dy |dy du| . B . 9
o = X | sin(u) X 2x = —2zxsin(z”)

Principles of Machine Learning Systems 31

Roadmap for Today

Why do we care about automatic differentiatione
The different types of differentiations.

Forward and reverse mode automatic differentiation.
Automatic differentiation in PyTorch().

ol N

Principles of Machine Learning Systems 32

Forward and reverse mode automatic differentiation.

Forward mode.

f($17x27x3) — 6(331 + CU% X 333)

Principles of Machine Learning Systems 33

Forward and reverse mode automatic differentiation.

Forward mode.

f(:El,SUQ, £C3) = 6(5131 —+ azg X 33‘3)

&M

Compute the output and the corresponding derivative at each node.

Principles of Machine Learning Systems 34

Forward and reverse mode automatic differentiation.

Forward mode.

f(:El,SUQ, 333) = 6(5131 -+ azg X 33‘3)

—~ at(1,2,3)¢
diBl

Principles of Machine Learning Systems 35

Forward and reverse mode automatic differentiation.

Forward mode.

f(:El,SUQ, £C3) = 6(5131 -+ azg X 33‘3)

—~ at(1,2,3)
diBl

Principles of Machine Learning Systems 36

Forward and reverse mode automatic differentiation.

Forward mode.

f(:El,SUQ, £C3) = 6(5131 -+ azg X 33‘3)

i at (1,2,3)
diBl

Principles of Machine Learning Systems 37

Forward and reverse mode automatic differentiation.

Forward mode.

f(:El,SUQ, 333) = 6(5131 -+ azg X 33‘3)

da:6
— =1
d£U1

i at (1,2,3)
diBl

Principles of Machine Learning Systems 38

Forward and reverse mode automatic differentiation.

Forward mode.

f(:El,SUQ, 333) = 6(5131 -+ azg X 33‘3)

We must
recompute the

— at (1,2,3)¢ |
de (1,2,3) whole graph!

Principles of Machine Learning Systems 39

Forward and reverse mode automatic differentiation.

Reverse mode.

f(:El,SUQ, £C3) = 6(5131 -+ azg X 33‘3)

Compute the outputs during a forward pass. We also rewrite the graph,
this will be useful in the next step.

Principles of Machine Learning Systems 40

Forward and reverse mode automatic differentiation.

Reverse mode.

f(f)?l,xg, 333) = 6(5131 -+ azg X 33‘3)

Principles of Machine Learning Systems 4]

Forward and reverse mode automatic differentiation.

Reverse mode.

f(f)?l,xg, 333) = 6(5131 -+ azg X 33‘3)

dx 6

% 1
d:IJl

Principles of Machine Learning Systems 42

Forward and reverse mode automatic differentiation.

Reverse mode.

f(f)?l,xg, 333) = 6(5131 -+ azg X 33‘3)

dx 6

% 1
d:IJl

Principles of Machine Learning Systems 43

Forward and reverse mode automatic differentiation.

Reverse mode.

dog
dx 5

dCE5

) =1
dCU3

=$4=4

We then apply the Chain Rule to get the derivatives.

df . d.’l?7 d$6 —6
d$C1 - diEG da:l N

Principles of Machine Learning Systems 44

Forward and reverse mode automatic differentiation.

Reverse mode.

df dr7dzre drs dxy

= =72
dCEQ d.CUG d$5 d£E4 diBl d

Principles of Machine Learning Systems 45

Forward and reverse mode automatic differentiation.

Reverse mode.

We get all
derivatives in only
two passes in the

graph!

df dr7dzre drs dxy
dCEQ - d.CUG d$5 d£E4 diEl

df dx7dze dxs
d$3 N diL‘ﬁ d£U5 d£E3

df dz7dre

d:El N d:UG d.’El

Principles of Machine Learning Systems 46

Roadmap for Today

Why do we care about automatic differentiatione
The different types of differentiations.

