We have seen that the expressive power of first-order logic, in terms of computational complexity is weak. Second-order logic allows us to express all properties in the polynomial hierarchy.

Are there interesting logics intermediate between these two?

We have seen one—monadic second-order logic.

We now examine another—LFP—the logic of least fixed points.
Inductive Definitions

LFP is a logic that formalises *inductive definitions*. Unlike in second-order logic, we cannot quantify over *arbitrary* relations, but we can build new relations *inductively*.

Inductive definitions are pervasive in mathematics and computer science. The *syntax* and *semantics* of various formal languages are typically defined inductively.

viz. the definitions of the syntax and semantics of first-order logic seen earlier.
Transitive Closure

The *transitive closure* of a binary relation E is the *smallest* relation T satisfying:

- $E \subseteq T$; and
- if $(x, y) \in T$ and $(y, z) \in E$ then $(x, z) \in T$.

This constitutes an *inductive definition* of T and, as we have already seen, there is no *first-order* formula that can define T in terms of E.
In order to introduce LFP, we briefly look at the theory of *monotone operators*, in our restricted context.

We write $\text{Pow}(A)$ for the powerset of A. An operator on A is a function

$$F : \text{Pow}(A) \rightarrow \text{Pow}(A).$$

F is *monotone* if

if $S \subseteq T$, then $F(S) \subseteq F(T)$.
Least and Greatest Fixed Points

A fixed point of F is any set $S \subseteq A$ such that $F(S) = S$.

S is the least fixed point of F, if for all fixed points T of F, $S \subseteq T$.

S is the greatest fixed point of F, if for all fixed points T of F, $T \subseteq S$.
Least and Greatest Fixed Points

For any monotone operator F, define the collection of its pre-fixed points as:

$$Pre = \{ S \subseteq A \mid F(S) \subseteq S \}.$$

Note: $A \in Pre$.

Taking

$$L = \bigcap Pre,$$

we can show that L is a fixed point of F.

Anuj Dawar
Logic and Complexity
Fixed Points

For any set \(S \in \text{Pre} \),

\[
\begin{align*}
L & \subseteq S \\
F(L) & \subseteq F(S) & \text{by definition of } F. \\
F(L) & \subseteq S & \text{by definition of } \text{Pre}. \\
F(L) & \subseteq L & \text{by definition of } L. \\
F(F(L)) & \subseteq F(L) & \text{by monotonicity of } F. \\
F(L) & \in \text{Pre} & \text{by definition of } \text{Pre}. \\
L & \subseteq F(L) & \text{by definition of } L.
\end{align*}
\]
Least and Greatest Fixed Points

L is a fixed point of F.

Every fixed point P of F is in Pre, and therefore $L \subseteq P$.
Thus, L is the least fixed point of F

Similarly, the greatest fixed point is given by:

$$G = \bigcup \{S \subseteq A \mid S \subseteq F(S)\}.$$
Let A be a \textit{finite} set and F be a \textit{monotone} operator on A.

Define for $i \in \mathbb{N}$:

\[
F^0 = \emptyset \\
F^{i+1} = F(F^i).
\]

For each i, $F^i \subseteq F^{i+1}$ (proved by induction).
Iteration

Proof by induction.

\[\emptyset = F^0 \subseteq F^1. \]

If \(F^i \subseteq F^{i+1} \) then, by monotonicity

\[F(F^i) \subseteq F(F^{i+1}) \]

and so \(F^{i+1} \subseteq F^{i+2} \).
Fixed-Point by Iteration

If A has n elements, then

$$F^n = F^{n+1} = F^m$$ for all $m > n$

Thus, F^n is a fixed point of F.

Let P be any fixed point of F. We can show by induction on i, that $F^i \subseteq P$.

$$F^0 = \emptyset \subseteq P$$

If $F^i \subseteq P$ then

$$F^{i+1} = F(F^i) \subseteq F(P) = P.$$

Thus F^n is the least fixed point of F.

