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Abstract

Neural style transfer is a computer vision technology that recomposes an image’s
content in another’s style using a neural network. This technology makes it
possible that a photograph might appear as if it were created by a famous artist.
Nowadays, neural style transfer is extensively used in real-time photo and video
editing software. However, this is not achieved overnight. Numerous scholars
have explored how to improve the speed and size of the model. In this project, we
want to have a taste of how these improvements happen in practice. We select two
breakthrough methods in this field to implement - 1. perceptual losses feed-forward
transformation network for neural style transfer speed-up and 2. model pruning for
compression. We create and train our stylization model - Artist Eye - and explore
how the ordinary view of Cambridge would be transformed into various artist
styles. When compared with the baseline, our trained and pruned model achieves
118x faster in speed and 53x smaller in size, without obvious visual performance
degradation. Besides qualitative comparison, we conduct quantitative analysis by
using the state-of-the-art metric ArtFid. This project is a record of our discovery
and hands-on practice process in this field. We also include our observations and
findings in the Experiments and Evaluation Section.

Project link: click here

1 Introduction

Artists see the world as a place full of possibilities rather than as a set, unchanging paradigm for how
to live. They are able to perceive much of what is invisible to the majority of people because they
have less limitations on their thinking. Their unique way of interpreting objects makes most ordinary
people feel miraculous and amazed. Most of artists live in the same environment and see the same
scenery as us, but they seem to have magic - somehow inject their ideas into the artworks and create
masterpieces by using various art style.

The neural style transfer technique [1] unravels the mysteries of the artist. With the aid of this
technology, a photograph may look to have been produced by a well-known artist. The application
of neural style transfer in real-time photo editing software has become widespread in recent years.
To simulate the practical use of neural style transfer in daily photo editing, we collect a dataset
which contains photos of everyday life in Cambridge and also prepare our target style images. In this
application scenario, we select two breakthrough and well-known techniques - model pruning [2] and
perceptual losses feed-forward transformation network [3] - to make our model smaller and faster.
Our goal is to gain an understanding of how neural style transfer speed-up and model compression
work in real practice.

.
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2 Background

2.1 Style Transfer

The early 2000s saw the beginning of style transfer and texture transfer research. Hertzmann et al.
[4] presented image analogies based on a straightforward multi-scale autoregression, whereas Efros
and Freeman [5] proposed texture synthesis and transfer via image quilting. An iterative optimization
technique for style transfer was put out by Gatys et al. [1] and makes use of the representations
learned by convolutional neural networks. A pre-trained convolution neural network (CNN) is used
in neural style transfer to transfer styles from one image to another. A loss function is constructed to
reduce the discrepancies between generated images, style reference images, and content images. Since
each step of the optimization problem necessitates a forward and backward trip over the pre-trained
network, their method is computationally expensive. Johnson et al. [3] used a feed-forward network
via perceptual loss and were able to speed up the image transform process in a single feed-forward
pass. Although this network could produce results instantly, it is limited to the one style that it was
trained on.

2.2 Model Pruning

Pruning a model often involves removing from the network any components that give little to no
information during inference. Usually, a big initial network is trained to be accurate, and the aim is to
create a smaller network with a similar level of accuracy [6].

To increase training speed, several algorithms prune the network during training [7, 8] or even at
initialization [9]. Nevertheless, the majority of pruning algorithms adhere to the conventional method
suggested by [2, 10] and perform pruning after the usual training procedure.

The literature review work [11] comes to the conclusion that intelligently allocating parameters to
distinct layers [12, 2, 13, 14, 15] or global pruning [9, 16] likely to perform better than uniformly
pruning all layers. Moreover, when keeping the number of fine-tuning iterations constant, many
approaches create pruned models that perform better than initiating with the identical sparsity pattern
[17, 18, 19, 16].

2.3 Evaluation of Neural Style Transfer

In the field of neural style transfer, there is always no single correct output. Currently, the most
popular approach for evaluating neural style transfer models is a qualitative comparison of style and
content images. A qualitative comparison is generally helpful for a first impression, however, the
performance of style transfer models varies significantly across various styles and content images. A
few works [20, 21] also employ classical perceptual metrics such as PSNR or SSIM [22], however,
these metrics are generally not consistent with human perception [23]. Recently, Wright et al. [24]
proposes a quantitative method by combining two factors: 1. content preservation between generated
images Xg and content images Xc and 2.style feature distributions difference between generated
images Xg and style images Xs. We adopt this metric for quantitative evaluation.

