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Is there a logic for P?

The major open question in Descriptive Complexity (�rst asked by
Chandra and Harel in 1982) is whether there is a logic L such that

for any class of �nite structures C, C is de�nable by a sentence
of L if, and only if, C is decidable by a deterministic machine
running in polynomial time.

Formally, we require L to be a recursively enumerable set of sentences,
with a computable map taking each sentence to a Turing machine M and
a polynomial time bound p such that (M, p) accepts a class of structures.

(Gurevich 1988)
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Enumerating Queries

For a given structure A with n elements, there may be as many as n!
distinct strings [A]< encoding it.

Given (M0, p0), . . . , (Mi , pi ), . . .�an enumeration of polynomially-clocked
Turing machines.

Can we enumerate a subsequence of those that compute graph
properties, i.e. are encoding invariant, while including all such properties?
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Recursive Indexability

We say that P is recursively indexable, if there is a recursive set I and a
Turing machine M such that:

• on input i ∈ I, M produces the code for a machine M(i) and a
polynomial pi

• M(i), accepts a class of structures in P.

• M(i) runs in time bounded by pi
• for each class of structures C ∈ P, there is an i such that M(i)
accepts C .
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Canonical Labelling

We say that a machine M canonically labels graphs, if

• on any input [G ]<, the output of M is [G ]<′ for some ordering <′;
and

• if [G ]<1 and [G ]<2 are two encodings of the same graph, then
M([G ]<1) = M([G ]<2).

It is an open question whether such a polynomial-time machine exists.

If so, then P is recursively indexable, by enumerating machines
M → Mi .
If not, P ̸= NP.
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Interpretations

Given two relational signatures σ and τ , where τ = ⟨R1, . . . ,Rr ⟩, and
arity of Ri is ni

A �rst-order interpretation of τ in σ is a sequence:

⟨πU , π1, . . . , πr ⟩

of �rst-order σ-formulas, such that, for some k ,:

• the free variables of πU are among x1, . . . , xk ,

• and the free variables of πi (for each i) are among x1, . . . , xk·ni .

k is the width of the interpretation.
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Interpretations II

An interpretation of τ in σ maps σ-structures to τ -structures.

If A is a σ-structure with universe A, then
π(A) is a structure (B,R1, . . . ,Rr ) with

• B ⊆ Ak is the relation de�ned by πU .

• for each i , Ri is the relation on B de�ned by πi .
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Reductions

Given:

• C1 � a class of structures over σ; and

• C2 � a class of structures over τ

π is a �rst-order reduction of C1 to C2 if, and only if,

A ∈ C1 ⇔ π(A) ∈ C2.

If such a π exists, we say that C1 is �rst-order reducible to C2.
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NP-complete Problems

First-order reductions are, in general, much weaker than polynomial-time
reductions.

Still, there are NP-complete problems under such reductions.

Every problem in NP is �rst-order reducible to SAT
(Lovàsz and Gàcs 1977)

CNF-SAT, Hamiltonicity and Clique are NP-complete via �rst-
order reductions

(Dahlhaus 1984)

But, 3-colourability is not NP-complete via �rst-order reductions.
(D.-Grädel 1995)

and the question is open for 3SAT.
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CNF-SAT

We formulate the problem CNF-SAT (of deciding whether a Boolean
formula in CNF is satis�able) as a class of structures.

Universe V ∪ C where V is the set of variables and C the set of
clauses.

Unary Relation V for the set of variables

Binary Relations P(v , c) to indicate that variable v occurs positively in c
and N(v , c) to indicate that v occurs negatively in c .
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NP-completeness

Consider any ESO sentence ϕ. It can be transformed (by Skolemization)
to a sentence

∃R1 · · · ∃Rk ∃F1 · · · ∃Fl(
l∧

i=1

∀xi∃y Fi (xi , y)) ∧ ∀y θ

where θ is quanti�er-free (in CNF).

Now, given a �nite structure A, we construct a CNF Boolean formula ϕA
which is satis�able if, and only if,

A |= ϕ.
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Boolean Formula

The formula ϕA contains variables Ra

i and F a

j for every 1 ≤ i ≤ k , every
1 ≤ j ≤ l and every tuple a of the appropriate length.

(
l∧

i=1

∧
a

∨
a

F aa
i ) ∧

∧
a

θa

The translation A 7→ ϕA can be given by a �rst-order interpretation.
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P-complete Problems

If there is any problem that is complete for P with respect to �rst-order
reductions, then there is a logic for P.

