Machine Learning Systems

2: Model Compression

Nicholas D. Lane

Architecture (Re-)Design

- 1. Early Evolution; Decomposition as a tool
- 2. Efficient Architectures; Example: MobileNet

Architecture Compression

- 3. Parameter and Channel Pruning
- 4. Parameter Quantization
- 5. Knowledge Distillation
- 6. Compression pipelines

Architecture (Re-)Design

- 1. Early Evolution; Decomposition as a tool
- 2. Efficient Architectures; Example: MobileNet

Architecture Compression

- 3. Parameter and Channel Pruning
- 4. Parameter Quantization
- 5. Knowledge Distillation
- 6. Compression pipelines

http://mlsys.cst.cam.ac.uk/teach

Architecture (Re-)Design

1. Early Evolution; Decomposition as a tool

2. Efficient Architectures; Example: MobileNet

Architecture Compression

- 3. Parameter and Channel Pruning
- 4. Parameter Quantization
- 5. Knowledge Distillation
- 6. Compression pipelines

Matrix Decomposition

Principles of Machine Learning Systems – v1.5

Matrix Decomposition

 $n \times 1$

 x^L

Decomposition Benefits

Principles of Machine Learning Systems – v1.5

CNN Kernel Decomposition

Apply sequentially

Replacing a large filter with a series of small filters

http://mlsys.cst.cam.ac.uk/teach

Source: V. Sze

Architecture (Re-)Design

1. Early Evolution; Decomposition as a tool

2. Efficient Architectures; Example: MobileNet

Architecture Compression

- 3. Parameter and Channel Pruning
- 4. Parameter Quantization
- 5. Knowledge Distillation
- 6. Compression pipelines

Efficient Architecture Evolution

MobileNet Example

MobileNet Block

Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224\times224\times3$
Conv dw / s1	3 imes 3 imes 32 dw	$112\times112\times32$
Conv / s1	$1\times1\times32\times64$	$112\times112\times32$
Conv dw / s2	3 imes 3 imes 64 dw	$112\times112\times64$
Conv / s1	$1\times1\times64\times128$	$56\times 56\times 64$
Conv dw / s1	$3 imes 3 imes 128~{ m dw}$	$56\times 56\times 128$
Conv / s1	$1\times1\times128\times128$	$56 \times 56 \times 128$
Conv dw / s2	$3 imes 3 imes 128 \ { m dw}$	$56 \times 56 \times 128$
Conv / s1	$1\times1\times128\times256$	$28\times28\times128$
Conv dw / s1	3 imes 3 imes 256 dw	$28\times28\times256$
Conv / s1	$1\times1\times256\times256$	$28\times28\times256$
Conv dw / s2	$3 imes 3 imes 256~{ m dw}$	$28\times28\times256$
Conv / s1	$1\times1\times256\times512$	$14\times14\times256$
5 Conv dw / s1	3 imes 3 imes 512 dw	$14\times14\times512$
3 Conv / s1	$1\times1\times512\times512$	$14\times14\times512$
Conv dw / s2	3 imes 3 imes 512 dw	$14\times14\times512$
Conv / s1	$1\times1\times512\times1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 imes 3 imes 1024 \; \mathrm{dw}$	$7\times7\times1024$
Conv / s1	$1\times1\times1024\times1024$	$7\times7\times1024$
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$
FC / s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

Original Independent Kernels

Source: Howard

 $D_{\kappa} \mid \prod_{\substack{k \in I \\ \overline{D_{\kappa}}}}^{M}$

Same for all original kernel

One for each kernel

*

Ν

http://mlsys.cst.cam.ac.uk/teach

 \approx

MobileNet Benefits

	-	-	
Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

.	-		
Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

Source: Howard

Parameter Reduction

$$\frac{Depthwise Separable}{Regular Conv} = \frac{M*(N + DK^2)}{D_K^2 * M*N} = \frac{1}{D_K^2} + \frac{1}{N}$$

$$\frac{Depth}{Regular Conv}$$

$$\frac{Depthwise Separable}{Regular Conv} = \frac{D_F^2 * M * (N + DK^2)}{D_K^2 * M * DF^2 * N} = \frac{1}{D_K^2} + \frac{1}{N}$$

MACs Reduction

Architecture (Re-)Design

- 1. Early Evolution; Decomposition as a tool
- 2. Efficient Architectures; Example: MobileNet

Architecture Compression

3. Parameter and Channel Pruning

- 4. Parameter Quantization
- 5. Knowledge Distillation
- 6. Compression pipelines

