# Topics in Logic and Complexity

Handout 4

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2324/L15

# Expressive Power of Logics

We have seen that the expressive power of *first-order logic*, in terms of computational complexity is *weak*.

*Second-order logic* allows us to express all properties in the *polynomial hierarchy*.

Are there interesting logics intermediate between these two?

We have seen one-monadic second-order logic.

We now examine another—*LFP*—the logic of *least fixed points*.

# Inductive Definitions

LFP is a logic that formalises *inductive definitions*. Unlike in second-order logic, we cannot quantify over arbitrary relations, but we can build new relations *inductively*.

Inductive definitions are pervasive in mathematics and computer science.

The *syntax* and *semantics* of various formal languages are typically defined inductively.

viz. the definitions of the syntax and semantics of first-order logic seen earlier.

### Transitive Closure

The *transitive closure* of a binary relation E is the *smallest* relation T satisfying:

- $E \subseteq T$ ; and
- if  $(x, y) \in T$  and  $(y, z) \in E$  then  $(x, z) \in T$ .

This constitutes an *inductive definition* of T and, as we have already seen, there is no *first-order* formula that can define T in terms of E.

#### Monotone Operators

In order to introduce LFP, we briefly look at the theory of *monotone operators*, in our restricted context.

We write Pow(A) for the powerset of A. An operator on A is a function

 $F: \mathsf{Pow}(A) \to \mathsf{Pow}(A).$ 

**F** is monotone if

if  $S \subseteq T$ , then  $F(S) \subseteq F(T)$ .

Logic and Complexity

#### Least and Greatest Fixed Points

A fixed point of F is any set  $S \subseteq A$  such that F(S) = S.

S is the *least fixed point* of F, if for all fixed points T of F,  $S \subseteq T$ .

S is the greatest fixed point of F, if for all fixed points T of F,  $T \subseteq S$ .

#### Least and Greatest Fixed Points

For any monotone operator F, define the collection of its *pre-fixed points* as:

 $Pre = \{S \subseteq A \mid F(S) \subseteq S\}.$ 

*Note:*  $A \in Pre$ .

Taking

$$L = \bigcap Pre$$
,

we can show that L is a fixed point of F.

### **Fixed Points**

```
For any set S \in Pre,

L \subseteq S

F(L) \subseteq F(S)

F(L) \subseteq S

F(L) \subseteq L

F(F(L)) \subseteq F(L)

F(L) \in Pre

L \subseteq F(L)
```

by definition of L. by monotonicity of F. by definition of Pre. by definition of L. by monotonicity of F by definition of Pre. by definition of L.

#### Least and Greatest Fixed Points

#### L is a *fixed point* of F.

Every fixed point P of F is in Pre, and therefore  $L \subseteq P$ . Thus, L is the least fixed point of F

Similarly, the greatest fixed point is given by:

 $G = \bigcup \{S \subseteq A \mid S \subseteq F(S)\}.$ 

#### Iteration

Let A be a *finite* set and F be a *monotone* operator on A. Define for  $i \in \mathbb{N}$ :

 $\begin{array}{rcl} F^0 &=& \emptyset \\ F^{i+1} &=& F(F^i). \end{array}$ 

For each *i*,  $F^i \subseteq F^{i+1}$  (proved by induction).

#### Iteration

Proof by induction.

 $\emptyset = F^0 \subseteq F^1.$ 

If  $F^i \subseteq F^{i+1}$  then, by monotonicity

 $F(F^i) \subseteq F(F^{i+1})$ 

and so  $F^{i+1} \subseteq F^{i+2}$ .

#### Fixed-Point by Iteration

If A has n elements, then

$$F^n = F^{n+1} = F^m$$
 for all  $m > n$ 

Thus,  $F^n$  is a fixed point of F.

Let *P* be any fixed point of *F*. We can show by induction on *i*, that  $F^i \subseteq P$ .

