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Abstract

In this project I implement multiple techniques to reduce memory when
training neural networks, and use them both individually and together on
WideResNet-50-2 and Transformer. I introduce the Maximum-Memory Rule,
a novel rule which accurately models memory consumption, and I show how this
places a theoretical limit the best-possible memory reduction that techniques like
checkpointing and microbatching can achieve.

The source code for this project is available at https://github.com/
rosstooley/pytorch-low-mem-training.

1 Introduction

Training deep neural networks is memory intensive, but past research has been able to reduce this
memory consumption by exchanging it for increased computation time or reduced accuracy. This
project builds directly on the work of Sohini et al. [6] who study the benefit of using multiple
such techniques together on the same neural network, namely sparsity, quantisation, micro-batching
and checkpointing. Sohoni et al. only analyse some of these techniques theoretically due to lack
of implementation support in the major frameworks at their time of writing. But since then, the
major frameworks have added implementation support for these techniques, so in this project I have
reproduced their experiments with real implementations in PyTorch [2] to determine whether their
theoretical results are true in practise.

In these experiments have led to the discovery that that the model used by Sohoni et al. to compute the
total memory required during training does not equal the actual maximum memory measured during
my experiments. In order to explain this difference, I have created a new theoretical model called
the Maximum-Memory Rule. This rule imposes a limit on the best-possible memory reduction that
can be achieved by some techniques such as checkpointing and microbatching. In the next section,
I review the model used by Sohini et al., demonstrate how it differs from the real-world maximum
memory, and then introduce the Maximum-Memory Rule.

I then implement memory-saving techniques in PyTorch and run a series of experiments which
demonstrate how the techniques can be used individually and together to reduce the memory compared
to a baseline model. I am able to explain the results of each technique, and I am able to demonstrate
empirically that checkpointing and microbatching can hit the limits imposed by the Maximum-
Memory Model. Finally, I conclude with a comparison of my results to those of Sohoni et al.
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2 A precise model of maximum memory consumption

2.1 A review of the memory model by Sohini et al.

In the experiments by Sohini et al. [6] they do not actually implement their techniques because of lack
of implementation support in the major ML frameworks. Instead they compute memory consumption
using a static analysis tool. This tool models the memory consumption of training by splitting it into
three types: weights includes all tensors used to specify the weights and biases of the neural network;
gradients includes the tensors for accumulating the gradients of the weights until the weights are
updated; activations includes the tensors which store the activations and their gradients. To compute
the total memory, Sohini et al. compute the max of each type of memory and add them together.

Breaking the memory model down into these types is useful because some of the memory-saving
techniques have a different effect on each type of memory, as I enumerate in Figure 2. Furthermore,
many projects must resort to distributed training because they consume too much memory for a single
machine. A popular solution is data-parallel training, which splits the data across multiple machines,
thereby only reducing the size of activations on each machine, not the size of weights or gradients.

Lastly, it is important to confirm what is meant by ‘total memory consumption’. I take it to mean
the maximum memory allocated on the GPU at any point during training, because if the maximum
memory were to exceed the memory available on the GPU then the project would have to be
distributed to more machines.

2.2 Empirical evidence for a new memory model

To motivate the creation of a new model for predicting maximum memory, I first show an empirical
example where the true maximum memory consumption during training is different to what Sohini
et al. predict. In this project I use real implementations of these techniques and measure the real
memory consumption using a GPU-memory profiler from Sicara [5]. This takes readings of the total
memory allocated on the GPU and produces a memory profile for a single training batch which shows
how the total memory allocated increases and decreases throughout the batch. I take the maximum
point on this profile to be the maximum memory.

Figure 1 shows the profile of my baseline. This baseline is the WideResNet-50-2 convolutional
neural network [9], trained on a single batch of 256 32x32 colour images. The graph shows that
the maximum memory required to train this baseline is 1222MB, and the total time for one batch
is 630ms. The horizontal lines show the predicted memory consumption according to the model
by Sohoni et al. This model predicts that maximum memory is the sum of weights, gradients and
activations, which is the top horizontal line on the graph, but this is clearly disproven by my profile
which shows the true peak to be much less. So, a new model is required to account for this difference.

