
L46: Investigations into Compressing Closed Form
Continuous Time Networks

Sharan Agrawal (sa2140)

Abstract

In Continuous time neural networks, state is a continuous function of time and its
change is represented by differential equations. Typically, such networks require
complex and slow ODE solvers to be applied at each step to calculate the next
state. Closed Form Continuous Time (CfC) networks eliminates this need by using
a closed form approximate solution to the state flow ODEs, and showed faster
training speed and higher accuracy compared to state of the art RNNs. This study
explored a number of approaches towards compressing such networks, adapting
technqiues such as quantization and pruning to CfC architecture specific issues,
and carried out empirical studies of the efficacy of various compression techniques
and its effect on the CfC published benchmarks. Analytical insights about the
quantization of CfC networks were also drawn.

1 Introduction

1.1 Objective

Closed Form Continuous Time networks have recently been proposed by Hasani (1) as extensions to
Liquid Time Constant (LTC) networks that use closed form approximations to calculate state flow in
continuous time networks, rather than ODE solvers. The technique devised showed extraordinarily
fast training times vs. traditional discrete RNNs such as LSTMs, as well as LTC networks. It also
showed better-than state of the art performance across a wide variety of benchmarks vs. all the neural
architectures studied, all while using a relatively smaller parameter set.

The smaller training time and greater expressivity of the network already has promising implications
on creating efficient and accurate smaller networks for resource-constrained compute environments.
However, a study hasn’t yet been done on the application of network compression techniques to this
novel architecture. This study will apply compression techniques to the novel architectural elements
used by the CfC network (such as 3 separate embedded neural networks) and carry out an empirical
investigation of which approaches yielded the best result in maintaining accuracy whilst reducing the
network’s footprint.

1.2 Continuous Time Neural Networks

In Continuous Time Recurrent Neural Networks, state is a continuous function of time, and has
state-dynamics represented by equation 1 (2).

ẋ(t) = −1

τ
x(t) +Wσ(x) + I(t) (1)

Here x ∈ RN are the states of each of the units, σ(xi(t)) is the output of the i-th unit passed over an
activation function ((2) uses a sigmoid function), τ is a time-constant impacting the equilibrium state
the stable solution of the ODE reaches, W ∈ RM×M is a matrix of discrete weights connecting each
unit, and I(t) is the input into the network. The latter term was can be more generally represented, as
per (3), as some non-linear function of state and inputs, possibly a neural network with parameters θ,
as f(x(t), I(t), θ).

This model was further improved by (3) into a more expressive form called Liquid Time Constant
networks, where the time constant becomes dependent on the input, allowing the capture of a wider
class of features. Taking inspiration from the neural dynamics from certain smaller species, (3)
recasts equation 1 as:

ẋ(t) = −1

τ
x(t) + f(x(t), I(t), t, θ)(A− x(t)) (2)

Similarly to equation 1, a neural network f(x(t), I(t), t, θ) is used to determine the gradients of the
internal unit states. An ODE solver is used at each training step of the network to determine the
states of the units from equation 2 since the equation does not have a known closed form solution
yet (1). This use of the ODE solver is a major hurdle in the implementation of LTC networks, with
drawbacks including its difficulty in scaling to large numbers of dimensions, or highly complex data
and complexity of discretization techniques needed, and need for repeated solves during training
reducing the fidelity with which the solver can be used at each step. Several optimizations exist such
as those discussed in (4) to reduce the complexity in this step. A new, novel, approach was recently
published by Hasani (1) which creates closed form approximations to the solutions of equations like
equation 2 with verifiable bounds on accuracy. The use of closed form approximate solutions for the
state flow equations means that ODE solvers no longer need to be used at each step in training the
neural ODE, permitting a far greater training speed, whilst maintaining all the benefits of continuous
time networks.

2 Related Work

Liebenwein, Hasani, et al (5) carried out an empirical investigation into pruning a particular kind of
neural ODE called Continuous Normalizing Flow. They apply pruning using a variety of techniques
to the neural network representing f in equations 1 and 2. Their experiments found neural ODEs
with pruning ratios of up to 98% without the loss of accuracy (5).

They carried out both structured and unstructured pruning and logged the loss changes from each
independently, noting that structured pruning would be expected to and did perform worse than
unstructured pruning in many examples due to it being a more constrained problem.

