
Pruned teachers are friendly teachers: improving
knowledge distillation in GAT networks

Antonia Boca
Department of Computer Science

University of Cambridge
aib36@cam.ac.uk

Abstract

Knowledge distillation (KD) is a popular technique used to compress large machine
learning models into smaller ones that can be more easily deployed on devices with
limited resources. A recent line of work investigates “student-friendly” teachers
that are more appropriate for knowledge transfer; pruned networks constitute one
such example, with recent results suggesting that students trained with pruned
models outperform models trained with unpruned teachers. While this line of work
looks promising for future deployment of performant networks on resource-limited
environments, little work has been done on investigating whether knowledge
distillation using pruned networks can be used for Graph Neural Networks (GNNs).
This project investigates whether pruned GNNs are better teachers than their
unpruned counterparts. Results indicate that pruning GAT networks improves the
distillation process on transductive node classficaition tasks. This is promising for
many memory-constrained applications that require GNNs to perform inference,
such as mobile navigation services and privacy-driven local recommender systems
on apps.
The code can be found at: https://github.com/semiluna/l46_project.

1 Introduction

Graph neural networks (GNNs) are a type of neural network that can operate on data represented in
the form of graphs to perform tasks such as node and graph classification, and link prediction. All
GNNs use a form of neural message passing, in which vector messages are exchanged between nodes
and updated using neural networks [Gilmer et al., 2017]. Due to the structure-aware exploitation of
graphs, GNNs are hard to parallelise and are prohibitively expensive to train and deploy on large
graphs. However, standard model compression techniques, such as knowledge distillation [Hinton
et al., 2015] and pruning [Wang et al., 2020] are not straightforward to apply to GNNs. For example,
some classification tasks on GNNs involve training on a single graph; when this is the case, one
may ask whether the original graph could be part of the pruning pipeline as well, or whether node
embeddings may also be compressed for further speed-ups. While there has been recent work in
compressing such models [Chen et al., 2021, Yang et al., 2020, Joshi et al., 2022], a unified framework
has not been proposed, with different methods performing better on some graphs and worse on others.

A different line of recent work has been investigating “student-friendly” teachers for the task of
knowledge distillation [Mirzadeh et al., 2020, Park et al., 2021]. One interesting proposal comes
from Park and No [2022], who argue that pruned networks are better teachers than their unpruned
counterparts because they act as regularisers during distillation. However, their experiments are
limited to pruning and distlling convolutional neural networks. As such, the aim of this project is to
extend the hypothesis presented in Park and No [2022] by investigating whether pruned GNNs are

Preprint. Under review.

https://github.com/semiluna/l46_project

better teachers for knowledge distillation, and ultimately advancing the work on a unified compression
pipeline for GNNs.

1.1 Contributions

The contributions of this project are the following:

1. I present and discuss various methods for pruning and distilling GNNs.
2. I implement the prune-then-distill pipeline introduced by Park and No [2022] for the task

of transductive node classification using GAT networks [Veličković et al., 2017].
3. I run experiments on pruned-then-distilled models and show that these perform better than

unpruned, distilled models, thereby finding “student-friendly” teachers for GAT networks.

2 Theoretical background

2.1 Graph neural networks

Graph neural networks are characterised by the neural message passing framework, in which vector
messages are exchanged between nodes and then updated using neural networks. At message passing
iteration k, a hidden embedding h(k)

u corresponds to each node u ∈ V , and an update happens
according to information aggregated from u’s graph neighbourhood N (u), as seen in Equation 2.

h(k+1)
u = UPDATE(k)(h(k+1)

u ,AGGREGATE(k)({h(k+1)
v ,∀v ∈ N (u)})) (1)

= UPDATE(k)(h(k+1)
u ,m(k)

N (u)) (2)

Note that in general the AGGREGATE function must be permutation-invariant.

Graph Attention Networks. One popular kind of GNNs, introduced by Veličković et al. [2017], are
Graph Attention Networks (GATs). For these networks, the UPDATE and AGGREGATE functions
form the following attentional operator:

h(k+1)
u = αu,uΘh(k)

u +
∑

v∈N (u)

αu,vΘh(k)
v , (3)

where αu,v is an attention coefficient computed as

αu,v =
exp(LeakyReLU(aT [Θxu||Θxv]))∑

k∈N (u)∪{u} exp(LeakyReLU(aT [Θxu||xk]))
. (4)

Node classification. One important task in GNNs is that of node classification, where the goal is to
predict class labels for some nodes in a graph. For example, in a social network graph, the nodes
might represent individuals, and the task could be to predict the occupation of each individual based
on their attributes and connections in the graph. Node classification can be further categorised as
either transductive or inductive. In the former setting, the training, validation and test nodes are all
on the same graph and the entire graph is made available to the model during training, but the loss
is computed only using the training nodes. In the latter setting, some graphs are completely unseen
during training.