2.3 The Maximum-Memory Rule

The reason why the baseline in Figure 1 is less than the prediction by Sohoni et al. [6] can be
explained by examining the periods during which each type of memory are used during a training
batch. Unused tensors are quickly evicted from the GPU so the maximum memory allocated will
not be the naive sum of all tensors used during a training batch. Before the forward pass, only the
weights are stored; during the forward pass the activations are created and stored so that the current
memory grows to weights + activations by the end of the forward pass; during the backward pass
the activations are used to compute the gradients so that the total memory after the backward pass is
weights + gradients.

The maximum memory is therefore found somewhere on the backward pass. Either this is at the
beginning of the backward pass, when total memory equals weights + activations; or it is at the end
of the backward pass when total memory equals weights + gradients; or it is somewhere in the middle
of the backward pass when the gradients computed so far plus the activations yet to be computed
are maximal. I call this the Maximum-Memory Rule, and it can be stated more mathematically as
follows:

maximum memory = weights + maxl∈L(activations[: l] + gradients[l :]) (1)
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Figure 1: Memory profile of one training batch.
Max memory is labelled. Horizontal lines show
sums of each type of memory. Baseline is
WideResNet-50-2 on 256 CIFAR-10 images.

Figure 2: How each technique
changes each type of memory.
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where L is the set {0, . . . , |L| − 1} of indexes of the layers of the network, activations[: l] is the
memory required for the activations of the first l layers, and gradients[: l] is the memory required
for the gradients of the last |L| − l layers.

The Maximum-Memory Rule provides two bounds on the effectiveness of a memory-saving tech-
nique:

1. When maximum memory is at l = 0 then the maximum memory is equal to weights +
gradients and there is no benefit in reducing activations any further.

2. When maximum memory is at l = |L|−1 then the maximum memory is equal to weights+
activations and there is no benefit in reducing gradients any further.

The first of these limits impacts memory-saving techniques such as checkpointing and microbatching
which only reduce activations.

3 Implementing memory-saving techniques

In this section I evaluate the impact of the Maximum-Memory Rule on each memory-saving technique.
I do this by analysing the theoretical reduction that each technique should provide (summarised
in Figure 2) and whether it is impacted by the rule. I have also implemented these techniques in
PyTorch [2] using its existing library support, and I have run experiments testing these techniques
on benchmark models. In this section I evaluate the data from these experiments to learn how each
technique changes memory consumption and computation speed, and how each one is affected by the
Maximum-Memory Rule. Each of these experiments is conducted an NVIDIA P4 GPU.

The techniques I consider are gradient checkpointing, FP16, mixed precision and microbatching,
each of which are summarised in their section. I do not investigate sparsity because this technique
only saves memory on certain types of specialised hardware (not including a GPU) which are able
to operate on compressed, sparse matrices in memory. Lastly, FP16 and mixed precision exchange
memory consumption for training accuracy, but I have not been able to measure accuracy due to
limited availability of GPUs, so this is out of scope for this project.

3.1 Gradient Checkpointing

Gradient Checkpointing is a memory-saving technique which reduces activation memory in exchange
for increased computation time. Rather than storing all activations during the forward pass, this
technique only stores the activations for some layers, known as checkpoints. Then, the backward pass
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Figure 3: WideResNet-50-2 profile com-
parison with checkpointing. Checkpoint-
ing scheme is res-1 and reduces memory by
38.5%. Horizontal line shows greatest reduc-
tion theoretically achievable by checkpoint-
ing alone, 56.2%, according to the Maximum-
Memory Rule.

Figure 4: WideResNet-50-2 profile compar-
ison with microbatching. Microbatches of
size 64 and 16 save 44.8% and 54.7% mem-
ory respectively. Horizontal line shows great-
est reduction theoretically achievable by mi-
crobatching alone, 56.2% according to the
Maximum-Memory Rule

is replaced by multiple smaller forward-backward passes, each one on a different segment between
two of the checkpoints. This reduces activations, because fewer activations are stored at once, but
does not reduce weights or gradients. The Maximum-Memory Rule means that checkpointing has a
limit which is reached when the maximum memory never exceeds weights + gradients. The ideal
checkpointing scheme reaches this limit with the least impact on computation time.