ArtF id(Xg, Xc, Xs) = (1 + 1
N

∑N
i=1 d(X

(i)
c , X

(i)
g )) · (1 + FID(Xs, Xg))

3 Methodology

As mentioned earlier, this project is to experience how model speed and size have been improved in
this field. So we choose the basic and first algorithm in Neural Style Transfer [1] as the baseline. To
witness the effect of model speed-up, we select the perceptual losses feed-forward transformation
network [3] to implement. In addition, we choose one breakthrough paper [2] about model pruning
and apply it to the speed-up model, to get a feel of size reduction. Ultimately, we apply this model in
our proposed application scenario - real-life photo style transfer - and measure the changes in speed
and size. It is worth mentioning that we did not include the most cutting-edge technology in this
project. Because as beginners in this field, the first thing we want to do is to experience the basic
principle and algorithms, to figure out the key development and improvement of this field.
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Figure 1: Our Artist-Eye Net based on the framework of [3].

3.1 Baseline

We use the work of Gatys et al. [1] as our baseline. yc and ys are input content and style image. The
network ϕ is a pre-trained VGG-16 [25] on ImageNet [26]. We use a pre-trained VGG-16 instead of
VGG-19 for consistent with the network structure used in [3]. The style image ys is passed through
the network and its style representations on each layer j are stored. The content representation of
content image yc is calculated on one layer i and is also stored. The image y is initialized with white
noise. y are updated iteratively until it can simultaneously match the style features of the ys and the
content feature of yc. An output image ŷ evolves from y by minimizing the total loss in two aspects
- content loss λcℓ

ϕ,i
content(y, yc) and style loss λsℓ

ϕ,j∈J
style (y, ys). i and j represent different network

layers. λc and λs are scalars which represent weights for different loss items.

ŷ = argmin
y

λcℓ
ϕ,i
content(y, yc) + λsℓ

ϕ,j∈J
style (y, ys)

Each iteration (the updation of y) requires a forward and backward pass through the VGG-16. A
forward pass is needed to calculate the style and content loss, and then a backward pass is needed to
calculate the total loss gradient - the loss derivative with respect to the pixels value - to update the
image y’s pixels. This makes the process slow. Thus, it is difficult to implement in production due to
these time and computation constraints.

3.2 Artist-Eye Net

Our Artist-Eye Net is mainly based on the framework proposed by Johnson et al. [3]. This utilised a
single feed-forward pass of the image transformation process. The limitation is that it is only capable
of producing in the one style that it was trained on. But in our application scenario, this is acceptable.
After taking pictures, users prefer to use the style templates that come with the photo editing software
directly. Compared with the slow image generation speed, this limitation does not affect the user
experience too much. We need to train multiple networks, each corresponding to a style template.
Figure 1 shows how it works. The concept is to train an image transformation network to transform
input images into output images in sigle feed-forward pass. The loss function of this image transferm
net is also a deep convolutional network - a pretrained VGG-16 same as [1]. The differences between
certain layers in the loss network can help to measure the loss in content and style. The output image
ŷ is measured by its content loss with the content image x (also act as input image), and its style loss
with the style target image ys.

3



Algorithm 1 Our Stepwise Global Pruning and Fine-tuning Strategy

Input: target sparsity starget and dataset X
W ← initialize()
W ← trainToConvergence(f(X;W ))
M ← 1|W |

repeat
M ← globalPrune(M, score(W ),∆si)
W ← fineTune(f(X;M

⊙
W ))

until scurrent >= starget
return M , W

3.3 Stepwise Global Pruning and Fine-tuning

We follow iterative pruning and fine-tuning schema in [2]. Based on the knowledge mentioned in
Background Section, we select global pruning strategy. As shown in Algorithm 1, our Artist-Eye Net
is first trained to convergence. The trained network can be described as a particular parameterization
of an architecture f(X;W ), where X is the training dataset and W is model parameters. The pruning
process is to produce a pruned model f(X;M

⊙
W ) which still accords with the characteristic of

X . M is a binary mask where M ∈ {0, 1}W
′

to achieve the pruning effect.
⊙

is the dot product
operation that applies M on W to make certain parameters equal to 0.

∆si is the sparsity increment. In each iteration, a global pruning process globalPrune runs first
with a given sparsity requirement ∆si. The network is pruned based on score(W ) - the evaluation
of each parameter or element’s importance. A further training - known as fine-tuning fineTune()
- is needed to recover the pruned network’s accuracy. The iteration process gradually reduces the
network’s size (increases the network’s sparsity) and will be terminated once the model’s current
sparsity scurrent reaches the target sparsity starget. ∆si may be set with different value or keep as
constant at each iteration.

