Topics in Logic and Complexity

Handout 4

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2324/L15

Expressive Power of Logics

We have seen that the expressive power of first-order logic, in terms of computational complexity is weak.
Second-order logic allows us to express all properties in the polynomial hierarchy.
Are there interesting logics intermediate between these two?
We have seen one-monadic second-order logic.
We now examine another-LFP-the logic of least fixed points.

Inductive Definitions

LFP is a logic that formalises inductive definitions. Unlike in second-order logic, we cannot quantify over arbitrary relations, but we can build new relations inductively.

Inductive definitions are pervasive in mathematics and computer science.
The syntax and semantics of various formal languages are typically defined inductively.
viz. the definitions of the syntax and semantics of first-order logic seen earlier.

Transitive Closure

The transitive closure of a binary relation E is the smallest relation T satisfying:

- $E \subseteq T$; and
- if $(x, y) \in T$ and $(y, z) \in E$ then $(x, z) \in T$.

This constitutes an inductive definition of T and, as we have already seen, there is no first-order formula that can define T in terms of E.

Monotone Operators

In order to introduce LFP, we briefly look at the theory of monotone operators, in our restricted context.

We write $\operatorname{Pow}(A)$ for the powerset of A.
An operator on A is a function

$$
F: \operatorname{Pow}(A) \rightarrow \operatorname{Pow}(A) .
$$

F is monotone if

$$
\text { if } S \subseteq T \text {, then } F(S) \subseteq F(T) \text {. }
$$

Least and Greatest Fixed Points

A fixed point of F is any set $S \subseteq A$ such that $F(S)=S$.
S is the least fixed point of F, if for all fixed points T of $F, S \subseteq T$.
S is the greatest fixed point of F, if for all fixed points T of $F, T \subseteq S$.

Least and Greatest Fixed Points

For any monotone operator F, define the collection of its pre-fixed points as:

$$
\text { Pre }=\{S \subseteq A \mid F(S) \subseteq S\}
$$

Note: $A \in$ Pre.
Taking

$$
L=\bigcap \text { Pre, }
$$

we can show that L is a fixed point of F.

Fixed Points

For any set $S \in$ Pre,

$$
\begin{aligned}
& L \subseteq S \\
& F(L) \subseteq F(S) \\
& F(L) \subseteq S \\
& F(L) \subseteq L \\
& F(F(L)) \subseteq F(L) \\
& F(L) \in \operatorname{Pre} \\
& L \subseteq F(L)
\end{aligned}
$$

Least and Greatest Fixed Points

L is a fixed point of F.
Every fixed point P of F is in Pre, and therefore $L \subseteq P$.
Thus, L is the least fixed point of F
Similarly, the greatest fixed point is given by:

$$
G=\bigcup\{S \subseteq A \mid S \subseteq F(S)\}
$$

Iteration

Let A be a finite set and F be a monotone operator on A. Define for $i \in \mathbb{N}$:

$$
\begin{aligned}
F^{0} & =\emptyset \\
F^{i+1} & =F\left(F^{i}\right) .
\end{aligned}
$$

For each $i, F^{i} \subseteq F^{i+1}$ (proved by induction).

Iteration

Proof by induction.

$$
\emptyset=F^{0} \subseteq F^{1}
$$

If $F^{i} \subseteq F^{i+1}$ then, by monotonicity

$$
F\left(F^{i}\right) \subseteq F\left(F^{i+1}\right)
$$

and so $F^{i+1} \subseteq F^{i+2}$.

Fixed-Point by Iteration

If A has n elements, then

$$
F^{n}=F^{n+1}=F^{m} \quad \text { for all } \quad m>n
$$

Thus, F^{n} is a fixed point of F.
Let P be any fixed point of F. We can show by induction on i, that $F^{i} \subseteq P$.

$$
F^{0}=\emptyset \subseteq P
$$

If $F^{i} \subseteq P$ then

$$
F^{i+1}=F\left(F^{i}\right) \subseteq F(P)=P .
$$

Thus F^{n} is the least fixed point of F.