I implement a checkpointing scheme for WideResNet-50-2 and show its profile in Figure 3. This
scheme is known as res-1 and it checkpoints the output of each residual block in the network.
The maximum memory consumption of the checkpointed network is 38.5% less than the baseline,
whereas the theoretical limit (shown on the graph by the horizontal line) is a reduction of 56.2% over
this baseline. This shows that res-1 is a good, but not ideal, checkpointing scheme for this baseline.
A stronger checkpointing scheme could save more memory, but may reach the limit and start wasting
computation time without reducing memory. Beyond the limit, stronger checkpointing schemes are
only useful when combined with techniques that also reduce gradients.

Figure 3 also shows that checkpointing with res-1 takes 700ms, 11% longer than the baseline,
which makes it clear that checkpointing exchanges memory for computation time. The PyTorch
implementation of gradient checkpointing which I use is the checkpoint library [3]. To add this
to the pre-built WideResNet-50-2 model I simply override the implementation of the PyTorch
forward function.

3.2 Quantisation

The tensors used to store weights, gradients and activations are ordinarily stored in single precision,
meaning they use 32 bits per element. However, quantisation techniques exchange memory for model
accuracy by using half-precision tensors instead, which use 16 bits per element. PyTorch enables
two types of quantisation; FP16 sets all tensors to half precision, whereas mixed precision is a more
nuanced technique created by NVIDIA and Baidu Research [1] which uses a mixture of 16-bit and
32-bit tensors to achieve much higher accuracy than FP16. Mixed precision casts all tensors to 16-bit
but retains a 32-bit copy of the weights. It automatically scales the gradients to ensure they avoid
underflow and overflow. Lastly, it updates the weights by casting the gradients to FP32 and summing
the two.

FP16 halves all forms of memory, so the Maximum-Memory Rule predicts that maximum memory
will be halved. Mixed precision halves gradients and activations, but it actually increases weights by
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Figure 5: WideResNet-50-2 memory pro-
files for increasing combinations of different
techniques, FP16, then res-1 checkpointing,
then microbatches of size 64. Horizontal line
shows maximum memory reduction accord-
ing to the Maximum-Memory Rule.

Figure 6: WideResNet-50-2 memory profiles
for increasing combinations of techniques,
mixed precision, then res-1 checkpointing,
then microbatches of size 64. Horizontal line
shows maximum memory reduction accord-
ing to the Maximum-Memory Rule.

half because it stores both an 16-bit and a 32-bit copy of the weights. Therefore my memory model
predicts that the profile of mixed precision will bigger than FP16 by the size of a 32-bit copy of the
weights.

To demonstrate this empirically, I implement FP16 and mixed precision on WideResNet-50-2 and
show their memory profiles in Figures 5 and 6 respectively. The maximum memory consumption
of FP16 is a 50% reduction over the baseline. The mixed precision only reduces it by 27.9%, but
this difference is almost entirely accounted for by the addition of a 32-bit copy of the weights which
consumes 21.8% of the baseline’s memory. The graph also shows that FP16 and mixed precision
significantly reduce the computation time (by 74% and 75% respectively), and this is because the
NVIDIA P4 GPU has accelerated operations for FP16 and mixed precision computation.

Both of the methods combine nicely with checkpointing. They have the same effect on a model
irrespective of whether that model has already had checkpointing applied to it or not. This is because
both techniques reduce gradients and activations so neither of the bounds from the Maximum-
Memory Rule are encountered. Although, mixed precision is least effective on use-cases where the
weights are large in comparison to the activations (because it makes a 32-bit copy of the weights)
such as when using large models on small batches, or when using a checkpointed model. This is
also shown empirically in Figures 5 and 6. The combination of FP16 and checkpointing yields a
69.0% memory reduction on the baseline, and a 49.5% improvement versus checkpointing alone.
The combination of mixed precision and checkpointing is a 46.8% reduction on the baseline, and a
13.4% improvement versus checkpointing alone.

I implement FP16 in PyTorch by simply casting every tensor to 16-bit using the built-in library
function to(float16). I add mixed precision by using the amp library [4].

