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Roadmap for Today

1. Why do we care about automatic differentiation?
2. The different types of differentiations.
3. Forward and reverse mode automatic differentiation.
4. Automatic differentiation in PyTorch   .
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Why do we care about automatic differentiation (AD)?

Most deep learning framework rely on automatic differentiation.
(In general, on the reverse mode of AD)

Understanding AD helps understanding them.
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Why do we care about automatic differentiation (AD)?

Why do we care about AD for Machine Learning and Systems?

AD is one of the key for training optimisation.
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Why do we care about automatic differentiation (AD)?

Example: 4x reduction in VRAM consumption during training.

24 Gb to 6-8Gb.
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The different types of differentiation.

Starting from the beginning: differentiation and gradient.

The gradient can be seen as 
a measure of steepness or 

rate of change.
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The different types of differentiation.

Starting from the beginning: differentiation and gradient.

The gradient can be seen as 
a measure of steepness or 

rate of change.

The gradient of a curve at a 
given point is equal to the 

gradient of the tangent at the 
curve from this point.

For a move in x of 1, y 
increases by roughly 0.5.

The gradient is 0.5.
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The different types of differentiation.

Starting from the beginning: differentiation and gradient.

Defining the gradient function.
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The different types of differentiation.

Starting from the beginning: differentiation and gradient.

Defining the gradient function.

The differentiation of f w.r.t x.
or the gradient function.

The gradient at x=2 is 1.
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The different types of differentiation.

Starting from the beginning: differentiation and gradient.

But wait, in DL, most functions are multivariable!
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The different types of differentiation.

Starting from the beginning: differentiation and gradient.

At any given point, we know the direction of the steepest change.

Going to the opposite direction = gradient descent.

The gradient stores all the partial derivatives of a multivariable function. 
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The different types of differentiation.

Starting from the beginning: differentiation and gradient.

The gradient stores all the partial derivatives of a multivariable function. 

If x=4 and y =5, then (15, 30) points in the direction of greatest increase 
of the function f.
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The different types of differentiation.

Analytical (manual) differentiation

This would be the first type: manual differentiation.

Ok for simple functions, but try it with a deep neural network.
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The different types of differentiation.

Analytical
(Manual) Numerical Symbolic Automatic
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The different types of differentiation.

Numerical differentiation or finite difference calculation.

We compute the partial derivatives using the Newton’s quotient:

1. It’s an approximation highly dependent on the value of epsilon.
2. If epsilon is too small, we might end up in precision underflow.
3. If epsilon is too big, the error in the approximation will increase.
4. The complexity is O(n), with n parameters we need to compute f(x) n +1 times!

Problems:
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The different types of differentiation.

Numerical differentiation or finite difference calculation.

Example with: 



Principles of Machine Learning Systems 20

The different types of differentiation.

Analytical
(Manual) Numerical Symbolic Automatic
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The different types of differentiation.

Symbolic differentiation.

Nothing more than an automated version of the manual differentiation.
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The different types of differentiation.

Symbolic differentiation.

Nothing more than an automated version of the manual differentiation.

1. Decompose your function.
2. Apply rules.
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The different types of differentiation.

Symbolic differentiation.

Nothing more than an automated version of the manual differentiation.

1. Decompose your function.
2. Apply rules.

Pros:
Exact value up to numerical precision!

Cons:
Expression swell…
The derivative becomes much more complex 
that the initial function.
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The different types of differentiation.

Symbolic differentiation.

Expression swell.
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The different types of differentiation.

Symbolic differentiation.

Expression swell.

Can become intractable.
Also, it requires closed form expressions! (no loop, if statements etc…)
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The different types of differentiation.

Analytical
(Manual) Numerical Symbolic Automatic
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The different types of differentiation.

Automatic differentiation.

The key behind AD: 

Implemented differentiable functions are composed of primitive 
operations whose derivatives are known and the chain rule enables us to 

compose them.
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The different types of differentiation.

Automatic differentiation.

The key behind AD: 

Implemented differentiable functions are composed of primitive 
operations whose derivatives are known and the chain rule enables us to 

compose them.
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Forward and reverse mode automatic differentiation.

Forward mode.
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Forward and reverse mode automatic differentiation.

Forward mode.

x1

x2

x3

x2
2

x2
2 * x3

x1 + x2
2 * x3

6*(x1 + x2
2 * 

x3)

Compute the output and the corresponding derivative at each node.
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Forward and reverse mode automatic differentiation.

Forward mode.

x1

x2

x3

x2
2

x2
2 * x3

x1 + x2
2 * x3

6*(x1 + x2
2 * 

x3)

at (1,2,3)?
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Forward and reverse mode automatic differentiation.

Forward mode.

x1= 1

x2 = 2

x3 = 3

x2
2

x2
2 * x3

x1 + x2
2 * x3

6*(x1 + x2
2 * 

x3)

at (1,2,3)
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Forward and reverse mode automatic differentiation.

Forward mode.

x1= 1

x2 = 2

x3 = 3

x4 = x2
2 = 4

x5 = x2
2 * x3 = 12

x1 + x2
2 * x3

6*(x1 + x2
2 * 

x3)

at (1,2,3)
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Forward and reverse mode automatic differentiation.

Forward mode.

x1= 1

x2 = 2

x3 = 3

x4 = x2
2 = 4

x5 = x2
2 * x3 = 12

x6 = x1 + x2
2 * x3 = 13 x7 = 6*(x1 + x2

2 * x3) = 78

at (1,2,3)
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Forward and reverse mode automatic differentiation.