The authors also found that neural ODEs showed much better generalization properties. They found
that pruning helped avoid modal collapse, and flattened the loss surface (5) allowing the neural ODE
to find flatter minima, leading to better generalization. Conversely, the authors noted a decrease in
the robustness of the neural ODE with increasing pruning.

3 Closed Form Continuous Time Networks

3.1 Overview of CfCs

The CfC Network proposed by Hasani et al (1) is built around using a tight closed form approximation
for equation 2. This avoids the need for ODE solvers to calculate state flow over time. The approach
adopted by LTCs and CfCs is inspired by biological neurons, shown in 1.

Figure 2 shows a network with 2 neurons, and one input I(t), in ODE form, and solution form using
the CfC approximation. Each edge represents an additive input into the state calculation of each
neuron, with recurrent connections also being allowed, as seen in edge S22(t).

Another way to represent this network is to use a bit mask mi ∈ RK over each edge multiplied by
the cell-state contribution from each connected neuron, transformed using vec(.) to a RK vector, in
equation 3:

[
x1(t)
x2(t)

]
=

(
m1

m2

)
× vec

(
S00(t) S01(t) S02(t)
S10(t) S11(t) S12(t)
S20(t) S21(t) S22(t)

)
(3)

Formally, (1) proposed a solution to the following differential equation specifying state-flow in LTC
networks from (3), which is a restatement of equation 2:

2

Figure 1: Synaptic dynamics inspiring LTC equation 2, figure from (1). Stimuli I(t) drive the
synaptic current S(t) through a non-linear function f(.) and a constant A. The dynamics of the state
are given by the LTC DE, for which the authors provided an approximate solution.

Figure 2: Illustration of a LTC network with 2 neurons and 5 edges, from (1)

ẋ = −[wτ + f(x, I, θ)]⊙ x(t) +A⊙ f(x, I, θ) (4)

The approximate solution for a single dimensional time series input I(t) with no self-connections
was given (1) as:

x(t) ≈ (x0 −A)e−[wτ+f(I(t),θ)]tf(−I(t), θ) +A (5)

Hasani et al propose converting this into a practical network architecture with f being a neural
network, and x(t) ∈ RD hidden units, and I(t) ∈ RM as the input as:

x(t) = B ⊙ e−[wτ+f(x(t),I(t);θ)]t ⊙ f(−x(t),−I(t); θ) +A (6)

The inclusion of x into the neural network f denotes the possibility of having self-connections (1).

As can be seen, this model is subtly different to the model proposed by figure 2. Under the model
in figure 2, the connections between CfC neurons occur explicitly through the bit masks applied to
each edge. In the model proposed by (1), the state flow equation calculates the new hidden state of
the network, and the neural network backbone maps not to an output per edge, but an output per
cell-state.

Hasani et al (1) note that the approach in equation 6 has issues with gradient vanishing, driven by
the negative exponential term. This was handled by replacing the exponential term with a sigmoid

3

transformation instead. It also has issues with hyperparameter specification given the number of
bias terms present. To combat that, B and A were replaced with new neural networks g(.) and h(.).
Finally the authors also noted that the sigmoid function transformation can be used to play a gating
role with appropriate transformations.

Given these, the authors propose a final architecture:

x(t) = σ(−f(x, I; θf)t)⊙ g(x, I, θg) + [1− σ(−f(x, I; θf)t)]⊙ h(x, I; θg) (7)

Here f , g and h represent neural networks underlying the state flow equation that must be trained.
The authors propose to do this using a "backbone" network with network heads providing each of the
neural network outputs (1). This allows shared learning of representations across the networks.

3.2 CfC Networks Analyzed

The above model will be the main focus of model compression techniques, and will be referred to
as the CfC Network. The second architecture that will be examined will be the implementation of
Neural Circuit Policy based wired CfC networks from Lechner et al (6). These are CfC networks
without the backbone network, and more similar to the network in equation 3. This will be referred to
as the CfC-NCP network. The third architecture, CfC-Deep, adds more layers to the backbone in
CfC networks.

4 Model Compression Approaches

This section details how the model compression techniques can be applied to the networks defined
above. All compression techniques will be carried out using PyTorch (7).