Anuj Dawar
Logic and Complexity
Defined Operators

Suppose ϕ contains a relation symbol R (of arity k) not interpreted in the structure \mathcal{A} and let x be a tuple of k free variables of ϕ.

For any relation $P \subseteq A^k$, ϕ defines a new relation:

$$F_P = \{a \mid (\mathcal{A}, P) \models \phi[a]\}.$$

The operator $F_{\phi} : \text{Pow}(A^k) \to \text{Pow}(A^k)$ defined by ϕ is given by the map

$$P \mapsto F_P.$$

Or, $F_{\phi,b}$ if we fix parameters b.

Anuj Dawar

Logic and Complexity
Positive Formulas

Definition
A formula ϕ is *positive* in the relation symbol R, if every occurrence of R in ϕ is within the scope of an even number of negation signs.

Lemma
For any structure A not interpreting the symbol R, any formula ϕ which is positive in R, and any tuple b of elements of A, the operator $F_{\phi,b} : \text{Pow}(A^k) \rightarrow \text{Pow}(A^k)$ is monotone.
Syntax of LFP

- Any relation symbol of arity k is a predicate expression of arity k;
- If R is a relation symbol of arity k, x is a tuple of variables of length k and ϕ is a formula of LFP in which the symbol R only occurs positively, then
 $$\text{lfp}_{R, x}\phi$$
 is a predicate expression of LFP of arity k.

All occurrences of R and variables in x in $\text{lfp}_{R, x}\phi$ are bound.
Syntax of LFP

- If \(t_1 \) and \(t_2 \) are terms, then \(t_1 = t_2 \) is a formula of LFP.
- If \(P \) is a predicate expression of LFP of arity \(k \) and \(t \) is a tuple of terms of length \(k \), then \(P(t) \) is a formula of LFP.
- If \(\phi \) and \(\psi \) are formulas of LFP, then so are \(\phi \land \psi \), and \(\neg \phi \).
- If \(\phi \) is a formula of LFP and \(x \) is a variable then, \(\exists x \phi \) is a formula of LFP.
Semantics of LFP

Let \(A = (A, \mathcal{I}) \) be a structure with universe \(A \), and an interpretation \(\mathcal{I} \) of a fixed vocabulary \(\sigma \).

Let \(\phi \) be a formula of LFP, and \(\mathcal{I} \) an interpretation in \(A \) of all the free variables (first or second order) of \(\phi \).

To each individual variable \(x \), \(\mathcal{I} \) associates an element of \(A \), and to each \(k \)-ary relation symbol \(R \) in \(\phi \) that is not in \(\sigma \), \(\mathcal{I} \) associates a relation \(\mathcal{I}(R) \subseteq A^k \).

\(\mathcal{I} \) is extended to terms \(t \) in the usual way.

For constants \(c \), \(\mathcal{I}(c) = \mathcal{I}(c) \).

\(\mathcal{I}(f(t_1, \ldots, t_n)) = \mathcal{I}(f)(\mathcal{I}(t_1), \ldots, \mathcal{I}(t_n)) \)
Semantics of LFP

- If R is a relation symbol in σ, then $\iota(R) = \mathcal{I}(R)$.
- If P is a predicate expression of the form $\text{lfp}_{R,x} \phi$, then $\iota(P)$ is the relation that is the least fixed point of the monotone operator F on A^k defined by:

$$F(X) = \{a \in A^k \mid A \models \phi[\iota(X/R, x/a)]\},$$

where $\iota(X/R, x/a)$ denotes the interpretation ι' which is just like ι except that $\iota'(R) = X$, and $\iota'(x) = a$.

Anuj Dawar
Logic and Complexity
Semantics of LFP

• If ϕ is of the form $t_1 = t_2$, then $\mathcal{A} \models \phi[\iota]$ if, $\iota(t_1) = \iota(t_2)$.