Forward and reverse mode automatic differentiation.
Automatic differentiation in PyTorch() .

W=

Principles of Machine Learning Systems 47

Automatic differentiation in PyTorch

BONK

Principles of Machine Learning Systems 48

Automatic differentiation in PyTorch

Take what we did manually in the Reverse Mode slides, then
convert it fo Python — PyTorch Autograd.

Principles of Machine Learning Systems 49

Automatic differentiation in PyTorch

Step by step example.

w = torch. linspace(0., 2. math.pi, steps=25, requires_grad=True)
b = torch.linspace(0., 2. math.pi, steps=25, requires_grad=True)

pre_act = w3 b
out = torch.sin(pre_act)

Let’'s define a simple dense non-linear transformation and extract
the backward compute graph from it.

Principles of Machine Learning Systems 50

Automatic differentiation in PyTorch

Step by step example.

w = torch.linspace(0., 2. math.pi, steps=25, requires_grad=True)
b = torch.linspace(0., 2. math.pi, steps=25, requires_grad=True)

pre_act = wx3 b
out = torch.sin(pre_act)

print(out)

tensor([0.0000e+00, 8.6603e-01, 8.6603e-01, -8.7423e-08, -8.6603e-01,
8.6603e-01, 1.7485e-07, 8.6603e-01, .0603e-01, -2.3850e-08,
8.6603e-01, -8.6603e-01,| 3.4969e-07, 8.6603e-01, 8.6602e-01,
6.7553e-07, -8.6603e-01, -8.6603e-01, 4.7700e-08, 8.6603e-01,
8.6603e-01, -1.3272e-06, -8.6603e-01, -8.6602e-01, 6.9938e-07],
grad_fn=<SinBackward>)

Looking at the out variable, we can spoft the last backward
function that needs to be executed. This will give us a cos.

Principles of Machine Learning Systems 51

Automatic differentiation in PyTorch

Step by step example.

w = torch. linspace(0., 2. math.pi, steps=25, requires_grad=True)
b = torch.linspace(0., 2. math.pi, steps=25, requires_grad=True)

pre_act = w3 + b
out = torch.sin(pre_act)

print(out.grad_fn)
SinBackward object at 0x7f9cbb396250
print(out.grad_fn.next_functions) X. = Add(x X)
AddBackward® object at 0x7f9cbb26a670>, 0),) 3 2
print(out.grad_fn.next_functions[0] [@].next_functions)
MulBackward® object at 0x7f9cbb396250>, @), (<AccumulateGrad object at 0x7f9cbb26a670>, 0))
print(out.grad_fn.next_functions[@] [@].next_functions[@] [@].next_functions)
AccumulateGrad object at 0x7f9cbb26a670>, @), (None, 0))
print(out.grad_fn.next_functions[0] [@].next_functions[0] [@].next_functions[0] [0].next_functions)

You can easily reconstruct the graph from the grad_func.

Principles of Machine Learning Systems 52

Automatic differentiation in PyTorch

Step by step example.

w = torch. linspace(0., 2. math.pi, steps=25, requires_grad=True)
b = torch.linspace(0., 2. math.pi, steps=25, requires_grad=True)

pre_act = w3 + b
out = torch.sin(pre_act)

torch.sum(out).backward()
print(w.grad)

Xy = Add(x,x)

tensor([3.0000, 1.5000, -1.5000, -3.0000, -1.5000, 1.5000, 3.
.5000, -3.0000, -1.5000, 1.5000, 3.0000, 1.5000, -1.5000, -3.0000,
5

0000, 1.5000,

.5000, 1.5000, 3.0000, 1.5000, -1.5000, -3.0000, 1.
.0000])|

000, 1.5000,

And we get the gradient by calling .backward(). d d
out T4 dx3 ATy

dw - dil?g dxg dCIJO

Principles of Machine Learning Systems 53

w.grad() =

Automatic differentiation in PyTorch

Step by step example.