4.1 Quantization

Quantization reduces the memory footprint of a network, and increases the training and inference
speed, by using lower precision numbers to represent the weights and activations of the network
(8). There are numerous different design considerations that affect the quantization process, such as
whether to retrain the network, which affect the applicability of the scheme. Uniform quantization
will be used as the primary scheme. Other quantization schemes detailed in (9) but not used here
include binarization (setting weights to their signs), product quantization where quantization is done
on disjoint subspaces of the vectorized weights, scalar quantization using k-means clustering where
weights are clustered and a quantized reference to the cluster is used instead.

4.1.1 Analytical Insights

Given the analytical structure of the CfC network’s state, under some simplifying assumptions,
analytical calculations on quantization error can be carried out to determine optimal approaches
to quantization. This uses approaches inspired by (10)’s approach to optimal quantization through
analysis of MSE. Assume that a numerical value, W , can be quantized to W̃ . The quantization error,
or machine epsilon ϵ, can be defined as ϵ = (W̃ −W)/W , which implies that W̃ = W (1 + ϵ).

A simplifying assumption is made that this can be scaled to tensors WWW with a constant, scalar ϵ,
which is true if the quantized tensor has the same range as the original. Under this assumption,
applying quantization to the weights of a linear, fully connected network defined as f(XXX;WWW) =
WWWL(WWWL−1(...WWW 1XXX)) yields an expression for the quantized network output, where pL(ϵ) is a
polynomial of order L excluding the constant term:

f̃(XXX; W̃̃W̃W) = (1 + pL(ϵ))f(XXX;WWW) (8)

In reality the quantization error should exist for each element in WWW , where similar logic could also
be applicable but hasn’t been explored yet. Now let’s examine the simplified setting of equation 6
assuming that the embedded network f = f(III(t); θ) is a linear, fully connected network with no self
connections, then the quantized cell state can be written as:

4

Figure 3: [Left] x(t) with quantized (red) and non-quantized (green) models for a constant ϵ. [Middle,
Right] The MSE between the surfaces over layers and ϵ

x̃xx(t) = xxx(t) + (xxx(t)−A)⊙ (pL(ϵ)e−pL(ϵ)ffft + e−pL(ϵ)ffft − 1) (9)

Derivations are given in the appendix. The LHS of figure 3 shows the state surfaces for one-
dimensional values of f and t with quantized and regular state. The MSE between x(t) and x̃(t) is
given on the RHS. This clearly shows that the quantization error increases super-linearly with the
machine precision ϵ and the number of layers L. This motivates one approach for heavy quantization:
to reduce the number of hidden layers in f when applying heavy quantization. Another observation
is that for some configurations of CfC networks with non-zero wτ , CfC networks seem to have less
error than linear fully connected networks in this model, so CfC networks could good candidates for
quantization.

The MSE error formulation can be used in combination with a uniform quantization scheme with
0 offset, where a quantized tensor can be represented as W̃̃W̃W = αŴ̂ŴW and Ŵ̂ŴW is the projection of WWW
into the quantized space. Given the definition of ϵ, this implies that ϵ = αŴ−W

W , which can be used
within equation 9 to determine the scale factor that minimizes the MSE.

4.1.2 Computational Implementation

PyTorch supports 3 different modes of quantization, all aimed at compressing the precision of weight
and activation matrices to INT8 instead of FP32 (11). Two of those will be used in this study:

1. Static: all weights and activations are quantized to INT8 statically post-training for inference
2. Quantization Aware Training: all weights and activations are quantized to INT8 statically

and stored as such

Static quantization, and quantization aware training will be applied to minimize the model size, and
the impact on accuracy and inference time will be assessed. Operator fusing will also be used between
the linear and activation layers of the embedded networks where possible.

4.2 Pruning

Pruning removes neurons or connections that don’t significantly contribute to overall accuracy (12).
Pruning techniques can be broadly categorized as unstructured and structured (5). Unstructured
pruning (12) prunes individual weights from the global model or a local layer. This can be done
using techniques like l1 norm filtering, where all weights ||W ||1 <= α are removed from the model
at each step. Structured pruning, as described in (13) removes all weights associated with a filter
or neuron based on the l1-norm of all weights associated with the neuron. Numerous studies have
shown that pruning often not only maintains the accuracy of the trained model (13), but can also lead
to better generalization out of sample (5), making pruning a very powerful technique for network
compression.