Forward mode.

x1

x2

x3

x2
2

x2
2 * x3

x1 + x2
2 * x3

6*(x1 + x2
2 * 

x3)

at (1,2,3)?

We must 
recompute the 
whole graph!
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Forward and reverse mode automatic differentiation.

Reverse mode.

x1= 1

x2 = 2

x3 = 3

x4 = x2
2 = 4

x5 = x4
2 * x3 = 12

x6 = x1 + x5= 13 x7 = 6 * x6 = 78

Compute the outputs during a forward pass. We also rewrite the graph, 
this will be useful in the next step.



Principles of Machine Learning Systems 41

Forward and reverse mode automatic differentiation.

Reverse mode.

x1= 1

x2 = 2

x3 = 3

x4 = x2
2 = 4

x5 = x4
 * x3 = 12

x6 = x1 + x5= 13 x7 = 6 * x6 = 78
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Forward and reverse mode automatic differentiation.

Reverse mode.

x1= 1

x2 = 2

x3 = 3

x4 = x2
2 = 4

x5 = x4
 * x3 = 12

x6 = x1 + x5= 13 x7 = 6 * x6 = 78
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Forward and reverse mode automatic differentiation.

Reverse mode.

x1= 1

x2 = 2

x3 = 3

x4 = x2
2 = 4

x5 = x4
 * x3 = 12

x6 = x1 + x5= 13 x7 = 6 * x6 = 78



Principles of Machine Learning Systems 44

Forward and reverse mode automatic differentiation.

Reverse mode.

x1= 1

x2 = 2

x3 = 3

x4 = x2
2 = 4

x5 = x4
 * x3 = 12

x6 = x1 + x5= 13 x7 = 6 * x6 = 78

We then apply the Chain Rule to get the derivatives.



Principles of Machine Learning Systems 45

Forward and reverse mode automatic differentiation.

Reverse mode.

x1= 1

x2 = 2

x3 = 3

x4 = x2
2 = 4

x5 = x4
 * x3 = 12

x6 = x1 + x5= 13 x7 = 6 * x6 = 78
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Forward and reverse mode automatic differentiation.

Reverse mode.

x1= 1

x2 = 2

x3 = 3

x4 = x2
2 = 4

x5 = x4
 * x3 = 12

x6 = x1 + x5= 13 x7 = 6 * x6 = 78

We get all 
derivatives in only 
two passes in the 

graph!
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Automatic differentiation in PyTorch



Principles of Machine Learning Systems 49

Automatic differentiation in PyTorch

Take what we did manually in the Reverse Mode slides, then
convert it to Python — PyTorch Autograd.
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Automatic differentiation in PyTorch

Let’s define a simple dense non-linear transformation and extract 
the backward compute graph from it.

Step by step example.
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Automatic differentiation in PyTorch

Looking at the out variable, we can spot the last backward 
function that needs to be executed. This will give us a cos.

Step by step example.
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Automatic differentiation in PyTorch

You can easily reconstruct the graph from the grad_func.

x4 = Sin(x3)

x3 = Add(x2,x1)

x2 = Mul(x0, 3)

x1 = bx0 = w

Step by step example.
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Automatic differentiation in PyTorch

And we get the gradient by calling .backward().

x4 = Sin(x3)

x3 = Add(x2,x1)

x2 = Mul(x0, 3)

x1 = bx0 = w

Step by step example.
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Automatic differentiation in PyTorch

Step by step example.

And we get the gradient by calling .backward().
Note: the graph is recomputed at every forward() call.

x4 = Sin(x3)

x3 = Add(x2,x1)

x2 = Mul(x0, 3)

x1 = bx0 = w



Principles of Machine Learning Systems 55

Automatic differentiation in PyTorch

But why?
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Automatic differentiation in PyTorch

A practical example.

The way you define a forward() function of a Module affects the 
way PyTorch computes the backward graph.

You may want to define your own derivatives.
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Automatic differentiation in PyTorch

A practical example.

This is a standard forward call of a ComplexLinear transformation.

PyTorch, to save time, will store the cat_kernels_4_quaternion 
matrix by default. This is extremely memory inefficient.
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Automatic differentiation in PyTorch

A practical example.

This is a standard forward call of a ComplexLinear transformation.

PyTorch, to save time, will store the cat_kernels_4_quaternion matrix by 
default. This is extremely memory inefficient.

The ctx call asks PyTorch to only store the components of this matrix so 
that we can do the efficient backward pass by ourselves.
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Automatic differentiation in PyTorch

A practical example.

Instead of storing the large matrix we 
take the tensors saved in the context 
and we reconstruct this matrix every 

time.

The rest of the operations are standard 
quaternion derivatives.

This change induces a reduction of two 
to three in the VRAM consumption while 
only slowing down the training by 20%.
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In brief

1. Gradients give the direction of the steepest change of a 
differentiable multivariable function at a certain point.

2. Diff. methods are: Manual, Numeric, Symbolic or Automatic.
3. AD has two modes: forward and reverse. 
4. Most frameworks use reverse mode AD.
5. The idea is to create a forward compute graph and 

differentiate it using the Chain Rule from the output to the 
variable of interest. 
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To go beyond the lecture

1. https://e-dorigatti.github.io/math/deep%20learning/2020/04/07/autodiff.html
2. https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html
3. https://www.jmlr.org/papers/volume18/17-468/17-468.pdf

https://e-dorigatti.github.io/math/deep%20learning/2020/04/07/autodiff.html
https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html