w = torch. linspace(0., 2. math.pi, steps=25, requires_grad=True)
b = torch.linspace(0., 2. math.pi, steps=25, requires_grad=True)

pre_act = w3 + b
out = torch.sin(pre_act)

torch.sum(out).backward()
print(w.grad)

Xy = Add(x,x)

tensor([3.0000, 1.5000, -1.5000, -3.0000, -1.5000, 1.5000, 3.
.5000, -3.0000, -1.5000, 1.5000, 3.0000, 1.5000, -1.5000, -3.0000,
5

0000, 1.5000,

.5000, 1.5000, 3.0000, 1.5000, -1.5000, -3.0000, 1.
.0000])|

000, 1.5000,

And we get the gradient by calling .backward().
Note: the graph is recomputed at every forward() call. dout dx4 d.T3 de

w.grad() = H " dxs dzo dxg

Principles of Machine Learning Systems 54

Automatic differentiation in PyTorch

But why?e

Principles of Machine Learning Systems 55

Automatic differentiation in PyTorch

A practical example.

class MyLinearFunction(torch.autograd.Function):

@staticmethod
def forward(ctx, input, weight_1, weight_2, bias=None):

@staticmethod
def backward(ctx, grad_output):

grad_input, grad_weight_1, grad_weight_2, grad_biaq

The way you define a forward() function of a Module affects the
way PyTorch computes the backward graph.

You may want to define your own derivatives.

Principles of Machine Learning Systems 56

Automatic differentiation in PyTorch

A practical example.

class QuaternionLinearFunction(torch.autograd.Function):

@staticmethod

def forward(ctx, input, r_weight, i_weight, j_weight, k_weight, bias=None):
ctx.save_for_backward(input, r_weight, i_weight, j_weight, k_weight, bias)
cat_kernels_4_r = torch.cat([r_weight, -i_weight, -j_weight, -k_weight], dim @M
cat_kernels_4_i = torch.cat([i_weight, r_weight, -k _weight, j_weight], dim-0)
cat_kernels_4_j = torch.cat([j_weight, k_weight, r_weight, -i_weight], dim-0)

cat_kernels_4_k = torch.cat([k_weight, j_weight, i_weight, r_weight], dim=0)
cat_kernels_4_quaternion torch.cat([cat_kernels_4_r, cat_kernels_4_i, cat_kernels_4_j, cat_kernels_4_kl, dim=1)
output = torch.matmul(input, cat_kernels_4_quaternion)
bias None:
output+bias

output

This is a standard forward call of a ComplexLinear transformation.

PyTorch, to save time, will store the cat_kernels_4_quaternion
matrix by default. This is extremely memory inefficient.

Principles of Machine Learning Systems 57

Automatic differentiation in PyTorch

A practical example.

class QuaternionLinearFunction(torch.autograd.Function):

@staticmethod

def forward(ctx, input, r_weight, i_weight, j_weight, k_weight, bias=None):
ctx.save_for_backward(input, r_weight, i_weight, j_weight, k_weight, bias)
cat_kernels_4_r = torch.cat([r_weight, -i_weight, -j_weight, -k_weight], dim @M
cat_kernels_4_i = torch.cat([i_weight, r_weight, -k _weight, j_weight], dim-0)
cat_kernels_4_j = torch.cat([j_weight, k_weight, r_weight, -i_weight], dim-0)

cat_kernels_4_k = torch.cat([k_weight, j_weight, i_weight, r_weight], dim=0)
cat_kernels_4_quaternion torch.cat([cat_kernels_4_r, cat_kernels_4_i, cat_kernels_4_j, cat_kernels_4_kl, dim=1)
output = torch.matmul(input, cat_kernels_4_quaternion)
bias None:
output+bias

output

This is a standard forward call of a ComplexLinear transformation.

PyTorch, to save time, will store the cat_kernels_4_quaternion matrix by
default. This is extremely memory inefficient.