 $F^0 = \emptyset \subseteq P$ 

If  $F^i \subseteq P$  then  $F^{i+1} = F(F^i) \subseteq F(P) = P.$ 

```
Thus F^n is the least fixed point of F.
```

### **Defined Operators**

Suppose  $\phi$  contains a relation symbol R (of arity k) not interpreted in the structure  $\mathbb{A}$  and let x be a tuple of k free variables of  $\phi$ . For any relation  $P \subseteq A^k$ ,  $\phi$  defines a new relation:

 $F_{P} = \{ \mathsf{a} \mid (\mathbb{A}, P) \models \phi[\mathsf{a}] \}.$ 

The operator  $F_{\phi}$ : Pow $(A^k) \rightarrow$  Pow $(A^k)$  defined by  $\phi$  is given by the map

 $P \mapsto F_P$ .

Or,  $F_{\phi, b}$  if we fix parameters b.

### Positive Formulas

#### Definition

A formula  $\phi$  is *positive* in the relation symbol *R*, if every occurence of *R* in  $\phi$  is within the scope of an even number of negation signs.

#### Lemma

For any structure A not interpreting the symbol R, any formula  $\phi$  which is positive in R, and any tuple b of elements of A, the operator  $F_{\phi,b}: \operatorname{Pow}(A^k) \to \operatorname{Pow}(A^k)$  is monotone.

# Syntax of LFP

- Any relation symbol of arity k is a predicate expression of arity k;
- If R is a relation symbol of arity k, x is a tuple of variables of length k and φ is a formula of LFP in which the symbol R only occurs positively, then

#### $\mathbf{lfp}_{R,\mathbf{x}}\phi$

is a predicate expression of LFP of arity k.

All occurrences of *R* and variables in x in  $\mathbf{lfp}_{R,x}\phi$  are *bound* 

# Syntax of LFP

- If  $t_1$  and  $t_2$  are terms, then  $t_1 = t_2$  is a formula of LFP.
- If *P* is a predicate expression of LFP of arity *k* and t is a tuple of terms of length *k*, then *P*(t) is a formula of LFP.
- If  $\phi$  and  $\psi$  are formulas of LFP, then so are  $\phi \wedge \psi$ , and  $\neg \phi$ .
- If φ is a formula of LFP and x is a variable then, ∃xφ is a formula of LFP.

# Semantics of LFP

Let  $\mathbb{A} = (A, \mathcal{I})$  be a structure with universe A, and an interpretation  $\mathcal{I}$  of a fixed vocabulary  $\sigma$ .

Let  $\phi$  be a formula of LFP, and i an interpretation in A of all the free variables (*first or second* order) of  $\phi$ .

To each individual variable x, i associates an element of A, and to each k-ary relation symbol R in  $\phi$  that is not in  $\sigma$ , i associates a relation  $i(R) \subseteq A^k$ .

 $\imath$  is extended to terms t in the usual way.

For constants c,  $i(c) = \mathcal{I}(c)$ .  $i(f(t_1, \ldots, t_n)) = \mathcal{I}(f)(i(t_1), \ldots, i(t_n))$ 

# Semantics of LFP

- If R is a relation symbol in  $\sigma$ , then  $\iota(R) = \mathcal{I}(R)$ .
- If *P* is a predicate expression of the form  $\mathbf{lfp}_{R,\times}\phi$ , then  $\iota(P)$  is the relation that is the least fixed point of the monotone operator *F* on  $A^k$  defined by:

 $F(X) = \{ \mathsf{a} \in A^k \mid \mathbb{A} \models \phi[\imath \langle X/R, \mathsf{x}/\mathsf{a} \rangle],$ 

where  $i\langle X/R, x/a \rangle$  denotes the interpretation i' which is just like i except that i'(R) = X, and i'(x) = a.

#### Semantics of LFP

- If  $\phi$  is of the form  $t_1 = t_2$ , then  $\mathbb{A} \models \phi[i]$  if,  $i(t_1) = i(t_2)$ .
- If  $\phi$  is of the form  $R(t_1, \ldots, t_k)$ , then  $\mathbb{A} \models \phi[i]$  if,

 $(\imath(t_1),\ldots,\imath(t_k))\in\imath(R).$ 

- If  $\phi$  is of the form  $\psi_1 \wedge \psi_2$ , then  $\mathbb{A} \models \phi[i]$  if,  $\mathbb{A} \models \psi_1[i]$  and  $\mathbb{A} \models \psi_2[i]$ .
- If  $\phi$  is of the form  $\neg \psi$  then,  $\mathbb{A} \models \phi[i]$  if,  $\mathbb{A} \not\models \psi[i]$ .
- If  $\phi$  is of the form  $\exists x\psi$ , then  $\mathbb{A} \models \phi[i]$  if there is an  $a \in A$  such that  $\mathbb{A} \models \psi[i\langle x/a \rangle]$ .