• If ϕ is of the form $R(t_1, \ldots, t_k)$, then $\mathcal{A} \models \phi[\iota]$ if,

$$\langle \iota(t_1), \ldots, \iota(t_k) \rangle \in \iota(R).$$

• If ϕ is of the form $\psi_1 \land \psi_2$, then $\mathcal{A} \models \phi[\iota]$ if, $\mathcal{A} \models \psi_1[\iota]$ and $\mathcal{A} \models \psi_2[\iota]$.

• If ϕ is of the form $\neg \psi$ then, $\mathcal{A} \models \phi[\iota]$ if, $\mathcal{A} \not\models \psi[\iota]$.

• If ϕ is of the form $\exists x \psi$, then $\mathcal{A} \models \phi[\iota]$ if there is an $a \in A$ such that $\mathcal{A} \models \psi[\iota(x/a)]$.
Transitive Closure

The formula (with free variables u and v)

$$
\theta \equiv \text{lfp}_{T,xy}[(x = y \lor \exists z (E(x, z) \land T(z, y)))](u, v)
$$

defines the reflexive and transitive closure of the relation E.

Thus $\forall u \forall v \theta$ defines connectedness.

The expressive power of LFP properly extends that of first-order logic.
Greatest Fixed Points

If ϕ is a formula in which the relation symbol R occurs \textit{positively}, then the \textit{greatest fixed point} of the monotone operator F_ϕ defined by ϕ can be defined by the formula:

$$\neg[\text{Ifp}_{R,x} \neg \phi(R/\neg R)](x)$$

where $\phi(R/\neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$.

\textbf{Exercise:} Verify!.
Simultaneous Inductions

We are given two formulas $\phi_1(S, T, x)$ and $\phi_2(S, T, y)$, S is k-ary, T is l-ary.

The pair (ϕ_1, ϕ_2) can be seen as defining a map:

$$F : \text{Pow}(A^k) \times \text{Pow}(A^l) \rightarrow \text{Pow}(A^k) \times \text{Pow}(A^l)$$

If both formulas are positive in both S and T, then there is a least fixed point.

$$(P_1, P_2)$$

defined by *simultaneous induction* on A.

Simultaneous Inductions

Theorem
For any pair of formulas $\phi_1(S, T)$ and $\phi_2(S, T)$ of LFP, in which the symbols S and T appear only positively, there are formulas ϕ_S and ϕ_T of LFP which, on any structure \mathcal{A} containing at least two elements, define the two relations that are defined on \mathcal{A} by ϕ_1 and ϕ_2 by simultaneous induction.
Proof

Assume $k \leq l$.

We define P, of arity $l + 2$ such that:

$$(c, d, a_1, \ldots, a_l) \in P \text{ if, and only if, either } c = d \text{ and } (a_1, \ldots, a_k) \in P_1 \text{ or } c \neq d \text{ and } (a_1, \ldots, a_l) \in P_2$$

For new variables x_1 and x_2 and a new $l + 2$-ary symbol R, define ϕ'_1 and ϕ'_2 by replacing all occurrences of $S(t_1, \ldots, t_k)$ by:

$$\exists x_1 \exists x_2 (x_1 = x_2 \land \exists y_{k+1}, \ldots, \exists y_l R(x_1, x_2, t_1, \ldots, t_k, y_{k+1}, \ldots, y_l)),$$

and replacing all occurrences of $T(t_1, \ldots, t_i)$ by:

$$\exists x_1 \exists x_2 x_1 \neq x_2 \land R(x_1, x_2, t_1, \ldots, t_i).$$
Proof

Define ϕ as

$$(x_1 = x_2 \land \phi'_1) \lor (x_1 \neq x_2 \land \phi'_2).$$

Then,

$$(\text{lfp}_{R, x_1 x_2 y} \phi)(x, x, y)$$

defines P, so

$$\phi_S \equiv \exists x \exists y_{k+1}, \ldots, \exists y_l (\text{lfp}_{R, x_1 x_2 y} \phi)(x, x, y);$$

and

$$\phi_T \equiv \exists x_1 \exists x_2 (x_1 \neq x_2 \land \text{lfp}_{R, x_1 x_2 y} \phi)(x_1, x_2, y).$$
Any *query* definable in LFP is decidable by a *deterministic* machine in *polynomial time*.