2.2 Pruning

Pruning is a method for model compression that removes weights from a trained model [LeCun et al.,
1989, Hassibi and Stork, 1992, Han et al., 2015, Li et al., 2016] without harming accuracy. Pruned
models are smaller, therefore reducing energy consumption and inference time, making them more
amenable to deployment on devices with limited resources. Additionally, Frankle and Carbin [2018]
show that neural networks contain winning lottery tickets: subnetworks that, when trained in isolation,
can reach a similar performance to the original network, due to “lucky” initial weights that make
training effective. It turns out that these subnetworks can be identified using the following iterative
pruning approach, described in Frankle and Carbin [2018]:

2

1. Randomly initialise a neural network f(x; θ0).

2. Train the network for j iterations to get parameters θj .

3. Prune p% of the network’s parameters.

4. Reset the remaining parameters to their original θ0 values. Return to step 2.

Pruning GNNs. Chen et al. [2021] generalised the lottery ticket hypothesis to GNNs; one of the
novel ideas of their approach is to prune both the graph and the model associated with it at the same
time, showing that graph lottery tickets (GLTs) exist for transductive node classification and link
prediction tasks. More recently, Liu et al. [2022] proposed an alternative to the LTH pipeline for
pruning GNNs, that requires fewer computational resources and can prune node embeddings.

In this project, I will use the pruning pipeline described by Chen et al. [2021] for node classification
on the Cora, Citeseer and Pubmed datasets [Kipf and Welling, 2016a] using GATs.

2.3 Knowledge distillation

The goal of knowledge distillation is to transfer the knowledge from the large model, or “teacher,” to
the smaller model, or “student,” so that the student model can perform nearly as well as the teacher
on the task for which it was trained. Knowledge distillation allows the superior performance of
large models to be transferred to smaller networks that can be deployed in resource-constrained
environments. KD is usually implemented by modifying the objective of the student in a way that
takes into account the predictions of the teacher.

logit-based KD. For each node i ∈ V , the original KD objective [Hinton et al., 2015] uses the
cross-entropy loss or KL-divergence to match the output logits of a student zSi to those of a teacher
zTi , scaled by a temperature γ1 that softens the logits of the teacher:1

LKD =
∑
i∈V

H(softmax(
zTi
γ1

), softmax(
zSi
γ1

)) (5)

Local Structure Preserving Distillation. LSP [Yang et al., 2020] is a GNN distillation objective
that trains the student model to preserve the local structure of graph data from the teacher’s node
embeddings space. The objective can be formalised as follows:

LLSP =
∑
i∈V

DKL(softmax(i,j)∈E(K(fS
i , f

S
j)) || softmax(i,j)∈E(K(fT

i , fT
j))). (6)

Intuitively, the local structure is defined as the set of parameterised pairwise distances between
neighbouring nodes. The student then tries to match the teacher’s distribution of distances. The
distance between a pair of nodes is calculated via a kernel function K that can be the Euclidean
distance between the two node features. Yang et al. [2020] find, however, that the RBF kernel
performs best in practice:

K(fi, fj) = exp− 1

2σ
||fi − fj ||2 (7)

Other distillation objectives. Other distillation objectives for GNNs focus on latent representations
of the global structure to the student model as presented by Joshi et al. [2022]. Their method, Graph
Constrastive Representation Distillation, generalises Contrastive Representation Distillation [Tian
et al., 2019] to GNNs. The authors also adapt two other mimicking techniques for convolutional
neural networks: FitNet [Romero et al., 2014] and Attention Transfer [Zagoruyko and Komodakis,
2016].

In this project, I will use logit-based KD and LSP as the distillation objectives when training student
GAT networks.

1Formulation adapted from Joshi et al. [2022]

3

3 Implementation

This project implements and analysises the following prune-then-distll pipeline:

1. Train a teacher GAT network [Veličković et al., 2017] to perform transductive node classifi-
cation on the Cora, Citeseer, and Pubmed datasets.

2. Prune this teacher according to Chen et al. [2021].

3. Train a student GAT network with and without distillation. The distillation objectives
are logit-based KD [Hinton et al., 2015] and LSP [Yang et al., 2020]. The teachers are
represented by large models pruned up to 20 different sparsity levels.

