Topics in Logic and Complexity

Handout 5

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2324/L15

Is there a logic for P?

The major open question in Descriptive Complexity (first asked by Chandra and Harel in 1982) is whether there is a logic \mathcal{L} such that for any class of finite structures \mathcal{C}, \mathcal{C} is definable by a sentence of \mathcal{L} if, and only if, \mathcal{C} is decidable by a deterministic machine running in polynomial time.

Formally, we require \mathcal{L} to be a recursively enumerable set of sentences, with a computable map taking each sentence to a Turing machine M and a polynomial time bound p such that (M, p) accepts a class of structures.
(Gurevich 1988)

Enumerating Queries

For a given structure \mathbb{A} with n elements, there may be as many as n ! distinct strings $[\mathbb{A}]_{<}$encoding it.

Given $\left(M_{0}, p_{0}\right), \ldots,\left(M_{i}, p_{i}\right), \ldots$-an enumeration of polynomially-clocked Turing machines.

Can we enumerate a subsequence of those that compute graph properties, i.e. are encoding invariant, while including all such properties?

Recursive Indexability

We say that P is recursively indexable, if there is a recursive set \mathcal{I} and a Turing machine M such that:

- on input $i \in \mathcal{I}, M$ produces the code for a machine $M(i)$ and a polynomial p_{i}
- $M(i)$, accepts a class of structures in P .
- $M(i)$ runs in time bounded by p_{i}
- for each class of structures $C \in \mathrm{P}$, there is an i such that $M(i)$ accepts C.

Canonical Labelling

We say that a machine M canonically labels graphs, if

- on any input $[G]_{<}$, the output of M is $[G]_{<^{\prime}}$ for some ordering $<^{\prime}$; and
- if $[G]_{<_{1}}$ and $[G]_{<_{2}}$ are two encodings of the same graph, then $M\left([G]_{<_{1}}\right)=M\left([G]_{<_{2}}\right)$.

It is an open question whether such a polynomial-time machine exists. If so, then P is recursively indexable, by enumerating machines $M \rightarrow M_{i}$.
If not, $\mathrm{P} \neq \mathrm{NP}$.

Interpretations

Given two relational signatures σ and τ, where $\tau=\left\langle R_{1}, \ldots, R_{r}\right\rangle$, and arity of R_{i} is n_{i}

A first-order interpretation of τ in σ is a sequence:

$$
\left\langle\pi_{U}, \pi_{1}, \ldots, \pi_{r}\right\rangle
$$

of first-order σ-formulas, such that, for some k,:

- the free variables of π_{U} are among x_{1}, \ldots, x_{k},
- and the free variables of π_{i} (for each i) are among $x_{1}, \ldots, x_{k \cdot n_{i}}$.
k is the width of the interpretation.

Interpretations ||

An interpretation of τ in σ maps σ-structures to τ-structures.
If \mathbb{A} is a σ-structure with universe A, then
$\pi(\mathbb{A})$ is a structure (B, R_{1}, \ldots, R_{r}) with

- $B \subseteq A^{k}$ is the relation defined by π_{U}.
- for each i, R_{i} is the relation on B defined by π_{i}.

Reductions

Given:

- C_{1} - a class of structures over σ; and
- C_{2} - a class of structures over τ
π is a first-order reduction of C_{1} to C_{2} if, and only if,

$$
\mathbb{A} \in C_{1} \Leftrightarrow \pi(\mathbb{A}) \in C_{2}
$$

If such a π exists, we say that C_{1} is first-order reducible to C_{2}.

NP-complete Problems

First-order reductions are, in general, much weaker than polynomial-time reductions.

Still, there are NP-complete problems under such reductions.
Every problem in NP is first-order reducible to SAT
(Lovàsz and Gàcs 1977)
CNF-SAT, Hamiltonicity and Clique are NP-complete via firstorder reductions
(Dahlhaus 1984)
But, 3-colourability is not NP-complete via first-order reductions.
(D.-Grädel 1995)
and the question is open for $3 S A T$.

CNF-SAT

We formulate the problem CNF-SAT (of deciding whether a Boolean formula in CNF is satisfiable) as a class of structures.

Universe $V \cup C$ where V is the set of variables and C the set of clauses.
Unary Relation V for the set of variables
Binary Relations $P(v, c)$ to indicate that variable v occurs positively in c and $N(v, c)$ to indicate that v occurs negatively in c.