If Q is such a problem, we form, for each k , a quanti�er Qk .
The sentence

Qk(πU , π1, . . . , πs)

for a k-ary interpretation π = (πU , π1, . . . , πs) is de�ned to be true on a
structure A just in case

π(A) ∈ Q.

The collection of such sentences is then a logic for P.
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Conversely,

Theorem
If the polynomial time properties of graphs are recursively indexable,
there is a problem complete for P under �rst-order reductions.

(D. 1995)

Proof Idea:
Given a recursive indexing ((Mi , pi )|i ∈ ω) of P
Encode the following problem into a class of �nite structures:

{(i , x)|Mi accepts x in time bounded by pi (|x |)}

To ensure that this problem is still in P, we need to pad the input to
have length pi (|x |).
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Constructing the Complete Problem

Suppose M is a machine which on input i ∈ ω gives a pair (Mi , pi ) as in
the de�nition of recursive indexing. Let g a recursive bound on the
running time of M.

Q is a class of structures over the signature (V ,E ,⪯, I ).
A = (A,V ,E ,⪯, I ) is in Q if, and only if,

1. ⪯ is a linear pre-order on A;

2. if a, b ∈ I , a ⪯ b and b ⪯ a, i.e. I picks out one equivalence class
from the pre-order (say the i th);

3. |A| ≥ pi (|V |);
4. the graph (V ,E ) is accepted by Mi ; and

5. g(i) ≤ |A|.
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Fixed-point Logic with Counting

Immerman proposed FPC�the extension of IFP with a mechanism for
counting

Two sorts of variables:

• x1, x2, . . . range over |A|�the domain of the structure;

• ν1, ν2, . . . which range over non-negative integers.

If ϕ(x) is a formula with free variable x , then #xϕ is a term denoting the
number of elements of A that satisfy ϕ.

We have arithmetic operations (+,×) on number terms.

Quanti�cation over number variables is bounded: (∃x < t)ϕ
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Evenness

There are an even number of elements satisfying ϕ(x).

∃ν < #xϕ(ν + ν = #xϕ)
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Counting Quanti�ers

C k is the logic obtained from �rst-order logic by allowing:

• allowing counting quanti�ers: ∃ix ϕ; and
• only the variables x1, . . . .xk .

Every formula of C k is equivalent to a formula of �rst-order logic, albeit
one with more variables.

For every sentence ϕ of FPC, there is a k such that if A ≡C k B, then

A |= ϕ if, and only if, B |= ϕ.
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Counting Game

Immerman and Lander (1990) de�ned a pebble game for C k .
This is again played by Spoiler and Duplicator using k pairs of pebbles
{(a1, b1), . . . , (ak , bk)}.

Spoiler picks a subset of the universe (say X ⊆ B)

Duplicator responds with Y ⊆ A such that |X | = |Y |.
Spoiler then places a bi pebble on an element of Y and Duplicator
must place ai on an element of X .

Spoiler wins at any stage if the partial map from A to B de�ned
by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for q moves, then A and B
agree on all sentences of C k of quanti�er rank at most q.
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Bijection Games

≡C k

is also characterised by a k-pebble bijection game. (Hella 96).
The game is played on structures A and B with pebbles a1, . . . , ak on A
and b1, . . . , bk on B.
• Spoiler chooses a pair of pebbles ai and bi ;

• Duplicator chooses a bijection h : A → B such that for pebbles aj
and bj(j ̸= i), h(aj) = bj ;

• Spoiler chooses a ∈ A and places ai on a and bi on h(a).

Duplicator loses if the partial map ai 7→ bi is not a partial isomorphism.

Duplicator has a strategy to play forever if, and only if, A ≡C k B.
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Equivalence of Games

To show that the games do, indeed, capture ≡C k

, we can show the
following series of implications for any structures A,B and k-tuples of
elements a, b.

1. ⇒ 2. ⇒ 3. ⇒ 1.

1. (A, a) ̸≡C k

(B, b)
2. Spoiler wins the k-pebble counting game starting from (A, a) and

(B, b).
3. Spoiler wins the k-pebble bijection game starting from (A, a) and

(B, b).
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Equivalence of Games

For 1. ⇒ 2., from a sentence ϕ ∈ C k such that

A |= ϕ and B ̸|= ϕ

construct a winning strategy for Spoiler on A and B.
If ϕ is ∃ixθ, choose a set X of i elements in A such that for all a ∈ X :

A |= θ[a]

In Duplicator response Y in B, there must be b such that:

B ̸|= θ[b]
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Equivalence of Games

For 2. ⇒ 3., we can show that a winning strategy for Duplicator in the
bijection game yields a winning strategy in the counting game:

Respond to a set X ⊆ V (G ) (or Y ⊆ V (H)) with h(X ) (h−1(Y ),
respectively).
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Equivalence of Games

For 3. ⇒ 1., we show that if (A, a) ≡C k

(B, b), then Duplicator has a
winning strategy in the bijection game starting from the position a and b.