4. Compare student networks trained with different strategies.

3.1 Pruning the teacher

For the first and second stages of the project I adapt the codebase2 of Chen et al. [2021]. A trained
teacher model will be pruned according to the unified GNN sparsification framework, which consists
of three steps: training, pruning and rewinding the weights. I will briefly summarise these steps
below.

(Training) Given a graph G with adjacency matrix A and network weights Θ, the authors introduce
two differentiable masks mg and mθ that indicate the connections that should be pruned. Mask mg

indicates how the input graph should be pruned, while mθ indicates how the model should be pruned.
Then, at a training step, the following objective needs to be optimised:

LUGS = L({mg ⊙ A,X},mθ ⊙Θ) + γ1||mg||1 + γ2||mθ||1, (8)

where γ1 and γ2 are hyperparameters for l1 sparsity regularisation.

(Pruning) When training is finished, the lowest values in both masks are set to zero (20% of mθ and
5% of mg).

(Rewinding) The remaining weights are rewound to their initial values and the model is retrained with
the remaining connections, as per the original iterative pruning algorithm presented in Frankle and
Carbin [2018].

Saving pruned teachers. Each of the iterations presented above cuts 20% of the remaining model
weights and 5% of the remaining graph edges. I perform the three-step iteration above 20 times,
reaching a graph with only 35.85% of the original edges and a model with only 1.15% of the original
weights. I save the pruned teacher associated with each iteration, in order for them to be used in the
distillation stage.

3.2 Training the student

The distillation pipeline is adapted from the codebase3 of Yang et al. [2020]. I made the following
changes to their codebase in order to fit it into my pipeline:

• I replaced their implementation of the GAT network [Veličković et al., 2017] with the
implementation in the paper of Chen et al. [2021]. This way, the latent features of the teacher
(as used in Equation 6) can be properly compared to the student’s features.

• I adapted their distillation pipeline to support transductive node classification tasks on the
Cora, Citeseer and Pubmed datasets, since the original paper was concerned with inductive
node classification on the protein-protein iteraction dataset [Zitnik and Leskovec, 2017].

• I implemented logit-based KD (as presented in Equation 5) as a baseline distillation tech-
nique. I am interested in the potential benefits of distilling latent representations from
teachers to students, especially when the teacher is pruned; to this end, I will compare LSP
distillation to logit-based KD.

2https://github.com/VITA-Group/Unified-LTH-GNN/
3https://github.com/ihollywhy/DistillGCN.PyTorch

4

https://github.com/VITA-Group/Unified-LTH-GNN/
https://github.com/ihollywhy/DistillGCN.PyTorch

3.3 Summary of architectures and datasets

The teacher architecture was chosen following Chen et al. [2021]. GAT Networks have been shown
to perform best on Cora, Citeseer and Pubmed when they have 2 layers and 8 attention heads per
layer, according to Veličković et al. [2017]. The student architecture was chosen following Yang et al.
[2020]. Although it has significantly fewer parameters (see Tables 1 and 3), it has double the depth of
the teacher network. I hypothesise that this depth gives the student network enough capacity to reach
on-par accuracy with the teacher when distilled properly, as I show in Section 4.2.

Table 1: Summary of teacher and student architectures.
Model Layers Attention heads Hidden features
Teacher 2 8,8 512,512
Student 4 2,2,2,2 68,68,68,68

Datasets. Cora (first introduced by McCallum et al. [2000]), Citeseer (first introduced by Giles
et al. [1998]) and Pubmed (first introduced by Sen et al. [2008]) are citation networks commonly
used for evaluating the performance of GNNs. Table 2 summarises some graph statistics. All three
datasets contain a single graph, making these datasets standard benchmarks for transductive node
classification and link prediction tasks.

Table 2: Graph dataset statistics.
Dataset Nodes Edges Avg. Degree Features Classes

Cora 2,708 5,429 3.88 1,433 7
Citeseer 3,327 4,732 2.84 3,703 6
Pubmed 19,717 44,338 4.50 500 3

Size of models. Since GNNs are structure-aware, the size of a model depends on the dataset it was
trained on. Table 3 summarises the parameter count of the unpruned teacher and student networks.

Table 3: Summary of the number of parameters on each of the three datasets.