3.3 Microbatching

Microbatching is a technique to reduce memory in exchange for increased computation time. It
divides each minibatch into microbatches, does a forward and backward pass on each microbatch
while accumulating the gradients but not updating the weights, then updates the weights when
all the microbatches within one minibatch are complete. This technique reduces activations but
keeps weights and gradients therefore the Maximum-Memory Rule predicts that it will conflict with
checkpointing.

In Figure 4 I compare the profile of the baseline (which uses a minibatch of 256 images), to
experiments using microbatches of size 64 and 16. These yield memory reductions of 44.8% and

5



54.7% respectively but incur computation-time overheads of 4% and 103%. The microbatch of size
16 has reached the limit of microbatching according to the Maximum-Memory Rule. The maximum
memory of training never exceeds weights+gradients therefore the size of the activations no longer
has an effect on the maximum memory of training. This means that using such small microbatches
is wasteful because they increase computation time without reducing memory. This insight is only
possible after realising the Maximum-Memory Rule.

Furthermore, checkpointing has no effect when applied to the size-16 microbatch experiment. This
is because checkpointing also only reduces activation memory and so the Maximum-Memory Rule
prevents any further improvements being made. In general, checkpointing and microbatching can be
used together effectively only if they do not hit the limit imposed by the Maximum-Memory Rule.
Beyond this limit any further checkpointing or microbatching will have no effect. Also, since neither
of them reduce the size of weights or gradients then they will suffer diminishing returns when used
together as the size of the weights and the gradients start to dominate.

At time of writing, microbatching has no implementation in PyTorch, so I simulate microbatching
using small minibatches which does not change the memory consumption of training. It does change
the convergence properties of training, but this doesn’t matter for this project because I am not
measuring accuracy.

3.4 Summary

In this section I have demonstrated the consequences of the Maximum-Memory Rule on each type of
memory-saving technique both theoretically and empirically. I have shown that both checkpointing
and microbatching are limited by the rule, and beyond these limits they will only increase computation
time without decreasing maximum memory. Conversely, I have showed that FP16 and mixed
precision are not limited by the Maximum-Memory Rule because they both reduce both gradients and
activations. FP16 will always halve the memory consumption of a model, whereas mixed precision
also needs to store a 32-bit copy of the weights. This means that mixed precision becomes less
effective on models with large weights and small activations, such as when using microbatching or
checkpointing.

I have also shown how each technique affects computation time. Checkpointing and microbatching
both increase computation time, whereas FP16 and mixed precision both reduce computation time be-
cause modern GPUs can accelerate 16-bit computation. Instead, FP16 and mixed precision exchange
accuracy for memory, but measuring accuracy is beyond the scope of this project. Researchers can
use the insights from this project to decide how to balance memory, computation time and accuracy.

4 Empirical comparison with results of Sohoni et al.

In this section I compare my results to the results by Sohoni et al. [6] by using multiple memory-saving
techniques together on the same model and comparing the memory reduction achieved. I achieve
far smaller memory reductions than claimed by Sohoni et al. and one possible reason for this could
be that Sohoni et al. use a static analysis tool to predict their results and they have not factored the
Maximum-Memory Rule into their predictions. Another reason is that I use slightly different models
to Sohoni et al. My comparison is done using two models, WideResNet-50-2 [9], and the vanilla
Transformer [7], whereas Sohoni et al. use WideResNet-28-2 [9] and the DC-Transformer [8].
Ideally they would be the same, but I have struggled to accurately re-create those models in the time
available. Since the baselines are different, the percentage reductions are not directly comparable, but
I am still able to draw insights. Figure 8 shows the numerical results side-by-side.

In the first experiment, on WideResNet-50-2, I apply both res-1 checkpointing and microbatches
of size 64, and one of FP16 and mixed precision. The profiles of these experiments are shown in
Figures 5 and 6 and shown that memory consumption is reduced by 76.0% with FP16 and 54.3%
with mixed precision. Both of these experiments are at the limit of memory reduction according
to the Maximum-Memory Rule, which is 79.4% for FP16 and 56.2% for mixed precision (because
mixed precision maintains an additional 32-bit copy of the weights). Both of these methods actually
reduce computation time, although they do reduce accuracy.