#### Transitive Closure

The formula (with free variables u and v)

 $\theta \equiv \mathbf{lfp}_{T,xy}[(x = y \lor \exists z(E(x,z) \land T(z,y)))](u,v)$ 

defines the *reflexive and transitive closure* of the relation *E*.

Thus  $\forall u \forall v \theta$  defines *connectedness*.

The expressive power of LFP properly extends that of first-order logic.

# Greatest Fixed Points

If  $\phi$  is a formula in which the relation symbol R occurs *positively*, then the *greatest fixed point* of the monotone operator  $F_{\phi}$  defined by  $\phi$  can be defined by the formula:

 $\neg [\mathbf{lfp}_{R,x} \neg \phi(R/\neg R)](\mathbf{x})$ 

where  $\phi(R/\neg R)$  denotes the result of replacing all occurrences of R in  $\phi$  by  $\neg R$ .

Exercise: Verify!.

#### Simultaneous Inductions

We are given two formulas  $\phi_1(S, T, x)$  and  $\phi_2(S, T, y)$ , S is k-ary, T is l-ary.

The pair  $(\phi_1, \phi_2)$  can be seen as defining a map:

 $F: \operatorname{Pow}(A^k) \times \operatorname{Pow}(A^l) \to \operatorname{Pow}(A^k) \times \operatorname{Pow}(A^l)$ 

If both formulas are positive in both S and T, then there is a least fixed point.

 $(P_1, P_2)$ 

defined by *simultaneous induction* on  $\mathbb{A}$ .

# Simultaneous Inductions

#### Theorem

For any pair of formulas  $\phi_1(S, T)$  and  $\phi_2(S, T)$  of LFP, in which the symbols S and T appear only positively, there are formulas  $\phi_S$  and  $\phi_T$  of LFP which, on any structure A containing at least two elements, define the two relations that are defined on A by  $\phi_1$  and  $\phi_2$  by simultaneous induction.

#### Proof

Assume  $k \leq l$ . We define P, of arity l + 2 such that:  $(c, d, a_1, \dots, a_l) \in P$  if, and only if, either c = d and  $(a_1, \dots, a_k) \in P_1$  or  $c \neq d$  and  $(a_1, \dots, a_l) \in P_2$ 

For new variables  $x_1$  and  $x_2$  and a new l + 2-ary symbol R, define  $\phi'_1$  and  $\phi'_2$  by replacing all occurrences of  $S(t_1, \ldots, t_k)$  by:

 $\exists x_1 \exists x_2 (x_1 = x_2 \land \exists y_{k+1}, \ldots, \exists y_l R(x_1, x_2, t_1, \ldots, t_k, y_{k+1}, \ldots, y_l)),$ 

and replacing all occurrences of  $T(t_1, \ldots, t_l)$  by:

 $\exists x_1 \exists x_2 x_1 \neq x_2 \land R(x_1, x_2, t_1, \ldots, t_l).$ 

#### Proof

Define 
$$\phi$$
 as  $(x_1 = x_2 \wedge \phi_1') \lor (x_1 \neq x_2 \wedge \phi_2').$   
Then,  $(\mathbf{lfp}_{R,x_1x_2y}\phi)(x,x,y)$ 

defines *P*, so

$$\phi_{S} \equiv \exists x \exists y_{k+1}, \ldots, \exists y_{l} (\mathsf{lfp}_{R, x_{1} \times_{2} y} \phi)(x, x, y);$$

and

$$\phi_{\mathcal{T}} \equiv \exists x_1 \exists x_2 (x_1 \neq x_2 \land \mathsf{lfp}_{R, x_1 x_2 y} \phi)(x_1, x_2, y).$$

Any *query* definable in LFP is decidable by a *deterministic* machine in *polynomial time*.

To be precise, we can show that for each formula  $\phi$  there is a t such that

 $\mathbb{A} \models \phi[\mathsf{a}]$ 

is decidable in time  $O(n^t)$  where *n* is the number of elements of A. We prove this by induction on the structure of the formula.