Model Trainable parameters
Cora Citeseer Pubmed

Teacher 5.9M 15M 2M
Student 0.2M 0.5M 0.1M

4 Experiments

All models were trained on my personal laptop (Apple M2 chip, 24 GB). The main goal of this project
is to analyse the effect pruning has on the distillation ability of teachers. To achieve this goal, I first
train and prune GAT models up to 20 different sparsity levels on the Cora, Citeseer and Pubmed
datasets. I then distill the knowledge of all these models into smaller GAT networks and compare the
effect pruning had on the distillation process.

4.1 Teacher results

The training hyperparameters for pruning the teachers follow Chen et al. [2021]; I used the Adam
optimiser [Kingma and Ba, 2014] with a learning rate of 0.01 and a weight decay of 5e−4. I used a
dropout of 0.6 within each GAT layer. Figure 1 summarises the test accuracies of the pruned teachers
for each dataset. We can notice that the sparsified networks perform well, with almost non-existent
performance drops. Interestingly, for the Pubmed dataset, the performance increases at every level of

5

70

72

Ci
te

se
er

(%
)

Baseline
Iterative pruning

76

78

80

82

Co
ra

(%
)

Baseline
Iterative pruning

0.0
0

5.0
0

9.7
5

14.
26

18.
55

22.
62

26.
49

30.
17

33.
66

36.
98

40.
13

43.
12

45.
96

48.
67
51.

23
53.

67
55.

99
58.

19
60.

28
62.

26
64.

15

Graph sparsity (%)

76

78

80

82

Pu
bm

ed
(%

)

Baseline
Iterative pruning

0.0
0

20.
00

36.
00

48.
80

59.
04

67.
23

73.
79

79.
03

83.
22

86.
58

89.
26

91.
41

93.
13

94.
50
95.

60
96.

48
97.

19
97.

75
98.

20
98.

56
98.

85

Model sparsity (%)
1Figure 1: Test accuracy of pruned teacher models on the three datasets. The iterative pruning

algorithm is adapted from Chen et al. [2021] and presented in Section 3.1; at each iteration I train a
model on its associated graph, prune 20% of the model mask’s weights and 5% of the graph mask’s
weights, rewind the remaining model weights to their starting values and re-train the sparsified
network. Baseline represents the test accuracy of an unpruned model.

sparsification. This may be explained by the fact that Pubmed is the biggest citation network of the
three, containing many redundant citation edges between massively influential papers.

Graph Lottery Tickets. The results I obtain are similar to those in Chen et al. [2021]. We can
identify the presence of graph lottery tickets even at 62.26% graph sparsity across all datasets.

4.2 Student results

All student models are trained with Adam [Kingma and Ba, 2014] and a learning rate of 0.005. When
performing distillation using logit-based KD (section 2.3), I set the temperature γ1 to 10 and weigh
the teacher loss and the student loss equally. For LSP, I use the RBF Kernel (as recommended by
Yang et al. [2020]) with σ = 5. Figure 2 plots the various test accuracies of distilled models w.r.t.
to the sparsity of their teacher. I distill every teacher 3 times and report the resulting models’ test
accuracy mean and standard deviation. The student baseline is represented by a model trained without
distillation. The teacher baseline is the same as in Figure 1. The rest of this section discusses the key
takeaways from distilling pruned models.

Logit-based KD improves model accuracies. One of the trends we can notice in Figure 2a is that
logit-based KD improves model performance w.r.t to the student baseline for all teacher sparsity
levels. The biggest impact can be noticed for the Cora dataset, where one distilled model has an
improvement of more than 3% over the baseline. Distillation using the LSP loss does not have an
overall trend, but it consistently makes models perform worse for the Pubmed dataset, even though

6

all pruned Pubmed teachers are better than their unpruned conterpart. I discuss why this may be the
case further down.

Pruned teachers are generally better teachers. Perhaps most importantly, when using the logit-
based KD loss, pruned teachers distill information better than their unpruned counterparts. Figure
2 shows that the performance of pruned-then-distilled models increases compared to the unpruned
distilled model for a wide range of sparsity levels across all three datasets. In particular, Table 4
presents a selection of students and their test accuracies for different teacher sparsity lavels. It is
worth noting that the teacher model still contains the two sparsity masks, mg and mθ. This means
that for every graph input, while the student sees the entire graph, the teacher still “masks” some
edges before inference. I believe that this particular behaviour helps the student, since this way the
teacher only transfer important information. Overall, these results paint a promising picture: pruning
teachers improves distillation if the proper distillation technique is used.