To be precise, we can show that for each formula ϕ there is a t such that

$$\mathbb{A} \models \phi[a]$$

is decidable in time $O(n^t)$ where n is the number of elements of \mathbb{A}. We prove this by induction on the structure of the formula.
Complexity of LFP

- Atomic formulas by direct lookup ($O(n^a)$ time, where a is the maximum arity of any predicate symbol in σ).
- Boolean connectives are easy.

 If $\mathbb{A} \models \phi_1$ can be decided in time $O(n^{t_1})$ and $\mathbb{A} \models \phi_2$ in time $O(n^{t_2})$, then $\mathbb{A} \models \phi_1 \land \phi_2$ can be decided in time $O(n^{\max(t_1,t_2)})$
- If $\phi \equiv \exists x \psi$ then for each $a \in \mathbb{A}$ check whether

 $$(\mathbb{A}, c \mapsto a) \models \psi[c/x],$$

 where c is a new constant symbol. If $\mathbb{A} \models \psi$ can be decided in time $O(n^t)$, then $\mathbb{A} \models \phi$ can be decided in time $O(n^{t+1})$.

Anuj Dawar

Logic and Complexity
Complexity of LFP

Suppose $\phi \equiv [\text{lfp}_{R,x}\psi](t)$ (R is l-ary)

To decide $\mathbb{A} \models \phi[a]$

$R := \emptyset$

for $i := 1$ to n' do

$R := F_{\psi}(R)$

end

if $a \in R$ then accept else reject
Complexity of LFP

To compute $F_\psi(R)$

For every tuple $a \in A^l$, determine whether $(\Delta, R) \models \psi[a]$.

If deciding $(\Delta, R) \models \psi$ takes time $O(n^t)$, then each assignment to R inside the loop requires time $O(n^l + t)$. The total time taken to execute the loop is then $O(n^{2l+t})$. Finally, the last line can be done by a search through R in time $O(n^l)$. The total running time is, therefore, $O(n^{2l+t})$.

The space required is $O(n^l)$.
For any \(\phi \) of LFP, the language \(\{ [A] < | A \models \phi \} \) is in \(P \).

Suppose \(\rho \) is a signature that contains a binary relation symbol \(< \), possibly along with other symbols.

Let \(O_\rho \) denote those structures \(A \) in which \(< \) is a linear order of the universe.

For any language \(L \in P \), there is a sentence \(\phi \) of LFP that defines the class of structures

\[
\{ A \in O_\rho | [A]_{< A} \in L \}
\]

(Immerman; Vardi 1982)
Recall the proof of \textit{Fagin’s Theorem}, that ESO captures NP. Given a machine M and an integer k, there is a \textit{first-order} formula $\phi_{M,k}$ such that

\[
\mathcal{A} \models \exists < \exists T_{\sigma_1} \cdots T_{\sigma_s} \exists S_{q_1} \cdots S_{q_m} \exists H \phi_{M,k}
\]

if, and only if, M accepts $[\mathcal{A}]_<$ in time n^k, for some order $<$. If we \textit{fix} the order $<$ as part of the structure \mathcal{A}, we do not need the outermost quantifier.

Moreover, for a \textit{deterministic} machine M, the relations $T_{\sigma_1} \cdots T_{\sigma_s}, S_{q_1} \cdots S_{q_m}, H$ can be defined \textit{inductively}.