NP-completeness

Consider any ESO sentence ϕ. It can be transformed (by Skolemization) to a sentence

$$
\exists R_{1} \cdots \exists R_{k} \exists F_{1} \cdots \exists F_{l}\left(\bigwedge_{i=1}^{\prime} \forall \mathrm{x}_{i} \exists \mathrm{y} F_{i}\left(\mathrm{x}_{i}, y\right)\right) \wedge \forall \mathrm{y} \theta
$$

where θ is quantifier-free (in CNF).
Now, given a finite structure \mathbb{A}, we construct a CNF Boolean formula $\phi_{\mathbb{A}}$ which is satisfiable if, and only if,

$$
\mathbb{A} \neq \phi .
$$

Boolean Formula

The formula $\phi_{\mathbb{A}}$ contains variables R_{i}^{a} and F_{j}^{a} for every $1 \leq i \leq k$, every $1 \leq j \leq /$ and every tuple a of the appropriate length.

$$
\left(\bigwedge_{i=1}^{\prime} \bigwedge_{a} \bigvee_{a} F_{i}^{a a}\right) \wedge \bigwedge_{a} \theta^{a}
$$

The translation $\mathbb{A} \mapsto \phi_{\mathbb{A}}$ can be given by a first-order interpretation.

P-complete Problems

If there is any problem that is complete for P with respect to first-order reductions, then there is a logic for P.

If Q is such a problem, we form, for each k, a quantifier Q^{k}.
The sentence

$$
Q^{k}\left(\pi_{U}, \pi_{1}, \ldots, \pi_{s}\right)
$$

for a k-ary interpretation $\pi=\left(\pi_{U}, \pi_{1}, \ldots, \pi_{s}\right)$ is defined to be true on a structure \mathbb{A} just in case

$$
\pi(\mathbb{A}) \in Q .
$$

The collection of such sentences is then a logic for P.

Conversely,

Theorem

If the polynomial time properties of graphs are recursively indexable, there is a problem complete for P under first-order reductions.
(D. 1995)

Proof Idea:

Given a recursive indexing $\left(\left(M_{i}, p_{i}\right) \mid i \in \omega\right)$ of P
Encode the following problem into a class of finite structures:

$$
\left\{(i, x) \mid M_{i} \text { accepts } x \text { in time bounded by } p_{i}(|x|)\right\}
$$

To ensure that this problem is still in P , we need to pad the input to have length $p_{i}(|x|)$.

Constructing the Complete Problem

Suppose M is a machine which on input $i \in \omega$ gives a pair $\left(M_{i}, p_{i}\right)$ as in the definition of recursive indexing. Let g a recursive bound on the running time of M.
Q is a class of structures over the signature (V, E, \preceq, I).
$\mathbb{A}=(A, V, E, \preceq, I)$ is in Q if, and only if,

1. \preceq is a linear pre-order on A;
2. if $a, b \in I, a \preceq b$ and $b \preceq a$, i.e. I picks out one equivalence class from the pre-order (say the $i^{\text {th }}$);
3. $|A| \geq p_{i}(|V|)$;
4. the graph (V, E) is accepted by M_{i}; and
5. $g(i) \leq|A|$.

Fixed-point Logic with Counting

Immerman proposed FPC-the extension of IFP with a mechanism for counting

Two sorts of variables:

- x_{1}, x_{2}, \ldots range over $|A|$-the domain of the structure;
- ν_{1}, ν_{2}, \ldots which range over non-negative integers.

If $\phi(x)$ is a formula with free variable x, then $\# x \phi$ is a term denoting the number of elements of \mathbb{A} that satisfy ϕ.
We have arithmetic operations $(+, \times)$ on number terms. Quantification over number variables is bounded: $(\exists x<t) \phi$

Evenness

There are an even number of elements satisfying $\phi(x)$.

$$
\exists \nu<\# x \phi(\nu+\nu=\# x \phi)
$$

Counting Quantifiers

C^{k} is the logic obtained from first-order logic by allowing:

- allowing counting quantifiers: $\exists^{i} \times \phi$; and
- only the variables $x_{1}, \ldots . x_{k}$.

Every formula of C^{k} is equivalent to a formula of first-order logic, albeit one with more variables.

For every sentence ϕ of FPC, there is a k such that if $\mathbb{A} \equiv C^{k} \mathbb{B}$, then

$$
\mathbb{A} \models \phi \quad \text { if, and only if, } \quad \mathbb{B} \models \phi
$$

Counting Game

Immerman and Lander (1990) defined a pebble game for C^{k}.
This is again played by Spoiler and Duplicator using k pairs of pebbles $\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right\}$.