KD-distilled Pubmed models outperform the teacher baseline. Another interesting phenomena
happens for the Pubmed dataset: almost all distilled models perform better than the teacher baseline;
this may be due to the fact that pruned teachers for the Pubmed dataset are significantly better than
their unpruned counterpart, as shown in Figure 1.

The LSP loss does not improve performance. The performance drop for models distilled with
the LSP loss may be explained by the fact that the LSP loss tries to make the latent features in the
student network match the latent features of the teacher; however, a heavily pruned teacher will have
most of these latent features missing - this may lead to a student trying to “prune itself”.

62

64

66

68

70

72

Ci
te

se
er

(%
)

Teacher baseline
Student baseline
KD-student

72

74

76

78

80

82

Co
ra

(%
)

Teacher baseline
Student baseline
KD-student

0.0
0

5.0
0

9.7
5

14.
26

18.
55

22.
62

26.
49

30.
17

33.
66

36.
98

40.
13

43.
12

45.
96

48.
67

51.
23

53.
67
55.

99
58.

19
60.

28
62.

26
64.

15

Graph sparsity (%)

72

74

76

78

80

82

Pu
bm

ed
(%

)

Teacher baseline
Student baseline
KD-student

0.0
0

20.
00

36.
00

48.
80

59.
04

67.
23

73.
79

79.
03

83.
22

86.
58

89.
26

91.
41

93.
13

94.
50

95.
60

96.
48
97.

19
97.

75
98.

20
98.

56
98.

85

Model sparsity (%)

1

(a) Distillation was performed with the logit-based
KD loss.

62

64

66

68

70

72

Ci
te

se
er

(%
)

Teacher baseline
Student baseline
LSP-student

72

74

76

78

80

82

Co
ra

(%
)

Teacher baseline
Student baseline
LSP-student

0.0
0

5.0
0

9.7
5

14.
26

18.
55

22.
62

26.
49

30.
17

33.
66

36.
98

40.
13

43.
12

45.
96

48.
67

51.
23

53.
67
55.

99
58.

19
60.

28
62.

26
64.

15

Graph sparsity (%)

72

74

76

78

80

82

Pu
bm

ed
(%

)

Teacher baseline
Student baseline
LSP-student

0.0
0

20.
00

36.
00

48.
80

59.
04

67.
23

73.
79

79.
03

83.
22

86.
58

89.
26

91.
41

93.
13

94.
50

95.
60

96.
48
97.

19
97.

75
98.

20
98.

56
98.

85

Model sparsity (%)

1

(b) Distillation was performed with the LSP loss.

Figure 2: Test accuracies of distilled models w.r.t. to the sparsity of their teacher. For each distilled
model I report its test accuracy mean and std. The student baseline is a model trained without
distillation. The teacher baseline is the same as in Figure 1.

5 Conclusion

This project investigated the viability of using pruning to improve knowledge distillation in GAT
networks. The results indicate that we can build “student-friendly” teachers for transductive node

7

Table 4: Performance of students trained with pruned teachers for different sparsity levels. The
arrows indicate the model’s improvement to the model trained with an unpruned teacher. The KD
and LSP columns indicate the loss function the teacher was distilled with.

Dataset Teacher sparsity (%) Teacher
accuracy (%)

Student accuracy (%)

Graph Model KD LSP Baseline

Cora

0 0 81.0 78.87±0.896 76.70±1.445

76.50±0.572
30.17 79.13 81.6 79.97±0.170(↑) 76.80±1.158(↑)
33.66 83.22 78.9 79.27±0.125(↑) 76.33±0.984(↓)
62.26 98.56 80.5 79.37±0.776(↑) 76.20±0.898(↓)

Citeseer

0 0 70.9 66.80±0.327 67.07±0.826

65.67±1.558
30.17 79.13 70.6 69.07±1.078(↑) 67.37±0.519(↑)
33.66 83.22 70.6 67.37±2.243(↑) 66.77±0.858(↓)
62.26 98.56 70.4 68.13±0.974(↑) 67.60±1.098(↑)

Pubmed

0 0 76.2 76.93±0.309 74.60±0.748

75.07±0.660
30.17 79.13 78.7 77.00±0.245(↑) 74.93±0.834(↑)
33.66 83.22 78.6 77.00±0.082(↑) 74.37±0.419(↓)
62.26 98.56 80.6 76.37±0.478(↓) 74.57±0.450(↓)

classification tasks by performing iterative pruning of the teacher GAT model and its associated graph.
The experiments show that such teachers are effective even when they have high sparsity levels: at
98.55% model sparsity and 64.15% graph sparsity, we can still see some improvements over training
with unpruned teachers. This is particularly important for transductive node classification tasks on
huge graphs, since this sparsity may reduce the amount of memory necessary when training on such
datasets. However, I discuss some of the main limitations of this project below.