Defined Operators

Suppose ϕ contains a relation symbol R (of arity k) not interpreted in the structure \mathbb{A} and let \times be a tuple of k free variables of ϕ.
For any relation $P \subseteq A^{k}, \phi$ defines a new relation:

$$
F_{P}=\{\mathrm{a}|(\mathbb{A}, P)|=\phi[\mathrm{a}]\} .
$$

The operator $F_{\phi}: \operatorname{Pow}\left(A^{k}\right) \rightarrow \operatorname{Pow}\left(A^{k}\right)$ defined by ϕ is given by the map

$$
P \mapsto F_{P} .
$$

Or, $F_{\phi, \mathrm{b}}$ if we fix parameters b.

Positive Formulas

Definition

A formula ϕ is positive in the relation symbol R, if every occurence of R in ϕ is within the scope of an even number of negation signs.

Lemma

For any structure \mathbb{A} not interpreting the symbol R, any formula ϕ which is positive in R, and any tuple b of elements of A, the operator $F_{\phi, \mathrm{b}}: \operatorname{Pow}\left(A^{k}\right) \rightarrow \operatorname{Pow}\left(A^{k}\right)$ is monotone.

Syntax of LFP

- Any relation symbol of arity k is a predicate expression of arity k;
- If R is a relation symbol of arity k, x is a tuple of variables of length k and ϕ is a formula of LFP in which the symbol R only occurs positively, then

$$
\operatorname{lf}_{R, \times} \phi
$$

is a predicate expression of LFP of arity k.

All occurrences of R and variables in x in $\operatorname{lfp}_{R, \mathrm{x}} \phi$ are bound

Syntax of LFP

- If t_{1} and t_{2} are terms, then $t_{1}=t_{2}$ is a formula of LFP.
- If P is a predicate expression of LFP of arity k and t is a tuple of terms of length k, then $P(\mathrm{t})$ is a formula of LFP.
- If ϕ and ψ are formulas of LFP, then so are $\phi \wedge \psi$, and $\neg \phi$.
- If ϕ is a formula of LFP and x is a variable then, $\exists x \phi$ is a formula of LFP.

Semantics of LFP

Let $\mathbb{A}=(A, \mathcal{I})$ be a structure with universe A, and an interpretation \mathcal{I} of a fixed vocabulary σ.
Let ϕ be a formula of LFP, and \imath an interpretation in A of all the free variables (first or second order) of ϕ.
To each individual variable x, \imath associates an element of A, and to each k-ary relation symbol R in ϕ that is not in σ, \imath associates a relation $\imath(R) \subseteq A^{k}$.
\imath is extended to terms t in the usual way.
For constants $c, \imath(c)=\mathcal{I}(c)$.

$$
\imath\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=\mathcal{I}(f)\left(\imath\left(t_{1}\right), \ldots, \imath\left(t_{n}\right)\right)
$$

Semantics of LFP

- If R is a relation symbol in σ, then $\imath(R)=\mathcal{I}(R)$.
- If P is a predicate expression of the form $\operatorname{Ifp}_{R, x} \phi$, then $\imath(P)$ is the relation that is the least fixed point of the monotone operator F on A^{k} defined by:

$$
F(X)=\left\{\mathrm{a} \in A^{k} \mid \mathbb{A} \models \phi[\imath\langle X / R, \mathrm{x} / \mathrm{a}\rangle],\right.
$$

where $\imath\langle X / R, \mathrm{x} / \mathrm{a}\rangle$ denotes the interpretation \imath^{\prime} which is just like \imath except that $\imath^{\prime}(R)=X$, and $\imath^{\prime}(\mathrm{x})=\mathrm{a}$.