Spoiler picks a subset of the universe (say $X \subseteq B$)
Duplicator responds with $Y \subseteq A$ such that $|X|=|Y|$.
Spoiler then places a b_{i} pebble on an element of Y and Duplicator must place a_{i} on an element of X.
Spoiler wins at any stage if the partial map from \mathbb{A} to \mathbb{B} defined by the pebble pairs is not a partial isomorphism
If Duplicator has a winning strategy for q moves, then \mathbb{A} and \mathbb{B} agree on all sentences of C^{k} of quantifier rank at most q.

Bijection Games

$\equiv{ }^{C^{k}}$ is also characterised by a k-pebble bijection game.
(Hella 96).
The game is played on structures \mathbb{A} and \mathbb{B} with pebbles a_{1}, \ldots, a_{k} on \mathbb{A} and b_{1}, \ldots, b_{k} on \mathbb{B}.

- Spoiler chooses a pair of pebbles a_{i} and b_{i};
- Duplicator chooses a bijection $h: A \rightarrow B$ such that for pebbles a_{j} and $b_{j}(j \neq i), h\left(a_{j}\right)=b_{j}$;
- Spoiler chooses $a \in A$ and places a_{i} on a and b_{i} on $h(a)$.

Duplicator loses if the partial map $a_{i} \mapsto b_{i}$ is not a partial isomorphism. Duplicator has a strategy to play forever if, and only if, $\mathbb{A} \equiv C^{k} \mathbb{B}$.

Equivalence of Games

To show that the games do, indeed, capture $\equiv{ }^{C^{k}}$, we can show the following series of implications for any structures \mathbb{A}, \mathbb{B} and k-tuples of elements a, b.

1. $\Rightarrow 2 . \Rightarrow 3 . \Rightarrow 1$.
2. $(\mathbb{A}, a) \not \equiv^{C^{k}}(\mathbb{B}, b)$
3. Spoiler wins the k-pebble counting game starting from (\mathbb{A}, a) and (\mathbb{B}, b).
4. Spoiler wins the k-pebble bijection game starting from (\mathbb{A}, a) and (\mathbb{B}, b).

Equivalence of Games

For $1 . \Rightarrow 2$., from a sentence $\phi \in C^{k}$ such that

$$
\mathbb{A} \models \phi \quad \text { and } \quad \mathbb{B} \not \models \phi
$$

construct a winning strategy for Spoiler on \mathbb{A} and \mathbb{B}.
If ϕ is $\exists^{i} x \theta$, choose a set X of i elements in \mathbb{A} such that for all $a \in X$:

$$
\mathbb{A} \mid=\theta[a]
$$

In Duplicator response Y in \mathbb{B}, there must be b such that:

$$
\mathbb{B} \not \models \theta[b]
$$

Equivalence of Games

For $2 . \Rightarrow 3$., we can show that a winning strategy for Duplicator in the bijection game yields a winning strategy in the counting game:

$$
\begin{aligned}
& \text { Respond to a set } X \subseteq V(G) \text { (or } Y \subseteq V(H)) \text { with } h(X)\left(h^{-1}(Y)\right. \text {, } \\
& \text { respectively). }
\end{aligned}
$$

Equivalence of Games

For $3 . \Rightarrow 1$., we show that if $(\mathbb{A}, a) \equiv{ }^{C^{k}}(\mathbb{B}, b)$, then Duplicator has a winning strategy in the bijection game starting from the position a and b. Consider the partition on A induced by the equivalence relation

$$
\left\{\left(a, a^{\prime}\right) \mid\left(\mathbb{A}, \mathrm{a}\left[a / a_{i}\right]\right) \equiv \equiv^{c^{k}}\left(\mathbb{A}, \mathrm{a}\left[a^{\prime} / a_{i}\right]\right)\right\}
$$

and the corresponding partition of B.
The condition $(\mathbb{A}, a) \equiv C^{k}(\mathbb{B}, b)$ guarantees that the corresponding parts have the same numbers of elements.
Stitch these together to give the bijection h.

Solvability of Linear Equations

We can now use the games to show that some natural problems in P are not definabile in FPC.
We consider the problem of solving linear equations over the two element field \mathbb{Z}_{2}.

The problem is clearly solvable in polynomial time by means of Gaussian elimination.

We see how to represent systems of linear equations as unordered relational structures.