4 Experiments and Evaluation

4.1 Datasets

ImageNet dataset[26] ImageNet dataset spans 1K object classes and contains 1,281,167 training
images, 50K validation images and 100K test images. The ImageNet Dataset is used to - 1. pre-train
the 16-layer VGG network in the baseline. 2. pre-train the loss network (16-layer VGG network) in
Artist-Eye Net.

MS-COCO 2014 dataset [27] The MS COCO dataset is a large-scale object detection, segmenta-
tion, key-point detection, and captioning dataset. MS COCO 2014 version contains 164K images
split into training (83K), validation (41K) and test (41K) sets. The training set (83K images) is used
to train our Artist-Eye Net as content images. This can help our model to learn how to consistently
represent daily common objects in a given art style.

Artworks dataset [24] Artworks dataset is a dataset where artworks are labelled by artists and
stylistic periods. Due to the relatively long time required to train each Artist-Eye Net (about two
hours running time on ampere GPU provided by the Cambridge CS department), we only selected
6 paintings from this database. Although the quantity is small, the styles of these pictures are very
different. Some of them are abstract styles and some are realistic styles. Some paintings prefer to use
dots as the basic elements, while some paintings mainly consist of rough lines. With this dataset, we
hope to test the generality of the model for learning different styles. These painting images act as
style inputs for - 1. the baseline network and 2. the Artist-Eye Net, where each painting is used to
train a unique Artist-Eye Net, resulting six Artist-Eye Nets with different style target.

Cambridge-Life dataset (self-collected) This dataset has 110 images, all of which were taken in
Cambridge. The scenes in the pictures involve modern buildings, old colleges and churches, trees and
lawns, dining halls and classrooms, and even common animals (e.g. ducks and college cows). The
reason why we create our dataset is that we want to test the generality and practicality of Artist-Eye
Net in real-life scenarios.
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Table 1: Comparison of models’ average size, speed and visual results quality (Art-FID)

GPU (ms) CPU (s) zip size Art-FID ↓
Baseline [1] 42,978.99 2,780.44 45.76 MB 37.11
Artist-Eye (w/o pruned) [3] 412.78 1.72 6 MB 38.10
Iterative global pruned w/ tuned Artist-Eye 361.66 2.01 881.00 KB 40.96
Global pruned w/ tuned Artist-Eye 374.11 2.02 898.33 KB 43.61
Global pruned w/o tuned Artist-Eye Net 354.98 2.03 896.34 KB 49.29

4.2 Implementation and Training Details

Baseline
We follow the implementation of the basic Neural Style Transform algorithm 1 by Gatys et al. [1]
and build a colab version of it for better visualization. We use the pre-trained VGG-16 (total params:
12,944,960) on ImageNet dataset [26] to extract the features of the content and style image at various
layers. The optimization is performed using L-BFGS. We set the number of iterations as 500 because
in most cases optimization converges to satisfactory results within 500 iterations. We implement the
training and stylization process on Google Colab.

Artist-Eye Net
We adopt the perceptual loss image transformation network proposed by Jognson et al. [3] (total
params: 1,679,235). Our implementation follows the suggestions by [28] and use instance normal-
ization and nearest-neighbor up-sampling. With a certain style image, each style transfer network
(per style target) is trained on the Microsoft COCO dataset [27] with 83k training images. Since
our Artworks dataset has six artworks, we will train each network separately. Finally, we obtain six
trained networks corresponding to different style templates. Same as the settings in [3], we use Adam
as an optimizer. The batch size is set as 4 for 40,000 iterations, and the epoch number is 2. Training
takes roughly 3 hours (per model) on ampere GPU compute nodes provided by the Cambridge CSD3.
Once models are trained, we conduct the stylization and visualisation process on Google Colab.

Pruned + Fine-Tuned Artist-Eye Net
We use the PyTorch library torch.nn.utils.prune to implement the pruning and fine-tuning process.
Each pre-trained Artist-Eye Net (per style target) is pruned respectively. ∆si is set with a value of
0.1 and starget is 0.95. We use a global pruning strategy to prune the weights in down-sampling
convolution layers, residual layers as well as up-sampling convolution layers.

4.3 Quantitative Results

Table 1 shows the quantitative results of the baseline, unpruned Artist-Eye Net, and pruned Artist-Eye
Nets. Three pruned Artist-Eye Net are generated by using different pruning strategies - 1. iterative
global pruned w/ tuned, 2. global pruned w/ tuned, 3. global pruned w/o tuned.

Both GPU and CPU time cost measurements for the stylization process are conducted on Goole colab.
The GPU environment is NVIDIA-SMI 460.32.03, Driver Version: 460.32.03 and CUDA Version:
11.2. and CPU environment is Intel(R) Xeon(R) CPU @ 2.20GHz.