Semantics of LFP

- If ϕ is of the form $t_{1}=t_{2}$, then $\mathbb{A} \models \phi[\imath]$ if, $\imath\left(t_{1}\right)=\imath\left(t_{2}\right)$.
- If ϕ is of the form $R\left(t_{1}, \ldots, t_{k}\right)$, then $\mathbb{A} \models \phi[\imath]$ if,

$$
\left(\imath\left(t_{1}\right), \ldots, \imath\left(t_{k}\right)\right) \in \imath(R)
$$

- If ϕ is of the form $\psi_{1} \wedge \psi_{2}$, then $\mathbb{A} \models \phi[\imath]$ if, $\mathbb{A} \vDash \psi_{1}[\imath]$ and $\mathbb{A} \models \psi_{2}[]$.
- If ϕ is of the form $\neg \psi$ then, $\mathbb{A} \vDash \phi[\imath]$ if, $\mathbb{A} \not \vDash \psi[\imath]$.
- If ϕ is of the form $\exists x \psi$, then $\mathbb{A} \models \phi[\imath]$ if there is an $a \in A$ such that $\mathbb{A} \models \psi[\imath\langle x / a\rangle]$.

Transitive Closure

The formula (with free variables u and v)

$$
\theta \equiv \operatorname{lfp}_{T, x y}[(x=y \vee \exists z(E(x, z) \wedge T(z, y)))](u, v)
$$

defines the reflexive and transitive closure of the relation E.
Thus $\forall u \forall v \theta$ defines connectedness.
The expressive power of LFP properly extends that of first-order logic.

Greatest Fixed Points

If ϕ is a formula in which the relation symbol R occurs positively, then the greatest fixed point of the monotone operator F_{ϕ} defined by ϕ can be defined by the formula:

$$
\neg\left[\mathbf{I} \mathbf{p}_{R, \mathrm{x}} \neg \phi(R / \neg R)\right](\mathrm{x})
$$

where $\phi(R / \neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$.

Exercise: Verify!.

Simultaneous Inductions

We are given two formulas $\phi_{1}(S, T, \mathrm{x})$ and $\phi_{2}(S, T, \mathrm{y})$, S is k-ary, T is l-ary.

The pair (ϕ_{1}, ϕ_{2}) can be seen as defining a map:

$$
F: \operatorname{Pow}\left(A^{k}\right) \times \operatorname{Pow}\left(A^{\prime}\right) \rightarrow \operatorname{Pow}\left(A^{k}\right) \times \operatorname{Pow}\left(A^{\prime}\right)
$$

If both formulas are positive in both S and T, then there is a least fixed point.

$$
\left(P_{1}, P_{2}\right)
$$

defined by simultaneous induction on \mathbb{A}.

Simultaneous Inductions

Theorem
For any pair of formulas $\phi_{1}(S, T)$ and $\phi_{2}(S, T)$ of LFP, in which the symbols S and T appear only positively, there are formulas ϕ_{S} and ϕ_{T} of LFP which, on any structure \mathbb{A} containing at least two elements, define the two relations that are defined on \mathbb{A} by ϕ_{1} and ϕ_{2} by simultaneous induction.

Proof

Assume $k \leq 1$.
We define P, of arity $I+2$ such that:

$$
\begin{aligned}
& \left(c, d, a_{1}, \ldots, a_{l}\right) \in P \text { if, and only if, either } c=d \text { and } \\
& \left(a_{1}, \ldots, a_{k}\right) \in P_{1} \text { or } c \neq d \text { and }\left(a_{1}, \ldots, a_{l}\right) \in P_{2}
\end{aligned}
$$

For new variables x_{1} and x_{2} and a new $I+2$-ary symbol R, define ϕ_{1}^{\prime} and ϕ_{2}^{\prime} by replacing all occurrences of $S\left(t_{1}, \ldots, t_{k}\right)$ by:

$$
\exists x_{1} \exists x_{2}\left(x_{1}=x_{2} \wedge \exists y_{k+1}, \ldots, \exists y_{l} R\left(x_{1}, x_{2}, t_{1}, \ldots, t_{k}, y_{k+1}, \ldots, y_{l}\right)\right),
$$

and replacing all occurrences of $T\left(t_{1}, \ldots, t_{l}\right)$ by:

$$
\exists x_{1} \exists x_{2} x_{1} \neq x_{2} \wedge R\left(x_{1}, x_{2}, t_{1}, \ldots, t_{l}\right) .
$$