The ctx call asks PyTorch to only store the components of this maftrix so
that we can do the efficient backward pass by ourselves.

Principles of Machine Learning Systems 58

Automatic differentiation in PyTorch

@staticmethod
def backward(ctx, grad_output):

A prO CT'C O | eXO m p | e o input, r_weight, i_weight, j_weight, k_weight, bias ctx.saved_tensors

grad_input = grad_weight_r = grad_weight_i = grad_weight_j grad_weight_k = grad_bias = None

input_r = torch.cat([r_weight, -i_weight, -j_weight, -k_weightl, dim-0)

input_i = torch.cat([i_weight, r_weight, -k _weight, j_weightl, dim-0)

input_j torch.cat([j_weight, k_weight, r_weight, -i_weight], dim-0)

input_k = torch.cat([k_weight, j_weight, i_weight, r_weightl, dim-0)

cat_kernels_4_quaternion_T = Variable(torch.cat([input_r, input_i, input_j, input_k], dim=1).permute(1,0), requires_grad-False)

r = get_r(input)
i = get_i(input)
j = get_j(input)
k = get_k(input)

Instead of storing the large matrix we e
take the tensors saved in the context input_i. -~ torch.cat((1, T, K, 11, din-0)

input_j torch.cat([j, k, r, -il, dim=0)

and we reconstruct this matrix every e G S

input_mat = Variable(torch.cat([input_r, input_i, input_j, input_k], dim=1), requires_grad=False)

r = get_r(grad_output)
i = get_i(grad_output)
j = get_j(grad_output)
k

. get_k(grad_output)
The rest of the operations are standard S A
N o H input_i = torch.cat([-i, r, k, -j1, dim=1)
quaternion derivatives. R - G D U o i
input_k = torch.cat([-k, j, -i, rl, dim=1)
grad_mat - torch.cat([input_r, input_i, input_j, input_k]l, dim-0)

This change induces a reduction of two S—

grad_input grad_output.mm(cat_kernels_4_quaternion_T)

to three in the VRAM consumption while ctx.needs, tnput_gradl1]:

o o« e grad_weight = grad_mat.permute(1,0).mm(input_mat).permute(1,0)
only slowing down the training by 20%. unit_size x - r_weight.size(0)
unit_size_y = r_weight.size(1)
grad_weight_r = grad_weight.narrow(®,0,unit_size_x).narrow(1,0,unit_size_y)
grad_weight_i - grad_weight.narrow(®,0,unit_size_x).narrow(1,unit_size_y,unit_size_y)
grad_weight_j grad_weight.narrow(®,0,unit_size_x).narrow(1,unit_size_y+2,unit_size_y)
grad_weight_k grad_weight.narrow(®,0,unit_size_x).narrow(1,unit_size_y+3,unit_size_y)
ctx.needs_input_grad[5]:
grad_bias grad_output.sum(@).squeeze(0)

grad_input, grad_weight_r, grad_weight_i, grad_weight_j, grad_weight_k, grad_bias

Principles of Machine Learning Systems 59

In brief

U e

Gradients give the direction of the steepest change of @
differentiable multivariable function at a certain point.

Diff. methods are: Manual, Numeric, Symbolic or Automarfic.
AD has two modes: forward and reverse.
Most frameworks use reverse mode AD.

The idea is to create a forward compute graph and
differentiate it using the Chain Rule from the oufput to the
variable of interest.

Principles of Machine Learning Systems 60

To go beyond the lecture

1. https://e-dorigatti.github.io/math/deep%20learning/2020/04/07/autodiff.ntml
2. https://pytorch.org/tutorials/beginner/basics/autogradas tutorial.html
3. hitps:// www.imlr.org/papers/volume18/17-468/17-468.pdf

Principles of Machine Learning Systems 61

https://e-dorigatti.github.io/math/deep%20learning/2020/04/07/autodiff.html
https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html