Pruning Justification

http://mlsys.cst.cam.ac.uk/teach

Principles of Machine Learning Systems – v1.5

Related Natural Phenomena

Source: Han

Pruning Algorithm

Alternative Pruning Criteria

- Estimation
- Measurement

Pruning Schedule

Pruning Performance

Dataset	Model	Unpruned	Prune Ratio	Fine-tuned	Scratch-E	Scratch-B
	VGG-19	93.50 (±0.11)	30%	93.51 (±0.05)	93.71 (±0.09)	93.31 (±0.26)
			80%	93.52 (±0.10)	93.71 (±0.08)	93.64 (±0.09)
			95%	93.34 (±0.13)	93.21 (±0.17)	93.63 (±0.18)
	PreResNet-110	95.04 (±0.15)	30%	95.06 (±0.05)	94.84 (±0.07)	95.11 (±0.09)
CIFAR-10			80%	94.55 (±0.11)	93.76 (±0.10)	94.52 (±0.13)
			95%	92.35 (±0.20)	91.23 (±0.11)	91.55 (±0.34)
	DenseNet-BC-100	95.24 (±0.17)	30%	95.21 (±0.17)	95.22 (±0.18)	95.23 (±0.14)
			80%	95.04 (±0.15)	94.42 (±0.12)	95.12 (±0.04)
			95%	94.19 (±0.15)	92.91 (±0.22)	93.44 (±0.19)
	VGG-19	71.70 (±0.31)	30%	71.96 (±0.36)	72.81 (±0.31)	73.30 (±0.25)
			50%	71.85 (±0.30)	73.12 (±0.36)	73.77 (±0.23)
			95%	70.22 (±0.38)	70.88 (±0.35)	72.08 (±0.15)
	PreResNet-110	76.96 (±0.34)	30%	76.88 (±0.31)	76.36 (±0.26)	76.96 (±0.31)
CIFAR-100			50%	76.60 (±0.36)	75.45 (±0.23)	76.42 (±0.39)
			95%	68.55 (±0.51)	68.13 (±0.64)	68.99 (±0.32)
	DenseNet-BC-100	77.59 (±0.19)	30%	77.23 (±0.05)	77.58 (±0.25)	77.97 (±0.31)
			50%	77.41 (±0.14)	77.65 (±0.09)	77.80 (±0.23)
			95%	73.67 (±0.03)	71.47 (±0.46)	72.57 (±0.37)
ImagaNat	VGG-16	73.37	30%	73.68	72.75	74.02
			60%	73.63	71.50	73.42
magervet	ResNet-50	76.15	30%	76.06	74.77	75.70
			60%	76.09	73.69	74.91

◆ Pruning + Quantization ▲ Pruning Only ○ Quantization Only ◇ SVD

Model Size Ratio after Compression

Architecture (Re-)Design

- 1. Early Evolution; Decomposition as a tool
- 2. Efficient Architectures; Example: MobileNet

Architecture Compression

- 3. Parameter and Channel Pruning
- 4. Parameter Quantization
- 5. Knowledge Distillation
- 6. Compression pipelines

Guess who

http://mlsys.cst.cam.ac.uk/teach

Guess who

Numerical Representation

Low Precision Training

http://mlsys.cst.cam.ac.uk/teach

Quantization Implementation

- Linear vs. Non-linear
 - Linear representable space is divided equally "X"
 - Non-linear representable space is divided un-equally "O"
- Round to nearest vs. Stochastic rounding
 - Round to nearest each number is represented by the closest representable number
 - Stochastic rounding each number is represented by the closest higher or lower value with equal probabilities

Training Quantized Models

Binary: Extreme Quantization

Architecture (Re-)Design

- 1. Early Evolution; Decomposition as a tool
- 2. Efficient Architectures; Example: MobileNet

Architecture Compression

- 3. Parameter and Channel Pruning
- 4. Parameter Quantization
- 5. Knowledge Distillation
- 6. Compression pipelines

Knowledge Distillation

Distillation of a large model into a small one is performed in a teacher-student setup whereby the student network is trained to **replicate the teacher's raw output** (logits).

Knowledge Distillation

- Knowledge distillation does not require actual data for the student's training since the goal is for it to match the teacher's output not the implied labels.
- Thus, students can be trained on random inputs just as well as on the original data! The teacher provides the targets in real time.

Knowledge Distillation

# Model	Model	SST-2	QQP	MNLI-m	MNLI-mm
		Acc	F ₁ /Acc	Acc	Acc
1	BERT _{LARGE} (Devlin et al., 2018)	94.9	72.1/89.3	86.7	85.9
2	BERT _{BASE} (Devlin et al., 2018)	93.5	71.2/89.2	84.6	83.4
3	OpenAI GPT (Radford et al., 2018)	91.3	70.3/88.5	82.1	81.4
4	BERT ELMo baseline (Devlin et al., 2018)	90.4	64.8/84.7	76.4	76.1
5	GLUE ELMo baseline (Wang et al., 2018)	90.4	63.1/84.3	74.1	74.5
6	Distilled BiLSTM _{SOFT}	90.7	68.2/88.1	73.0	72.6
7	BiLSTM (our implementation)	86.7	63.7/86.2	68.7	68.3
8	BiLSTM (reported by GLUE)	85.9	61.4/81.7	70.3	70.8
9	BiLSTM (reported by other papers)	87.6^{\dagger}	- /82.6 [‡]	66.9*	66.9 [*]

Source: Tang

Achieve comparable results with ELMo, while using roughly <u>100 times</u> fewer parameters and <u>15 times</u> less inference time.

Architecture (Re-)Design

- 1. Early Evolution; Decomposition as a tool
- 2. Efficient Architectures; Example: MobileNet

Architecture Compression

- 3. Parameter and Channel Pruning
- 4. Parameter Quantization
- 5. Knowledge Distillation

6. Compression pipelines

Basic Compression Pipeline

Resource-aware Pipeline

Pretrained

- Automatically adapt DNN to ٠ a mobile platform to reach a target latency or energy budget
- Use empirical measurements ٠ to guide optimization (avoid modeling of tool chain or platform architecture)

Accuracy

L-qo

Requires **very few** ٠ hyperparameters to tune

http://mlsys.cst.cam.ac.uk/teach

Principles of Machine Learning Systems – v1.5

Summary of the Day

Architecture (Re-)Design

- 1. Early Evolution; Decomposition as a tool
- 2. Efficient Architectures; Example: MobileNet

Architecture Compression

- 3. Parameter and Channel Pruning
- 4. Parameter Quantization
- 5. Knowledge Distillation
- 6. Compression pipelines