Consider the partition on A induced by the equivalence relation

{(a, a′) | (A, a[a/ai ]) ≡C k

(A, a[a′/ai ])}

and the corresponding partition of B.

The condition (A, a) ≡C k

(B, b) guarantees that the corresponding parts
have the same numbers of elements.

Stitch these together to give the bijection h.
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Solvability of Linear Equations

We can now use the games to show that some natural problems in P are
not de�nabile in FPC.
We consider the problem of solving linear equations over the two element
�eld Z2.

The problem is clearly solvable in polynomial time by means of Gaussian
elimination.

We see how to represent systems of linear equations as unordered
relational structures.
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Systems of Linear Equations

Consider structures over the domain {x1, . . . , xn, e1, . . . , em}, (where
e1, . . . , em are the equations) with relations:

• unary E0 for those equations e whose r.h.s. is 0.

• unary E1 for those equations e whose r.h.s. is 1.

• binary M with M(x , e) if x occurs on the l.h.s. of e.

Solv(Z2) is the class of structures representing solvable systems.
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Constructing systems of equations

Take G a 4-regular, connected graph.
De�ne equations EG with two variables xe

0
, xe

1
for each edge e.

For each vertex v with edges e1, e2, e3, e4 incident on it, we have 16
equations:

Ev : xe1a + xe2b + xe3c + xe4d ≡ a+ b + c + d (mod 2)

ẼG is obtained from EG by replacing, for exactly one vertex v , Ev by:

E ′
v : xe1a + xe2b + xe3c + xe4d ≡ a+ b + c + d + 1 (mod 2)

We can show: EG is satis�able; ẼG is unsatis�able.

Anuj Dawar Logic and Complexity



Satis�ability

Lemma EG is satis�able.

by setting the variables xei to i .

Lemma ẼG is unsatis�able.

Consider the subsystem consisting of equations involving only the
variables xe

0
.

The sum of all left-hand sides is

2
∑
e

xe0 ≡ 0 (mod 2)

However, the sum of right-hand sides is 1.

Now we show that, for each k , we can �nd a graph G such that

EG ≡C k

ẼG .
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Toroidal Grids

We aim to show that if G is su�ciently connected, then EG ≡C k

ẼG .

The graph we choose is the k × k toroidal grid.

This has vertex set

V = {(i , j) | 0 ≤ i , j ≤ k − 1}

and edges ((i , j), (i ′, j ′)) whenever

either i = i ′ and j ′ = j + 1 mod k

or j = j ′ and i ′ = i + 1 mod k
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Cops and Robbers

The cops and robbers game is a way of measuring the connectivity of a
graph.

It is a game played on an undirected graph G = (V ,E ) between
a player controlling k cops and another player in charge of a
robber.

At any point, the cops are sitting on a set X ⊆ V of the nodes and the
robber on a node r ∈ V .
A move consists in the cop player removing some cops from X ′ ⊆ X
nodes and announcing a new position Y for them. The robber responds
by moving along a path from r to some node s such that the path does
not go through X \ X ′.
The new position is (X \ X ′) ∪ Y and s. If a cop and the robber are on
the same node, the robber is caught and the game ends.
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Cops and Robbers on the Grid

If G is the k × k toroidal grid, than the robber has a winning strategy in
the k-cops and robbers game played on G .

To show this, we note that for any set X of at most k vertices, the graph
G \ X contains a connected component with at least half the vertices of
G .

If all vertices in X are in distinct rows then G \ X is connected.
Otherwise, G \ X contains an entire row and in its connected component
there are at least k − 1 vertices from at least k/2 columns.

Robber's strategy is to stay in the large component.
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Cops, Robbers and Bijections

Suppose G is such that the robber has a winning strategy in the 2k-cops
and robbers game played on G .

We use this to construct a winning strategy for Duplicator in the
k-pebble bijection game on EG and ẼG .

• A bijection h : EG → ẼG is good bar v if it is an isomorphism
everywhere except at the variables xea for edges e incident on v .

• If h is good bar v and there is a path from v to u, then there is a
bijection h′ that is good bar u such that h and h′ di�er only at
vertices corresponding to the path from v to u.

• Duplicator plays bijections that are good bar v , where v is the
robber position in G when the cop position is given by the currently
pebbled elements.
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