- Atomic formulas by direct lookup (O(n<sup>a</sup>) time, where a is the maximum arity of any predicate symbol in σ).
- Boolean connectives are easy.

If  $\mathbb{A} \models \phi_1$  can be decided in time  $O(n^{t_1})$  and  $\mathbb{A} \models \phi_2$  in time  $O(n^{t_2})$ , then  $\mathbb{A} \models \phi_1 \land \phi_2$  can be decided in time  $O(n^{\max(t_1, t_2)})$ 

• If  $\phi \equiv \exists x \psi$  then for each  $a \in \mathbb{A}$  check whether

 $(\mathbb{A}, \boldsymbol{c} \mapsto \boldsymbol{a}) \models \psi[\boldsymbol{c}/\boldsymbol{x}],$ 

where c is a new constant symbol. If  $\mathbb{A} \models \psi$  can be decided in time  $O(n^t)$ , then  $\mathbb{A} \models \phi$  can be decided in time  $O(n^{t+1})$ .

```
Suppose \phi \equiv [\mathbf{lfp}_{R,x}\psi](t) (R is l-ary)
To decide \mathbb{A} \models \phi[a]:
R := \emptyset
for i := 1 to n^{l} do
R := F_{\psi}(R)
end
if a \in R then accept else reject
```

To compute  $F_{\psi}(R)$ 

For every tuple  $a \in A^{l}$ , determine whether  $(\mathbb{A}, R) \models \psi[a]$ .

If deciding  $(\mathbb{A}, R) \models \psi$  takes time  $O(n^t)$ , then each assignment to R inside the loop requires time  $O(n^{l+t})$ . The total time taken to execute the loop is then  $O(n^{2l+t})$ . Finally, the last line can be done by a search through R in time O(n'). The total running time is, therefore,  $O(n^{2l+t})$ .

The *space* required is O(n').

For any  $\phi$  of LFP, the language  $\{[A]_{<} | A \models \phi\}$  is in P.

Suppose  $\rho$  is a signature that contains a *binary relation symbol* <, possibly along with other symbols.

Let  $\mathcal{O}_{\rho}$  denote those structures A in which < is a *linear order* of the universe.

For any language  $L \in P$ , there is a sentence  $\phi$  of LFP that defines the class of structures

 $\{\mathbb{A}\in\mathcal{O}_{\rho}\mid [\mathbb{A}]_{<^{\mathbb{A}}}\in L\}$ 

(Immerman; Vardi 1982)

Recall the proof of *Fagin's Theorem*, that ESO captures NP.

Given a machine M and an integer k, there is a *first-order* formula  $\phi_{M,k}$  such that

 $\mathbb{A} \models \exists \langle \exists T_{\sigma_1} \cdots T_{\sigma_s} \exists S_{q_1} \cdots S_{q_m} \exists H \phi_{M,k} \rangle$ 

if, and only if, *M* accepts  $[A]_{<}$  in time  $n^{k}$ , for some order <.

If we fix the order < as part of the structure  $\mathbb{A}$ , we do not need the outermost quantifier.

Moreover, for a *deterministic* machine M, the relations  $T_{\sigma_1} \dots T_{\sigma_s}, S_{q_1} \dots S_{q_m}, H$  can be defined *inductively*.

where  $\text{Init}_{a}(y)$  is the formula that defines the positions in which the symbol *a* appears in the input.

$$\begin{split} & \mathsf{State}_q(\mathsf{x},\mathsf{y}) \Leftrightarrow \\ & (\mathsf{x} = 1 \land \mathsf{y} = 1 \land q = q_0) \lor \\ & \exists t \exists \mathsf{h} \quad \bigvee_{\{a,b,q' \mid \Delta(q',a,q,b,R)\}} & (\mathsf{x} = \mathsf{t} + 1 \land \mathsf{State}_{q'}(\mathsf{t},\mathsf{h}) \land \\ & \mathsf{Tape}_a(\mathsf{t},\mathsf{h}) \land \mathsf{y} = \mathsf{h} + 1)) \\ & \bigvee_{\{a,b,q' \mid \Delta(q',a,q,b,L)\}} & (\mathsf{x} = \mathsf{t} + 1 \land \mathsf{State}_{q'}(\mathsf{t},\mathsf{h}) \land \\ & \mathsf{Tape}_a(\mathsf{t},\mathsf{h}) \land \mathsf{h} = \mathsf{y} + 1)). \end{split}$$

### Unordered Structures

In the absence of an *order relation*, there are properties in P that are not definable in LFP.