Capturing P

\[
\text{Tape}_a(x, y) \iff \left(x = 1 \land \text{Init}_a(y) \right) \lor \\
\exists t \exists h \forall_q \left(x = t + 1 \land \text{State}_q(t, h) \land \\
\left[(h = y \land \bigvee \{b, d, q' \mid \Delta(q, b, q', a, d)\} \text{Tape}_b(t, y) \lor \\
h \neq y \land \text{Tape}_a(t, y) \right] \right);
\]

where \(\text{Init}_a(y) \) is the formula that defines the positions in which the symbol \(a \) appears in the input.
Capturing P

\[
\text{State}_q(x, y) \iff (x = 1 \land y = 1 \land q = q_0) \lor \\
\exists t \exists h \bigvee \{a, b, q' | \Delta(q', a, q, b, R)\} \\
\bigvee \{a, b, q' | \Delta(q', a, q, b, L)\} \\
(x = t + 1 \land \text{State}_{q'}(t, h) \land \text{Tape}_a(t, h) \land y = h + 1) \\
(x = t + 1 \land \text{State}_{q'}(t, h) \land \text{Tape}_a(t, h) \land h = y + 1).
\]
In the absence of an order relation, there are properties in \(P \) that are not definable in LFP.

There is no sentence of LFP which defines the structures with an even number of elements.
Let \mathcal{E} be the collection of all structures in the empty signature. In order to prove that evenness is not defined by any LFP sentence, we show the following.

Lemma
For every LFP formula ϕ there is a first order formula ψ, such that for all structures A in \mathcal{E}, $A \models (\phi \leftrightarrow \psi)$.
Unordered Structures

Let $\psi(x, y)$ be a first order formula.

$\text{lfp}_{R, x} \psi$ defines the relation

$$F_{\psi, b}^\infty = \bigcup_{i \in \mathbb{N}} F_{\psi, b}^i$$

for a fixed interpretation of the variables y by the tuple of parameters b. For each i, there is a first order formula ψ^i such that on any structure A,

$$F_{\psi, b}^i = \{ a \mid A \models \psi^i[a, b] \}.$$
Defining the Stages

These formulas are obtained by *induction*.

\(\psi^1 \) is obtained from \(\psi \) by replacing all occurrences of subformulas of the form \(R(t) \) by \(t \neq t \).

\(\psi^{i+1} \) is obtained by replacing in \(\psi \), all subformulas of the form \(R(t) \) by \(\psi^i(t,y) \)
Let b be an l-tuple, and a and c two k-tuples in a structure \mathbb{A} such that there is an automorphism ι of \mathbb{A} (i.e. an isomorphism from \mathbb{A} to itself) such that

- $\iota(b) = b$
- $\iota(a) = c$

Then,

$$a \in F_{\psi,b}^i \text{ if, and only if, } c \in F_{\psi,b}^i.$$
Bounding the Induction

This defines an *equivalence relation* $a \sim_b c$.

If there are p distinct equivalence classes, then

$$F^{\infty}_{\psi,b} = F^p_{\psi,b}$$

In \mathcal{E} there is a uniform bound p, that does not depend on the size of the structure.
Capturing \(P \)

The \textit{expressive power} of \textsc{LFP} is strictly weaker than \(P \).

On the other hand, \textsc{LFP} can express all queries in \(P \) on \textit{ordered structures}. Thus, every query in \(P \) can be defined by a sentence of the form

\[
\exists < \ (\text{lo}(<) \land \phi)
\]

where \(\text{lo}(<) \) is the first-order formula that says that \(< \) is a linear order and \(\phi \) is a sentence of \textsc{LFP}.
Capturing P

With a sentence of the form $\exists < (\text{lo}(<) \land \phi)$, we can also define NP-complete problems.

$\exists < (\text{lo}(<) \land \forall xy[(y = x+1 \rightarrow E(x, y)) \land (x = \text{max} \land y = \text{min} \rightarrow E(x, y))]$.

defines the graphs that contain a Hamiltonian cycle.
Finite Variable Logic

We write L^k for the first order formulas using only the variables x_1, \ldots, x_k.