Proof

Define ϕ as

$$
\left(x_{1}=x_{2} \wedge \phi_{1}^{\prime}\right) \vee\left(x_{1} \neq x_{2} \wedge \phi_{2}^{\prime}\right) .
$$

Then,

$$
\left(\text { Ifp }_{R, x_{1} x_{2} y} \phi\right)(x, x, y)
$$

defines P, so

$$
\phi_{S} \equiv \exists x \exists y_{k+1}, \ldots, \exists y_{l}\left(\mathbf{I f p}_{R, x_{1} x_{2} y} \phi\right)(x, x, y) ;
$$

and

$$
\phi_{T} \equiv \exists x_{1} \exists x_{2}\left(x_{1} \neq x_{2} \wedge \mathbf{I f} \mathbf{p}_{R, x_{1} x_{2} y} \phi\right)\left(x_{1}, x_{2}, y\right) .
$$

Complexity of LFP

Any query definable in LFP is decidable by a deterministic machine in polynomial time.

To be precise, we can show that for each formula ϕ there is a t such that

$$
\mathbb{A} \models \phi[\mathrm{a}]
$$

is decidable in time $O\left(n^{t}\right)$ where n is the number of elements of \mathbb{A}.
We prove this by induction on the structure of the formula.

Complexity of LFP

- Atomic formulas by direct lookup ($O\left(n^{a}\right)$ time, where a is the maximum arity of any predicate symbol in σ).
- Boolean connectives are easy.

If $\mathbb{A} \models \phi_{1}$ can be decided in time $O\left(n^{t_{1}}\right)$ and $\mathbb{A} \models \phi_{2}$ in time $O\left(n^{t_{2}}\right)$, then $\mathbb{A} \vDash \phi_{1} \wedge \phi_{2}$ can be decided in time $O\left(n^{\max \left(t_{1}, t_{2}\right)}\right)$

- If $\phi \equiv \exists x \psi$ then for each $a \in \mathbb{A}$ check whether

$$
(\mathbb{A}, c \mapsto a) \models \psi[c / x],
$$

where c is a new constant symbol. If $\mathbb{A} \models \psi$ can be decided in time $O\left(n^{t}\right)$, then $\mathbb{A} \vDash \phi$ can be decided in time $O\left(n^{t+1}\right)$.

Complexity of LFP

Suppose $\phi \equiv\left[\operatorname{lf} \mathbf{p}_{R, \mathrm{x}} \psi\right](\mathrm{t})$ (R is l-ary)
To decide $\mathbb{A} \models \phi[\mathrm{a}]$:
$R:=\emptyset$
for $i:=1$ to n^{\prime} do
$\quad R:=F_{\psi}(R)$
end
if $\mathrm{a} \in R$ then accept else reject

Complexity of LFP

To compute $F_{\psi}(R)$
For every tuple $\mathrm{a} \in A^{\prime}$, determine whether $(\mathbb{A}, R) \models \psi[\mathrm{a}]$.

If deciding $(\mathbb{A}, R) \models \psi$ takes time $O\left(n^{t}\right)$, then each assignment to R inside the loop requires time $O\left(n^{\prime+t}\right)$. The total time taken to execute the loop is then $O\left(n^{21+t}\right)$. Finally, the last line can be done by a search through R in time $O\left(n^{\prime}\right)$. The total running time is, therefore, $O\left(n^{21+t}\right)$.

The space required is $O\left(n^{\prime}\right)$.

Capturing P

For any ϕ of LFP, the language $\left\{[\mathbb{A}]_{<}|\mathbb{A}|=\phi\right\}$ is in P .
Suppose ρ is a signature that contains a binary relation symbol $<$, possibly along with other symbols.
Let \mathcal{O}_{ρ} denote those structures \mathbb{A} in which $<$ is a linear order of the universe.
For any language $L \in P$, there is a sentence ϕ of LFP that defines the class of structures

$$
\left\{\mathbb{A} \in \mathcal{O}_{\rho} \mid[\mathbb{A}]_{<^{\mathbb{A}}} \in L\right\}
$$