5

Baseline Network Results
Benchmark Network Type Accuracy Time per

Epoch (s)
Number of
RNN Parame-
ters

Person Activity CfC (1) 82.8% ±0.7% 7.6 ±0.4 151k
IMDB CfC (1) 88.2% ±0.8% 2.8 ±0.3 75k
IMDB CfC-Deep (1) 88.1% ±0.4% 3.2 ±0.4 551k
IMDB CfC-NCP (6) 84.4% ±0.6% 2.6 ±0.4 37k

Table 1: Accuracy and training time per baseline used. Errors are taken as stddev over 5 runs.

Figure 4: Quantization Experimental Results. Inference time results from CPU backend.

For the CfC and CfC-Deep networks, pruning is done over the backbone network and network heads.
In the CfC-NCP network, pruning is applied on all the individual f, g and h networks.

4.3 Knowledge Distillation

Knowledge distillation (14) and (15) uses a pre-trained large, slow network to train a smaller but
more efficient network. The technique proposed by (15) involved creating cast amounts of training
pseudo-data by using the trained, large model to classify fake data and use it to train the smaller
model. More modern techniques train the smaller model in tandem with the larger model with frozen
parameters, minimizing a shrinkage of a join and individual loss function. This method is applied
here to CfC networks given by equation 7 by training a model with a large backbone network, and
then distilling the shared representation learnt across the network heads into 3 smaller networks for
f, g and h.

5 Empirical Results

5.1 Baseline

We use 2 different benchmarks adopted and modified from (1). The Human Activity benchmark is a
hard task using the RNN features of the network and is slow to train. Only the CfC network was
used here. The IMDB benchmark (16), while not a recurrent task, was used across all 3 networks to
provide a standard baseline for comparison. The network parameters are in the appendix.

5.2 Quantization

Static weight and activation quantization to int8 tensors were applied across all assessed networks.
Operator fusing amongst some of the deep layers of the network were explored for its impact on
inference speed. Finally, Quantization Aware Training was explored to improve accuracy whilst
maintaining compression gains. The impact on accuracy, compression ratio and inference time was
explored. The results are in 4.

6

Figure 5: Results of pruning applied across CfC network architectures and benchmarks.

5.3 Pruning

Structured and unstructured prunining was applied both globally, as well as locally to just the
backbone section of the network. The results are in figure 5.

Pruning ratios varied from 10% to 98%, and the impact on accuracy was assessed. In each case, the
effect on accuracy of pruning without training was recorded, as well as post-training with 10 further
epochs. Finally, in order to view the best trade-off between accuracy and compression ratio, and given
that in local pruning the overall network compression ratio will be much smaller than the pruning
ratio, a "normalized accuracy" metric was developed and used: norm_acc = accuracyγ

log(num_params) . We
use γ = 2. This shows an "accuracyγ per log parameter" metric, which is better at showing how
"efficient" the pruning has been.

5.4 Knowledge Distillation

The CfC network has 3 network heads (f, g, h) supported by a backbone network. This architecture
allows for learning shared representations across the 3 network heads, which the CfC-NCP network
cannot do. However, this leads to a bigger model. Knowledge distillation of the CfC-Deep network
trained on the IMDB benchmark was carried out into a CfC-NCP network with just individual
network heads f, g, h with no backbone. The hypothesis is that the shared representation learnt
by the backbone can be distilled into much smaller network heads once learnt and still achieve
similar accuracy. Knowledge distillation was carried out using a shrinkage based loss function:
loss = 0.25× lossfn(student_preds, target)+0.75× lossfn(student_preds, teacher_preds).
The results are shown in 6. The counterfactual networks (trained only on the data without distillation)
often failed to train, or trained with substantially (5-10%) smaller accuracies.

6 Discussion

Through quantization, strong compression ratios up to 3.8x are achieved without significantly
compromising accuracy across most network architectures, especially after retraining using QAT.

7

Figure 6: Results of Knowledge Distillation of CfC to CfC-NCP Networks.