There is no sentence of LFP which defines the structures with an *even* number of elements.



Let  $\mathcal{E}$  be the collection of all structures in the empty signature. In order to prove that *evenness* is not defined by any LFP sentence, we show the following.

#### Lemma

For every LFP formula  $\phi$  there is a first order formula  $\psi$ , such that for all structures  $\mathbb{A}$  in  $\mathcal{E}$ ,  $\mathbb{A} \models (\phi \leftrightarrow \psi)$ .

#### Unordered Structures

Let  $\psi(x, y)$  be a first order formula.

 $\mathbf{lfp}_{R,\star}\psi$  defines the relation

$$\mathsf{F}^{\infty}_{\psi,\mathsf{b}} = igcup_{i\in\mathbb{N}} \mathsf{F}^{i}_{\psi,\mathsf{b}}$$

for a fixed interpretation of the variables y by the tuple of parameters b. For each *i*, there is a first order formula  $\psi^i$  such that on any structure A,

$$F^{i}_{\psi,\mathsf{b}} = \{\mathsf{a} \mid \mathbb{A} \models \psi^{i}[\mathsf{a},\mathsf{b}]\}.$$

## Defining the Stages

These formulas are obtained by *induction*.

 $\psi^1$  is obtained from  $\psi$  by replacing all occurrences of subformulas of the form R(t) by  $t \neq t$ .

 $\psi^{i+1}$  is obtained by replacing in  $\psi,$  all subformulas of the form  $R({\bf t})$  by  $\psi^i({\bf t},{\bf y})$ 

Let b be an *l*-tuple, and a and c two *k*-tuples in a structure A such that there is an automorphism i of A (i.e. an isomorphism from A to itself) such that

- $\imath(b) = b$
- *i*(a) = c

Then,

 $\mathsf{a} \in F^i_{\psi,\mathsf{b}}$  if, and only if,  $\mathsf{c} \in F^i_{\psi,\mathsf{b}}$ .

## Bounding the Induction

This defines an *equivalence relation* a  $\sim_b c$ .

If there are p distinct equivalence classes, then

 $F^{\infty}_{\psi,\mathsf{b}} = F^{p}_{\psi,\mathsf{b}}$ 

 $\ln \mathcal{E}$  there is a uniform bound p, that does not depend on the size of the structure.

# Capturing P

The *expressive power* of LFP is strictly weaker than P.

On the other hand, LFP can express all queries in P on *ordered structures*. Thus, every query in P can be defined by a sentence of the form

 $\exists < (lo(<) \land \phi)$ 

where lo(<) is the first-order formula that says that < is a linear order and  $\phi$  is a sentence of LFP.

# Capturing P

With a sentence of the form  $\exists < (lo(<) \land \phi)$ , we can also define NP-complete problems.

 $\exists < (\log(<) \land \forall xy[(y = x + 1 \rightarrow E(x, y)) \land (x = \max \land y = \min \rightarrow E(x, y))]).$ 

defines the graphs that contain a *Hamiltonian cycle*.

## Finite Variable Logic

We write  $L^k$  for the first order formulas using only the variables  $x_1, \ldots, x_k$ .

 $\mathbb{A}\equiv^k\mathbb{B}$ 

denotes that  $\mathbb{A}$  and  $\mathbb{B}$  agree on all sentences of  $L^k$ .

 $(\mathbb{A},\mathsf{a})\equiv^k(\mathbb{B},\mathsf{b})$ 

denotes that there is no formula  $\phi$  of  $L^k$  such that  $\mathbb{A} \models \phi[a]$  and  $\mathbb{B} \not\models \phi[b]$ 

#### Finite Variable Logic

For any *k*,

 $\mathbb{A} \equiv^k \mathbb{B} \quad \Rightarrow \quad \mathbb{A} \equiv_k \mathbb{B}$ 

However, for any q, there are  $\mathbb{A}$  and  $\mathbb{B}$  such that

 $\mathbb{A} \equiv_{q} \mathbb{B}$  and  $\mathbb{A} \not\equiv^{2} \mathbb{B}$ .