(Immerman; Vardi 1982)

Capturing P

Recall the proof of Fagin's Theorem, that ESO captures NP.
Given a machine M and an integer k, there is a first-order formula $\phi_{M, k}$ such that

$$
\mathbb{A} \models \exists<\exists T_{\sigma_{1}} \cdots T_{\sigma_{s}} \exists S_{q_{1}} \cdots S_{q_{m}} \exists H \phi_{M, k}
$$

if, and only if, M accepts $[\mathbb{A}]_{<}$in time n^{k}, for some order $<$.
If we fix the order $<$ as part of the structure \mathbb{A}, we do not need the outermost quantifier.
Moreover, for a deterministic machine M, the relations $T_{\sigma_{1}} \ldots T_{\sigma_{s}}, S_{q_{1}} \ldots S_{q_{m}}, H$ can be defined inductively.

Capturing P

$$
\begin{aligned}
& \operatorname{Tape}_{a}(\mathrm{x}, \mathrm{y}) \Leftrightarrow \\
& \begin{array}{c}
\left(\mathrm{x}=1 \wedge \operatorname{Init}_{a}(\mathrm{y})\right) \vee \\
\exists \mathrm{t} \exists \mathrm{~h} \bigvee_{q} \quad\left(\mathrm{x}=\mathrm{t}+1 \wedge \operatorname{State}_{q}(\mathrm{t}, \mathrm{~h}) \wedge\right. \\
\\
\quad\left[\left(\mathrm{h}=\mathrm{y} \wedge \bigvee_{\left\{b, d, q^{\prime} \mid \Delta\left(q, b, q^{\prime}, a, d\right)\right\}} \operatorname{Tape}_{b}(\mathrm{t}, \mathrm{y}) \vee\right.\right. \\
\\
\left.\left.\quad \mathrm{h} \neq \mathrm{y} \wedge \operatorname{Tape}_{a}(\mathrm{t}, \mathrm{y})\right]\right) ;
\end{array}
\end{aligned}
$$

where $\operatorname{Init}_{a}(y)$ is the formula that defines the positions in which the symbol a appears in the input.

Capturing P

$$
\begin{array}{ll}
\operatorname{State}_{q}(\mathrm{x}, \mathrm{y}) \Leftrightarrow \\
\left(\mathrm{x}=1 \wedge \mathrm{y}=1 \wedge q=q_{0}\right) \vee & \\
\exists \mathrm{t} \nexists \mathrm{~h} \quad \bigvee_{\left\{\mathrm{a}, \mathrm{~b}, q^{\prime} \mid \Delta\left(q^{\prime}, a, q, b, R\right)\right\}} & \left(\mathrm{x}=\mathrm{t}+1 \wedge \operatorname{State}_{q^{\prime}}(\mathrm{t}, \mathrm{~h}) \wedge\right. \\
& \left.\left.\operatorname{Tape}_{\mathrm{a}}(\mathrm{t}, \mathrm{~h}) \wedge \mathrm{y}=\mathrm{h}+1\right)\right) \\
& \bigvee_{\left\{\mathrm{a}, \mathrm{~b}, q^{\prime} \mid \Delta\left(q^{\prime}, a, q, b, \mathrm{~L}, \mathrm{l}\right)\right\}} \\
& \left(\mathrm{x}=\mathrm{t}+1 \wedge \operatorname{State}_{q^{\prime}}(\mathrm{t}, \mathrm{~h}) \wedge\right. \\
& \left.\left.\operatorname{Tape}_{\mathrm{a}}(\mathrm{t}, \mathrm{~h}) \wedge \mathrm{h}=\mathrm{y}+1\right)\right) .
\end{array}
$$

Unordered Structures

In the absence of an order relation, there are properties in P that are not definable in LFP.

There is no sentence of LFP which defines the structures with an even number of elements.

Evenness

Let \mathcal{E} be the collection of all structures in the empty signature.
In order to prove that evenness is not defined by any LFP sentence, we show the following.