The result shows that the method - perceptual losses feed-forward transformation network [3] - can
quickly approximate solutions to their optimation problem. We observe the run-time is 118x speedup
in GPU and 1390x speedup on CPU. The baseline method is slow because each L-BFGS iteration
requires a forward and backward pass through the VGG-16 network. The reason why there is no
significant run-time difference between pruned and unpruned Artist-Eye is that we haven’t adopt
the beta version torch.SPARSE in this project [will do it as future work]. Pytorch doesn’t officially
support sparsity operations yet. It currently cannot automatically detect and optimize sparse matrix
operation.

We observe that the effectiveness of model pruning is also significant. After pruning with 95%
sparsity target, the pruned model size shrinks 53x scale, which is less than 1MB. The three pruned
models (with 95% sparsity) have similar compressed sizes.

1https://github.com/gordicaleksa/pytorch-neural-style-transfer
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Figure 2: Qualitative results on Cambridge-Life dataset with different style targets. All pruning methods share
the same pruning sparsity target, where starget = 95%. More experiment results can be found here: click here

We adopt the state-of-the-art metric ArtFid [24] to evaluate our models as explained in Background
Section. It combines the measurement in both content and style aspects. Only models that excel at
both style matching and content preservation are given a low ArtFID score. The result shows that the
speed-up and compression process will slightly degrade visual result quality. The result also shows
that the iterative global pruned and tuned model achieves better Art-FID than the other two pruning
strategies. Global pruned without tuned model has the lowest Art-FID.

4.4 Qualitative Results

Figure 2 demonstrates the visualization of the generated images on the Cambridge-Life dataset. We
divide the analysis into two steps. First, we compare the difference between Artist-Eye (w/o pruned)
and the baseline, because the speed-up Artist-Eye (w/o pruned) changes the design and structure
of the neural network. This comparison allows us to understand the impact of structural change on
visual outcomes. Afterwards, we compare the differences between pruned models and Artist-Eye
(w/o pruned). In this way, we can better feel the impact of various pruning strategies.

Artist-Eye (w/o pruned) vs. Baseline:
Overall, the results from Artist-Eye (w/o pruned) are qualitatively similar to the baseline. It shows
that in general, our Artist-Eye model successfully transfers the target style information on content
images. However, there are some slight differences. When trying to transfer the style of Patrick
Heron (Expressionism), the way Artist-Eye (w/o pruned) rendering the sky is different from the
baseline. It prefers to divide the sky into small pieces, and then paint in the colour. Furthermore,
when transferring Picasso’s style, Artist-Eye (w/o pruned) also favours a block-by-block repaint of
the entire building. One of the possible reasons is that Artist-Eye (w/o pruned) is trained heavily by
MS-COCO dataset to match the style. So it is more inclined to classify and separate the picture’s
content information.

Artist-Eye (iterative global pruned w/ tuned) vs. Artist-Eye (w/o pruned):
Although the sparsity of Artist-Eye (Iterative global pruned w/ tuned) reaches 95%, the images
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Table 2: Model Pruning Comparison - The Cambridge-Life dataset results on six style artworks - ArtFID ↓,
ContentDist ↓, StyleFID ↓. Interesting findings are in red and blue.

P. Heron C. Marca-Rell T. van Rysselberghe V. van Gogh P. Picasso A. East Overall
Expressionism Pop Art Pointillism Post-Impressionismh Symbolism Landscape Painting

ArtFID Artist-Eye (w/o pruned) [3] 28.57 29.86 31.15 43.69 57.29 38.04 38.1
ArtFID Iterative global pruned w/ tuned 34.14 34.69 31.76 49.66 55.12 40.40 40.96

ContentDist Artist-Eye (w/o pruned) [3] 1.56 1.52 1.77 1.43 1.44 1.44 1.53
ContentDist Iterative global pruned w/ tuned 1.52 1.47 1.71 1.38 1.33 1.36 1.46

StyleFID Artist-Eye (w/o pruned) [3] 18.37 19.68 17.62 30.49 39.69 26.40 25.38
StyleFID Iterative global pruned w/ tuned 22.52 23.64 18.59 36.09 41.42 29.79 28.68

generated from it are very similar to the Artist-Eye (w/o pruned). This shows that our compression
results are relatively good, effectively removing redundant information in the network.

Artist-Eye (global pruned w/ tuned) vs. Artist-Eye (iterative global pruned w/ tuned):
The comparison results show that even Artist-Eye (global pruned w/ tuned) and Artist-Eye (Iterative
global pruned w/ tuned) have the same sparsity of 95%, the result of Artist-Eye (Iterative global
pruned w/ tuned) is much better than Artist-Eye (global pruned w/ tuned). It helps to prove that
learning the right connections is an iterative process [2]. Iterative pruning and tuning give the best
result.