This is consistent with the theoretical analysis that CfC networks should fare well under quantization.
Consistent with figure 3, the CfC network fared better under quantization than the CfC-Deep
network that had more layers. Operator fusing also significantly improved inference speeds without
compromising accuracy.

Unstructured pruning also showed significant promise. In the Person Activity RNN benchmark,
global unstructured pruning showed the best performance, with a pruning ratio up to 95% showing
similar accuracy to the originally trained model, after retraining. Just pruning the backbone showed
similar performance, but less size-adjusted compression vs. global pruning. In the IMDB benchmark,
structured global pruning performed poorly, but structured pruning on the benchmark performed
similarly to unstructured. In both cases, compression ratios up to 95% globally and 98% on the
backbone were achieved. The efficacy of backbone pruning shows that CfC networks can be resilient
to lower fidelity specification of the embedded networks.

Distilling knowledge gained from the backbone network into individual network heads proved to
be a very effective structure. Both across IMDB and Person Activity benchmarks, compression
ratios of 8-15x were achievable without any loss in accuracy. This shows that learning the shared
representation with the backbone network, and then distilling it into individual network heads is an
effective strategy, and shared distillation learning across the separate networks is possible. However,
compression ratios >15x led to significant falls in accuracy, showing that the individual network heads
still need significant parameters to learn that additional complexity. Combining pruning and this
approach to knowledge distillation could be a very effective strategy for further compression, if the
pruned backbone can distill a simpler but still shared representation across features to the individual
networks.

7 Conclusion

Overall all three compression techniques explored proved effective with CfC network variations.
Consistent with theoretical insights, CfC networks did well with quantization, particularly with fewer
layers in the backbone. Operator fusing in the backbone improved inference speed. Unstructured
global pruning proved to be an effective strategy across all networks, with pruning ratios up to 95%,
consistent with the findings in (5). Distilling shared representation learnt by a backbone network into
smaller individual network heads also proved effective with ratios up to 8-10x.

8

8 Appendix

8.1 Quantization Analytical Insights Derivation

8.1.1 Linear Neural Network Quantization Error

Let’s look at a fully connected network with L layers with no bias and no activation layer, i.e.
f(XXX;WWW) = WWWL(WWWL−1(...WWW 1XXX)). Let’s assume that weights WWW are being quantized, and make
the significant simplifying assumption that the machine epsilon can be represented as a scalar, then
the quantized weight tensor would be W̃̃W̃W ≈WWW (1 + ϵ). Let’s assume this approximation can be taken
as exact.

Now, the output of a quantized FC network can be written as f(XXX; W̃̃W̃W) = W̃̃W̃WL(W̃̃W̃WL−1(...W̃̃W̃W 1XXX)).
Let’s look at the 2 layer case for simplicity. Then:

f(XXX,W̃̃W̃W) = W̃2W̃2W̃2(W̃̃W̃W 1XXX) =W2W2W2(1 + ϵ)(W1W1W1(1 + ϵ)XXX) =WWW 2WWW 1XXX + 2ϵWWW 2WWW 1XXX + ϵ2WWW 2WWW 1XXX

Extending this to L layers, let pL(ϵ) be the L degree polynomial in ϵ minus 1, then

f(XXX,W̃̃W̃W) = (1 + pL(ϵ))f(XXX;WWW)

.

8.1.2 Expanding to Multidimensional ϵϵϵ

There is an avenue to expanding this to multidimensional ϵ with matrix polynomials. In this case, the
output of the quantized network can be written as:

f(XXX,W̃̃W̃W) =WWW 2WWW 1XXX +WWW 2(WWW 1 ⊙ ϵ1ϵ1ϵ1)XXX + (WWW 2 ⊙ ϵ2ϵ2ϵ2)WWW 1XXX + (WWW 2 ⊙ ϵ2ϵ2ϵ2)(WWW 1 ⊙ ϵ1ϵ1ϵ1)XXX

The original network terms can be factored out:

f(XXX,W̃̃W̃W) =WWW 2WWW 1XXX ⊙ (1 +WWW 2ϵϵϵ1XXX + ϵϵϵ2WWW 1XXX +WWW 2ϵϵϵ1XXX ⊙ ϵϵϵ2WWW 1XXX ⊙ ϵϵϵ2ϵϵϵ1XXX)

It is not certain that this can be easily factored given there are still terms dependent on weights and
inputs in the polynomial side, but if it can it can yield a more accurate approximation and calibration
for the scaling factor.