Lemma

For every LFP formula ϕ there is a first order formula ψ, such that for all structures \mathbb{A} in $\mathcal{E}, \mathbb{A} \vDash(\phi \leftrightarrow \psi)$.

Unordered Structures

Let $\psi(\mathrm{x}, \mathrm{y})$ be a first order formula.
If $\mathbf{p}_{R, \mathbf{x}} \psi$ defines the relation

$$
F_{\psi, \mathbf{b}}^{\infty}=\bigcup_{i \in \mathbb{N}} F_{\psi, \mathbf{b}}^{i}
$$

for a fixed interpretation of the variables y by the tuple of parameters b.
For each i, there is a first order formula ψ^{i} such that on any structure \mathbb{A},

$$
F_{\psi, \mathbf{b}}^{i}=\left\{\mathrm{a} \mid \mathbb{A} \models \psi^{i}[\mathrm{a}, \mathrm{~b}]\right\}
$$

Defining the Stages

These formulas are obtained by induction.
ψ^{1} is obtained from ψ by replacing all occurrences of subformulas of the form $R(\mathrm{t})$ by $t \neq t$.
ψ^{i+1} is obtained by replacing in ψ, all subformulas of the form $R(\mathrm{t})$ by $\psi^{i}(\mathrm{t}, \mathrm{y})$

Let b be an l-tuple, and a and c two k-tuples in a structure \mathbb{A} such that there is an automorphism \imath of \mathbb{A} (i.e. an isomorphism from \mathbb{A} to itself) such that

- ${ }^{2}(\mathrm{~b})=\mathrm{b}$
- $\imath(\mathrm{a})=\mathrm{c}$

Then,

$$
\mathrm{a} \in F_{\psi, \mathbf{b}}^{i} \quad \text { if, and only if, } \quad \mathrm{c} \in F_{\psi, \mathbf{b}}^{i} .
$$

Bounding the Induction

This defines an equivalence relation $\mathrm{a} \sim_{\mathrm{b}} \mathrm{c}$.
If there are p distinct equivalence classes, then

$$
F_{\psi, \mathbf{b}}^{\infty}=F_{\psi, \mathbf{b}}^{p}
$$

In \mathcal{E} there is a uniform bound p, that does not depend on the size of the structure.

Capturing P

The expressive power of LFP is strictly weaker than P .
On the other hand, LFP can express all queries in P on ordered structures. Thus, every query in P can be defined by a sentence of the form

$$
\exists<(\operatorname{lo}(<) \wedge \phi)
$$

where $\mathrm{lo}(<)$ is the first-order formula that says that $<$ is a linear order and ϕ is a sentence of LFP.

Capturing P

With a sentence of the form $\exists<(\operatorname{lo}(<) \wedge \phi)$, we can also define NP-complete problems.
$\exists<(\operatorname{lo}(<) \wedge \forall x y[(y=x+1 \rightarrow E(x, y)) \wedge(x=\max \wedge y=\min \rightarrow E(x, y))])$.
defines the graphs that contain a Hamiltonian cycle.

Finite Variable Logic

We write L^{k} for the first order formulas using only the variables x_{1}, \ldots, x_{k}.

$$
\mathbb{A} \equiv^{k} \mathbb{B}
$$

denotes that \mathbb{A} and \mathbb{B} agree on all sentences of L^{k}.

$$
(\mathbb{A}, a) \equiv^{k}(\mathbb{B}, b)
$$

denotes that there is no formula ϕ of L^{k} such that $\mathbb{A} \models \phi[\mathrm{a}]$ and $\mathbb{B} \not \models \phi[$ b]

Finite Variable Logic

For any k,

$$
\mathbb{A} \equiv^{k} \mathbb{B} \Rightarrow \mathbb{A} \equiv_{k} \mathbb{B}
$$

However, for any q, there are \mathbb{A} and \mathbb{B} such that

$$
\mathbb{A} \equiv_{q} \mathbb{B} \quad \text { and } \quad \mathbb{A} \not \equiv^{2} \mathbb{B} .
$$

Take \mathbb{A} and \mathbb{B} to be linear orders longer than 2^{q}.