Systems of Linear Equations

Consider structures over the domain $\left\{x_{1}, \ldots, x_{n}, e_{1}, \ldots, e_{m}\right\}$, (where e_{1}, \ldots, e_{m} are the equations) with relations:

- unary E_{0} for those equations e whose r.h.s. is 0 .
- unary E_{1} for those equations e whose r.h.s. is 1 .
- binary M with $M(x, e)$ if x occurs on the l.h.s. of e.

Solv $\left(\mathbb{Z}_{2}\right)$ is the class of structures representing solvable systems.

Constructing systems of equations

Take G a 4-regular, connected graph.
Define equations E_{G} with two variables x_{0}^{e}, x_{1}^{e} for each edge e. For each vertex v with edges $e_{1}, e_{2}, e_{3}, e_{4}$ incident on it, we have 16 equations:

$$
E_{v}: \quad x_{a}^{e_{1}}+x_{b}^{e_{2}}+x_{c}^{e_{3}}+x_{d}^{e_{4}} \equiv a+b+c+d \quad(\bmod 2)
$$

\tilde{E}_{G} is obtained from E_{G} by replacing, for exactly one vertex v, E_{v} by:

$$
E_{v}^{\prime}: \quad x_{a}^{e_{1}}+x_{b}^{e_{2}}+x_{c}^{e_{3}}+x_{d}^{e_{4}} \equiv a+b+c+d+1 \quad(\bmod 2)
$$

We can show: E_{G} is satisfiable; $\tilde{\mathrm{E}}_{G}$ is unsatisfiable.

Satisfiability

Lemma E_{G} is satisfiable. by setting the variables x_{i}^{e} to i.

Lemma \tilde{E}_{G} is unsatisfiable.
Consider the subsystem consisting of equations involving only the variables x_{0}^{e}.
The sum of all left-hand sides is

$$
2 \sum_{e} x_{0}^{e} \equiv 0 \quad(\bmod 2)
$$

However, the sum of right-hand sides is 1 .

Now we show that, for each k, we can find a graph G such that $\mathrm{E}_{G} \equiv{ }^{c^{k}} \tilde{E}_{G}$.

Toroidal Grids

We aim to show that if G is sufficiently connected, then $\mathrm{E}_{G} \equiv{ }^{C^{k}} \tilde{\mathrm{E}}_{G}$.
The graph we choose is the $k \times k$ toroidal grid.
This has vertex set

$$
V=\{(i, j) \mid 0 \leq i, j \leq k-1\}
$$

and edges $\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)$ whenever
either $i=i^{\prime}$ and $j^{\prime}=j+1 \bmod k$
or $j=j^{\prime}$ and $i^{\prime}=i+1 \bmod k$

Cops and Robbers

The cops and robbers game is a way of measuring the connectivity of a graph.

It is a game played on an undirected graph $G=(V, E)$ between a player controlling k cops and another player in charge of a robber.
At any point, the cops are sitting on a set $X \subseteq V$ of the nodes and the robber on a node $r \in V$.
A move consists in the cop player removing some cops from $X^{\prime} \subseteq X$ nodes and announcing a new position Y for them. The robber responds by moving along a path from r to some node s such that the path does not go through $X \backslash X^{\prime}$.
The new position is $\left(X \backslash X^{\prime}\right) \cup Y$ and s. If a cop and the robber are on the same node, the robber is caught and the game ends.

Cops and Robbers on the Grid

If G is the $k \times k$ toroidal grid, than the robber has a winning strategy in the k-cops and robbers game played on G.

To show this, we note that for any set X of at most k vertices, the graph $G \backslash X$ contains a connected component with at least half the vertices of G.

If all vertices in X are in distinct rows then $G \backslash X$ is connected. Otherwise, $G \backslash X$ contains an entire row and in its connected component there are at least $k-1$ vertices from at least $k / 2$ columns.

Robber's strategy is to stay in the large component.

Cops, Robbers and Bijections

Suppose G is such that the robber has a winning strategy in the $2 k$-cops and robbers game played on G.

We use this to construct a winning strategy for Duplicator in the k-pebble bijection game on E_{G} and \tilde{E}_{G}.

- A bijection $h: \mathrm{E}_{G} \rightarrow \tilde{\mathrm{E}}_{G}$ is good bar v if it is an isomorphism everywhere except at the variables x_{a}^{e} for edges e incident on v.
- If h is good bar v and there is a path from v to u, then there is a bijection h^{\prime} that is good bar u such that h and h^{\prime} differ only at vertices corresponding to the path from v to u.
- Duplicator plays bijections that are good bar v, where v is the robber position in G when the cop position is given by the currently pebbled elements.