8.1.3 CfC Network Quantization Error

This will proceed from equation 6. Denote f(XXX(t), III(t); θ) as fff , and say it is a fully connected
network with no bias as per above. Then the quantized form of equation 6 (in one dimension) can be
written as:

x̃(t) = Ce−(ωτ+(1+pL(ϵ))ft(1 + pL(ϵ))f +A

Expanding this equation, we get:

x̃(t) = Ce−(ωτ+f)te−pL(ϵ)ftf + Ce−(ωτ+f)te−pL(ϵ)ftpL(ϵ)f +A

Note that Ce−(ωτ+f)tf = x(t)−A

Factoring out the terms dependent on the quantization error and substituting in 6, then:

x̃(t) = (pL(ϵ)e−pL(ϵ)ft + e−pL(ϵ)ft − 1)(x(t)−A) + x(t)

This can easily be expanded to higher dimensional states.

The plots in figure 3 were generated by assuming f, t ∈ [0, 1], and wτ = 1, C = 1, A = 0, for both
CfC networks and FC networks.

9

Figure 7: Parameters for network architectures tested, mostly from (1)

8.2 Network Parameters

References
[1] R. Hasani, M. Lechner, A. Amini, L. Liebenwein, A. Ray, M. Tschaikowski, G. Teschl, and

D. Rus, “Closed-form continuous-time neural networks,” Nature Machine Intelligence, vol. 4,
pp. 992–1003, Nov. 2022.

[2] K.-i. Funahashi and Y. Nakamura, “Approximation of dynamical systems by continuous time
recurrent neural networks,” Neural Networks, vol. 6, no. 6, pp. 801–806, 1993.

[3] R. Hasani, M. Lechner, A. Amini, D. Rus, and R. Grosu, “Liquid Time-constant Networks,”
2020.

[4] S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama, “Dissecting neural odes,” Advances
in Neural Information Processing Systems, vol. 33, pp. 3952–3963, 2020.

[5] L. Liebenwein, R. Hasani, A. Amini, and D. Rus, “Sparse Flows: Pruning Continuous-depth
Models,” 2021.

[6] M. Lechner, R. Hasani, A. Amini, T. A. Henzinger, D. Rus, and R. Grosu, “Neural circuit
policies enabling auditable autonomy,” Nature Machine Intelligence, vol. 2, pp. 642–652, Oct.
2020.

[7] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, and others, “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing systems, vol. 32, 2019.

[8] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-bit Quantization of Neural Networks
for Efficient Inference,” in 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), pp. 3009–3018, 2019.

[9] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing Deep Convolutional Networks using
Vector Quantization,” 2014.

10

[10] R. Chisholm, P. Richmond, and S. Maddock, “A Standardised Benchmark for Assessing the
Performance of Fixed Radius Near Neighbours,” Euro-Par 2016 Workshops, pp. 311–321, 2017.

[11] R. Krishnamoorthi, J. Reed, M. Ni, C. Gottbrath, and S. Weidman, “Introduction to Quantization
on PyTorch,” Mar. 2020.

[12] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both Weights and Connections for Efficient
Neural Networks,” 2015.

[13] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning Filters for Efficient
ConvNets,” 2016.

[14] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network,” 2015.

[15] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 535–541, 2006.

[16] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning word vectors
for sentiment analysis,” in Proceedings of the 49th annual meeting of the association for
computational linguistics: Human language technologies, pp. 142–150, 2011.

11

	Introduction
	Objective
	Continuous Time Neural Networks

	Related Work
	Closed Form Continuous Time Networks
	Overview of CfCs
	CfC Networks Analyzed

	Model Compression Approaches
	Quantization
	Analytical Insights
	Computational Implementation

	Pruning
	Knowledge Distillation

	Empirical Results
	Baseline
	Quantization
	Pruning
	Knowledge Distillation

	Discussion
	Conclusion
	Appendix
	Quantization Analytical Insights Derivation
	Linear Neural Network Quantization Error
	Expanding to Multidimensional - .4
	CfC Network Quantization Error

	Network Parameters