$\mathbb{A} \equiv^k \mathbb{B}$

denotes that \mathbb{A} and \mathbb{B} agree on all sentences of L^k.

$(\mathbb{A}, a) \equiv^k (\mathbb{B}, b)$

denotes that there is no formula ϕ of L^k such that $\mathbb{A} \models \phi[a]$ and $\mathbb{B} \not\models \phi[b]$.
Finite Variable Logic

For any k,

$$A \equiv^k B \Rightarrow A \equiv_k B$$

However, for any q, there are A and B such that

$$A \equiv_q B \text{ and } A \not\equiv^2 B.$$

Take A and B to be linear orders longer than 2^q.
For every formula ϕ of LFP, there is a k such that the query defined by ϕ is closed under \equiv^k.

Consider a formula $\psi(R, x)$ defining an operator. Let the variables occurring in ψ be x_1, \ldots, x_k, with $x = (x_1, \ldots, x_l)$, and y_1, \ldots, y_l be new.
Define, by induction, the formulas ψ^m.

$$\psi^0 = \exists x \ x \neq x$$

ψ^{m+1} is obtained from $\psi(R, x)$ by replacing all sub-formulas $R(t_1, \ldots, t_l)$ with

$$\exists y_1 \ldots \exists y_l \left(\bigwedge_{1 \leq i \leq l} y_i = t_i \right) \land \phi^m(y)$$

Note that each ψ^m has at most $k + l$ variables.
LFP and L^k

If $(A, a) \equiv^{k+l} (B, b)$, then for all m:

$$A \models \psi^m[a] \text{ if, and only if, } B \models \psi^m[b].$$

So, (A, a) and (B, b) are not distinguished by $\text{Lfp}_{R, x} \psi$.

Anuj Dawar
Logic and Complexity
Pebble Games

The k-pebble game is played on two structures A and B, by two players—*Spoiler* and *Duplicator*—using k pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}$.

Spoiler moves by picking a pebble and placing it on an element (a_i on an element of A or b_i on an element of B).

Duplicator responds by picking the matching pebble and placing it on an element of the other structure.

Spoiler wins at any stage if the partial map from A to B defined by the pebble pairs is not a partial isomorphism.

If *Duplicator* has a winning strategy for q moves, then A and B agree on all sentences of L^k of quantifier rank at most q. *(Barwise)*
Using Pebble Games

To show that a class of structures S is not definable in first-order logic:

$$\forall k \forall q \exists A, B (A \in S \land B \not\in S \land A \equiv_q^k B)$$

Since $A \equiv_q^k B \Rightarrow A \equiv_q B$, we can ignore the parameter k

To show that S is not closed under any \equiv^k (and hence not definable in LFP):

$$\forall k \exists A, B \forall q (A \in S \land B \not\in S \land A \equiv_q^k B)$$

If $A \equiv_q^k B$ holds for all q, then **Duplicator** actually wins an *infinite* game. That is, it has a strategy to play forever.
Evenness

To show that *Evenness* is not definable in PFP, it suffices to show that:

for every \(k \), there are structures \(A_k \) and \(B_k \) such that \(A_k \) has an even number of elements, \(B_k \) has an odd number of elements and

\[
A \equiv^k B.
\]

It is easily seen that *Duplicator* has a strategy to play forever when one structure is a set containing \(k \) elements (and no other relations) and the other structure has \(k + 1 \) elements.
Hamiltonicity

Take $K_{k,k}$—the complete bipartite graph on two sets of k vertices.
and $K_{k,k+1}$—the complete bipartite graph on two sets, one of k vertices,
the other of $k + 1$.

These two graphs are \equiv^k equivalent, yet one has a Hamiltonian cycle,
and the other does not.