Take  $\mathbb{A}$  and  $\mathbb{B}$  to be linear orders longer than  $2^{q}$ .

### Stages

For every formula  $\phi$  of LFP, there is a k such that the query defined by  $\phi$  is closed under  $\equiv^{k}$ .

Consider a formula  $\psi(R, x)$  defining an operator.

Let the variables occurring in  $\psi$  be  $x_1, \ldots, x_k$ , with  $x = (x_1, \ldots, x_l)$ , and  $y_1, \ldots, y_l$  be new.

#### Stages

Define, by induction, the formulas  $\psi^m$ .

$$\psi^0 = \exists x \, x \neq x$$

 $\psi^{m+1}$  is obtained from  $\psi(R, \mathbf{x})$  by replacing all sub-formulas  $R(t_1, \ldots, t_l)$  with

$$\exists y_1 \dots \exists y_l (\bigwedge_{1 \le i \le l} y_i = t_i) \land \phi^m(\mathbf{y})$$

Note that each  $\psi^m$  has at most k + l variables.

# LFP and $L^k$

If  $(\mathbb{A}, a) \equiv^{k+l} (\mathbb{B}, b)$ , then for all m:  $\mathbb{A} \models \psi^m[a]$  if, and only if,  $\mathbb{B} \models \psi^m[b]$ .

So,  $(\mathbb{A}, \mathbf{a})$  and  $(\mathbb{B}, \mathbf{b})$  are not distinguished by  $\mathbf{lfp}_{R, \mathbf{x}} \psi$ .

### Pebble Games

The *k*-pebble game is played on two structures A and B, by two players—*Spoiler* and *Duplicator*—using *k* pairs of pebbles  $\{(a_1, b_1), \ldots, (a_k, b_k)\}$ .

Spoiler moves by picking a pebble and placing it on an element  $(a_i \text{ on an element of } \mathbb{A} \text{ or } b_i \text{ on an element of } \mathbb{B}).$ 

**Duplicator** responds by picking the matching pebble and placing it on an element of the other structure

Spoiler wins at any stage if the partial map from  $\mathbb{A}$  to  $\mathbb{B}$  defined by the pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for q moves, then  $\mathbb{A}$  and  $\mathbb{B}$  agree on all sentences of  $L^k$  of quantifier rank at most q. (Barwise)

### Using Pebble Games

To show that a class of structures **S** is not definable in first-order logic:

 $\forall k \; \forall q \; \exists \mathbb{A}, \mathbb{B} \; (\mathbb{A} \in S \land \mathbb{B} \not\in S \land \mathbb{A} \equiv_q^k \mathbb{B})$ 

Since  $\mathbb{A} \equiv_{a}^{q} \mathbb{B} \Rightarrow \mathbb{A} \equiv_{a} \mathbb{B}$ , we can ignore the parameter k

To show that S is not closed under any  $\equiv^k$  (and hence not definable in LFP):

 $\forall k \exists \mathbb{A}, \mathbb{B} \forall q \ (\mathbb{A} \in S \land \mathbb{B} \not\in S \land \mathbb{A} \equiv_q^k \mathbb{B})$ 

If  $\mathbb{A} \equiv_{q}^{k} \mathbb{B}$  holds for all q, then *Duplicator* actually wins an *infinite* game. That is, it has a strategy to play forever.

#### Evenness

To show that *Evenness* is not definable in PFP, it suffices to show that: for every k, there are structures  $\mathbb{A}_k$  and  $\mathbb{B}_k$  such that  $\mathbb{A}_k$  has an even number of elements,  $\mathbb{B}_k$  has an odd number of elements and

 $\mathbb{A} \equiv^k \mathbb{B}.$ 

It is easily seen that *Duplicator* has a strategy to play forever when one structure is a set containing k elements (and no other relations) and the other structure has k + 1 elements.

## Hamiltonicity

Take  $K_{k,k}$ —the complete bipartite graph on two sets of k vertices. and  $K_{k,k+1}$ —the complete bipartite graph on two sets, one of k vertices, the other of k + 1.



These two graphs are  $\equiv^k$  equivalent, yet one has a Hamiltonian cycle, and the other does not.