Stages

For every formula ϕ of LFP, there is a k such that the query defined by ϕ is closed under \equiv^{k}.

Consider a formula $\psi(R, \mathrm{x})$ defining an operator.
Let the variables occurring in ψ be x_{1}, \ldots, x_{k}, with $\mathrm{x}=\left(x_{1}, \ldots, x_{l}\right)$, and y_{1}, \ldots, y_{l} be new.

Stages

Define, by induction, the formulas ψ^{m}.

$$
\psi^{0}=\exists x x \neq x
$$

ψ^{m+1} is obtained from $\psi(R, \mathrm{x})$ by replacing all sub-formulas $R\left(t_{1}, \ldots, t_{l}\right)$ with

$$
\exists y_{1} \ldots \exists y_{l}\left(\bigwedge_{1 \leq i \leq 1} y_{i}=t_{i}\right) \wedge \phi^{m}(y)
$$

Note that each ψ^{m} has at most $k+I$ variables.

LFP and L^{k}

If $(\mathbb{A}, a) \equiv^{k+1}(\mathbb{B}, b)$, then for all m :

$$
\mathbb{A} \models \psi^{m}[\mathrm{a}] \quad \text { if, and only if, } \quad \mathbb{B} \models \psi^{m}[\mathrm{~b}] .
$$

So, (\mathbb{A}, a) and (\mathbb{B}, b) are not distinguished by $\operatorname{lf} \mathbf{p}_{R, \mathrm{x}} \psi$.

Pebble Games

The k-pebble game is played on two structures \mathbb{A} and \mathbb{B}, by two players-Spoiler and Duplicator-using k pairs of pebbles $\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right\}$.

Spoiler moves by picking a pebble and placing it on an element (a_{i} on anelement of \mathbb{A} or b_{i} on an element of \mathbb{B}).
Duplicator responds by picking the matching pebble and placing it on an element of the other structure Spoiler wins at any stage if the partial map from \mathbb{A} to \mathbb{B} definedby the pebble pairs is not a partial isomorphism
If Duplicator has a winning strategy for q moves, then \mathbb{A} and \mathbb{B} agree on all sentences of L^{k} of quantifier rank at most q. (Barwise)

Using Pebble Games

To show that a class of structures S is not definable in first-order logic:

$$
\forall k \forall q \exists \mathbb{A}, \mathbb{B}\left(\mathbb{A} \in S \wedge \mathbb{B} \notin S \wedge \mathbb{A} \equiv_{q}^{k} \mathbb{B}\right)
$$

Since $\mathbb{A} \equiv{ }_{q}^{q} \mathbb{B} \Rightarrow \mathbb{A} \equiv{ }_{q} \mathbb{B}$, we can ignore the parameter k
To show that S is not closed under any \equiv^{k} (and hence not definable in LFP):

$$
\forall k \exists \mathbb{A}, \mathbb{B} \forall q\left(\mathbb{A} \in S \wedge \mathbb{B} \notin S \wedge \mathbb{A} \equiv_{q}^{k} \mathbb{B}\right)
$$

If $\mathbb{A} \equiv{ }_{q}^{k} \mathbb{B}$ holds for all q, then Duplicator actually wins an infinite game. That is, it has a strategy to play forever.

Evenness

To show that Evenness is not definable in PFP, it suffices to show that: for every k, there are structures \mathbb{A}_{k} and \mathbb{B}_{k} such that \mathbb{A}_{k} has an even number of elements, \mathbb{B}_{k} has an odd number of elements and

$$
\mathbb{A} \equiv^{k} \mathbb{B}
$$

It is easily seen that Duplicator has a strategy to play forever when one structure is a set containing k elements (and no other relations) and the other structure has $k+1$ elements.

Hamiltonicity

Take $K_{k, k}$-the complete bipartite graph on two sets of k vertices. and $K_{k, k+1}$-the complete bipartite graph on two sets, one of k vertices, the other of $k+1$.

These two graphs are \equiv^{k} equivalent, yet one has a Hamiltonian cycle, and the other does not.