My second experiment, on Transformer, shows that the Maximum-Memory Rule can be applied
to different types of model. The Transformer baseline has a maximum memory consumption of
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Figure 7: Transformer memory profiles for in-
creasing combinations of techniques: mixed
precision, then layer-1 checkpointing, then
microbatches of size 64. Horizontal line
shows maximum memory reduction accord-
ing to the Maximum-Memory Rule.

Figure 8: Comparison with results by Sohoni et al.

Author Techniques Memory
reduction

WideResNet-28-2

Sohoni
res-2-* checkpointing
FP16
10 Microbatches of 10

97.0%

WideResNet-50-2

Tooley
res-1 checkpointing
FP16
4 Microbatches of 64

76.0%

Tooley
res-1 checkpointing
Mixed precision
4 Microbatches of 64

54.3%

DC-Transformer

Sohoni
layer-1 checkpointing
FP16
16 Microbatches of 250

88.5%

Transformer

Tooley
layer-1 checkpointing
Mixed precision
4 Microbatches of 64

85.5%

2560MB on a batch size of 256. The checkpointing scheme applied is layer-1 which checkpoints
the output of layer of the encoder and each layer of the decoder. Figure 7 shows the memory reduction
when applying mixed precision, layer-1 checkpointing and microbatches of size 64.1 This achieves
a memory reduction of 85.5% which is also the lower limit of memory consumption according to the
Maximum-Memory Rule. Furthermore, this combination of techniques reduces computation time, in
exchange for model accuracy.

Figure 8 compares my results to the results claimed by Sohoni et al., and firstly shows that I achieve
far less memory reduction on WideResNet, even though the Maximum-Memory Rule states that I can
do no better with these techniques. One clear difference between our experiments is that Sohoni et al.
use far smaller microbatches and a far stronger checkpointing strategy. Due to the Maximum-Memory
Rule, I have shown than even if I were to use as small microbatches and as small checkpoints, I would
not be able to reduce memory consumption any further. Two explanations for the huge memory
reduction by Sohini et al. are that WideResNet-28-2 is a smaller model than WideResNet-50-2 so
the Maximum-Memory Rule limit may be lower, or possibly that their results are overstated because
their static analysis tool is not factoring in the effect of the Maximum-Memory Rule.

Our results are much closer on the Transformer, primarily because Sohoni et al. use far bigger
microbatches and a less aggressive checkpointing strategy. By comparison to my experiment, I
predict that these techniques do not exceed the Maximum-Memory Rule limit and I am confident that
these results would be shown to be true if they were actually implemented.

5 Conclusion

The objective of this project has been to reproduce the work of Sohoni et al. [6] and investigate
how much memory can be saved when training a neural network using gradient checkpointing,
microbatching, FP16 and mixed precision. The novel discovery of this project has been the Maximum-
Memory Rule which states that the maximum memory required for training is not simply the sum of
weights, gradients and activations because the GPU does not store all of these in memory at once. The

1FP16 not available for the Transformer because it contains some operations which cannot be casted.
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Maximum-Memory Rule also states that if the either gradients or activations are sufficiently greater
than the other, then reducing the smaller one will have zero effect on the total memory consumption.
This imposes limits on the effectiveness of memory-saving techniques such as checkpointing and
microbatching which only reduce activations.

Unlike Sohini et al., I have implemented each technique in PyTorch [2] and I have profiled memory
consumption and computation time while training a model under each technique and combination
of techniques. This data provides evidence of the limit imposed by the Maximum-Memory Rule; it
shows that excessive checkpointing and excessive microbatching eventually stop reducing memory
consumption and from then only increase computation time.

Finally, I have compared my results to those by Sohoni et al. despite using slightly different baselines.
I was not able to achieve as much memory reduction as Sohini et al., however I am reassured by the
Maximum-Memory Rule that I have reached the limit of memory reduction on my baseline with these
techniques. I believe that the main contribution of this project to readers is its detailed exposition on
how each technique affects memory consumption and computation, and why each technique does so.
Readers will be able to use this project to understand what effect each technique will have on their
own models, and which technique or set of techniques are best-suited for them.
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