Limited scope. This project has a limited scope along three dimensions; firstly, the experiments are
run on a single type of GNN network. While GAT networks are widely used in the GNN community,
further experiments should be run on other popular networks, such as GCNs [Kipf and Welling,
2016b] and GINs [Xu et al., 2018]. Secondly, I investigated the performance of “student-friendly”
teachers only on the task of transductive node classification. Similar work should again check the
hypothesis of the pruned teacher on other GNN tasks, such as link prediction and graph classification.
More importantly, an investigation should focus on the best pruning strategy for inductive tasks,
where datasets contain more than one graph, some of which are never seen during training. Lastly,
due to limited computing resources, this project has used three popular citation networks as datasets;
however, their small size may make them non-representative of the performance of the prune-then-
distill pipeline for large graphs. I hope, however, that this project may act as a proof-of-concept for
future development and deployment of efficient GNNs.

Graph distillation and pruning. Additionally, graph pruning and distillation are open areas of
research in the GNN community, as discussed in Sections 2.2 and 2.3. Some pruning and distillation
strategies work better for some tasks than others; as of today, there is no clear-cut winner when
it comes to optimising the size and performance of GNNs. I have left out many other possible
distillation techniques, such as G-CRD [Joshi et al., 2022] and FitNet [Romero et al., 2014]. While
my results indicate that LSP distillation does not improve the performance of student models, other
techniques might outperform classic logit-based KD.

Unstructured pruning. This project investigates only the impact of unstructured pruning over the
distillation pipeline. This type of pruning, while reducing model size, makes models hard to optimise
using accelerated hardware. While there are some libraries that optimise sparse operations, the full
impact of unstructured pruning is hard to be taken advantage of by modern hardware. Another line of
future work could focus on re-running my proposed pipeline while performing structured pruning.

8

References
Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery ticket

hypothesis for graph neural networks, 2021. URL https://arxiv.org/abs/2102.06790.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. 2018. doi: 10.48550/ARXIV.1803.03635. URL https://arxiv.org/abs/1803.
03635.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the Third ACM Conference on Digital Libraries, DL ’98, page 89–98,
New York, NY, USA, 1998. Association for Computing Machinery. ISBN 0897919653. doi:
10.1145/276675.276685. URL https://doi.org/10.1145/276675.276685.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pages
1263–1272. PMLR, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, 5, 1992.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan Sheng Foo. On representation knowledge
distillation for graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
https://arxiv.org/abs/1412.6980.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks,
2016a. URL https://arxiv.org/abs/1609.02907.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016b.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Chuang Liu, Xueqi Ma, Yibing Zhan, Liang Ding, Dapeng Tao, Bo Du, Wenbin Hu, and Danilo
Mandic. Comprehensive graph gradual pruning for sparse training in graph neural networks, 2022.
URL https://arxiv.org/abs/2207.08629.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3(2):127–163, 2000.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 5191–5198, 2020.

Dae Young Park, Moon-Hyun Cha, Daesin Kim, Bohyung Han, et al. Learning student-friendly
teacher networks for knowledge distillation. Advances in Neural Information Processing Systems,
34:13292–13303, 2021.

Jinhyuk Park and Albert No. Prune your model before distill it. In European Conference on Computer
Vision, pages 120–136. Springer, 2022.

9

https://arxiv.org/abs/2102.06790
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://doi.org/10.1145/276675.276685
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2207.08629

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets, 2014. URL https://arxiv.org/abs/1412.
6550.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation, 2019. URL
https://arxiv.org/abs/1910.10699.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and Xiaolin Hu. Pruning
from scratch. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
12273–12280, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2018. URL https://arxiv.org/abs/1810.00826.

Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge from
graph convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7074–7083, 2020.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

10

https://arxiv.org/abs/1412.6550
https://arxiv.org/abs/1412.6550
https://arxiv.org/abs/1910.10699
https://arxiv.org/abs/1810.00826

	Introduction
	Contributions

	Theoretical background
	Graph neural networks
	Pruning
	Knowledge distillation

	Implementation
	Pruning the teacher
	Training the student
	Summary of architectures and datasets

	Experiments
	Teacher results
	Student results

	Conclusion