Artist-Eye (global pruned w/o tuned):
The results from Artist-Eye (global pruned w/o tuned) with sparsity 95% are more distorted. One
interesting finding is that: the output images of six pruned Artist-Eye Nets (each is trained with a
certain style target separately) are very different. For example, the outcome in the style of Pablo
Picasso’s Symbolism is still acceptable. However, the results in columns 3 and 6 contain strange
visual colours. One possible explanation is that, although the six networks (each corresponding to a
style) are based on the same structure, different target style inputs will affect the distribution of the
trained weight in the network, the degrees of redundancy in these networks are also different.

4.5 Further Exploration

The influence of iteration pruning and fine-tuning on content and style similarity
Considering that ArtFid is composed of content similarity measurement ContentDist and style
similarity measurement StyleFID, we list their their values in Table 2. An interesting finding is that,
the ContentDist value is decreased after the iterative pruning and tuning process. This indicates that
the content similarity between the stylized image and the content image increases. However, the
style difference increases. One of the possible reasons is that texture information is dependent on the
correlation of features in many layers. That is why in [1], style loss is calculated through multiple
layers. Pruning reduces the parameters of the network, which reduces the storage dimension of style
information. Because of the reduction in texture information encoded in the transform net, the degree
of input content image transformation is reduced. The content of the output image will be more like
the input image. This will lead to less content distance.

Another interesting finding is that the iterative pruning and tuning process sometimes can produce a
bit higher ArtFID scores than the unpruned network. We do not have a very confident explanation
for this. One possible explanation is that the inconsistency between human judgements and machine
evaluation metrics is inevitable. The ArtFid score can only roughly judge the quality of the picture,
but its algorithm cannot accurately simulate the human brain’s understanding of style and content.

The trade-off visualization of pruning
Figure 3 illustrates the trade-off for different pruning sparsity target starget. With starget = 0.5,
as mentioned in [2], the free-lunch phenomenon occurs. It’s noteworthy to note that even without
retraining, we can cut connections by 2 without losing accuracy. This indicates that the neural network
is indeed redundant. This figure also shows that, without retraining, accuracy declines significantly
more quickly. While retraining allows us to reduce connection by 8x-9x. The optimum pruning
method is iterative pruning. Further exploration on this phenomenon may help us design a smarter
pruning strategy and reasonable design pruning pace. For example, is it possible to pruning 50% first
and then gradually tune. Or, can the step-size of each iteration be gradually decreased?
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Figure 3: Trade-off visualization with different pruning sparsity target.

4.6 Discussion of Limitations

a) Due to time constraints, we did not adjust any model hyperparameters for any of the models we
built. The model can be fine-tuned to perform better. b) The beta version of torch SPARSE has not
been implemented in this project. Therefore, the running speed after model pruning has not been
significantly improved. c) The images in our database are only the scenery around Cambridge, and
may not fully measure the processing effects of different models on other scenery (for example,
desert, sea, mountains)

5 Conclusion and Future Directions

In this project, we design an application scenario - an artist-style edition of real-life photos. We pick
two techniques. 1. perceptual losses feed-forward transformation network 2. model pruning, and to
test their effectiveness in speed acceleration and model compression. Compared to the baseline, our
trained and pruned Artist Eye models - achieves 118x quicker speed and 53x smaller size without
obviously degrading visual performance. We got a real taste of the powerful effects of these two
technologies, and the efforts researchers have made to evolve the technology. As a simple application
for photo style transfer, our Artist Eye models also provide us with lots of nice and fantastic stylized
pictures [shown in Appendix].

In application aspect, one direct extension of this project is to accomplish video style transfer [29]
by feeding each frame into our model. But we need to consider how to achieve consistency of the
stylized content between frames. It is also interesting to explore the possibility of how neural style
transfer model can be embedded into wearable electronic glasses [30]. This can help to render an
immersive virtual reality of abstract art or cartoon world [31].

In the research aspect, we will finish our incomplete implementation of knowledge distillation
on neural style transfer [32, 33] [we’ve started some experiments but haven’t finished adding this
technology to this project framework due to time constraints]. It is also worth to further exploring
pruning strategies and pruning sensitivity analysis [34, 35]. Another interesting direction is to study
visualization and interactive pruning [36] and to investigate how it is related to AI explanation.
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6 Appendix

Feel free to upload your own photos and experience the stylization result of our artist’s eye. click here
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