Topics in Logic and Complexity

Handout 2

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2324/L15

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational Complexity.

Computational Complexity

- Measure use of resources (space, time, etc.) on a machine model of computation;
- Complexity of a language-i.e. a set of strings.

Descriptive Complexity

- Complexity of a class of structures-e.g. a collection of graphs.
- Measure the complexity of describing the collection in a formal logic, using resources such as variables, quantifiers, higher-order operators, etc.
There is a fascinating interplay between the views.

Signature and Structure

In general a signature (or vocabulary) σ is a finite sequence of relation, function and constant symbols:

$$
\sigma=\left(R_{1}, \ldots, R_{m}, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{p}\right)
$$

where, associated with each relation and function symbol is an arity.

Structure

A structure \mathbb{A} over the signature σ is a tuple:

$$
\mathbb{A}=\left(A, R_{1}^{\mathbb{A}}, \ldots, R_{m}^{\mathbb{A}}, f_{1}^{\mathbb{A}}, \ldots, f_{n}^{\mathbb{A}}, c_{1}^{\mathbb{A}}, \ldots, c_{1}^{\mathbb{A}}\right),
$$

where,

- A is a non-empty set, the universe of the strucure \mathbb{A},
- each $R_{i}^{\mathbb{A}}$ is a relation over A of the appropriate arity.
- each $f_{i}^{\mathbb{A}}$ is a function over A of the appropriate arity.
- each $c_{i}^{\mathbb{A}}$ is an element of A.

First-order Logic

Formulas of first-order logic are formed from the signature σ and an infinite collection X of variables as follows.

```
terms - c, x,f(t (t, ,., ta)
```

Formulas are defined by induction:

- atomic formulas $-R\left(t_{1}, \ldots, t_{a}\right), t_{1}=t_{2}$
- Boolean operations - $\phi \wedge \psi, \phi \vee \psi, \neg \phi$
- first-order quantifiers - $\exists x \phi, \forall x \phi$

Queries

A formula ϕ with free variables among x_{1}, \ldots, x_{n} defines a map Q from structures to relations:

$$
Q(\mathbb{A})=\{\mathrm{a} \mid \mathbb{A} \models \phi[\mathrm{a}]\} .
$$

Any such map Q which associates to every structure \mathbb{A} a (n-ary) relation on A, and is isomorphism invariant, is called a (n-ary) query.
Q is isomorphism invariant if, whenever $f: A \rightarrow B$ is an isomorphism between \mathbb{A} and \mathbb{B}, it is also an isomorphism between $(A, Q(\mathbb{A}))$ and $(B, Q(\mathbb{B}))$.

If $n=0$, we can regard the query as a map from structures to $\{0,1\}$-a Boolean query.

Graphs

For example, take the signature (E), where E is a binary relation symbol. Finite structures (V, E) of this signature are directed graphs.

Moreover, the class of such finite structures satisfying the sentence

$$
\forall x \neg E x x \wedge \forall x \forall y(E x y \rightarrow E y x)
$$

can be identified with the class of (loop-free, undirected) graphs.

Complexity

For a first-order sentence ϕ, we ask what is the computational complexity of the problem:

Input: a structure \mathbb{A}
Decide: if $\mathbb{A}=\phi$

In other words, how complex can the collection of finite models of ϕ be?
In order to talk of the complexity of a class of finite structures, we need to fix some way of representing finite structures as strings.

Representing Structures as Strings

We use an alphabet $\Sigma=\{0,1, \#,-\}$.
For a structure $\mathbb{A}=\left(A, R_{1}, \ldots, R_{m}, f_{1}, \ldots, f_{l}\right)$, fix a linear order $<$ on $A=\left\{a_{1}, \ldots, a_{n}\right\}$.
R_{i} (of arity k) is encoded by a string $\left[R_{i}\right]_{<}$of 0 s and 1 s of length n^{k}. f_{i} is encoded by a string $\left[f_{i}\right]_{<}$of 0 s, 1 s and -s of length $n^{k} \log n$.

$$
[\mathbb{A}]_{<}=\underbrace{1 \cdots 1}_{n} \#\left[R_{1}\right]_{<} \# \cdots \#\left[R_{m}\right]_{<} \#\left[f_{1}\right]_{<} \# \cdots \#\left[f_{1}\right]_{<}
$$

The exact string obtained depends on the choice of order.

Naïve Algorithm

The straightforward algorithm proceeds recursively on the structure of ϕ :

- Atomic formulas by direct lookup.
- Boolean connectives are easy.
- If $\phi \equiv \exists x \psi$ then for each $a \in \mathbb{A}$ check whether

$$
(\mathbb{A}, c \mapsto a) \models \psi[c / x],
$$

where c is a new constant symbol.
This runs in time $O\left(l n^{m}\right)$ and $O(m \log n)$ space, where m is the nesting depth of quantifiers in ϕ.

$$
\operatorname{Mod}(\phi)=\{\mathbb{A} \mid \mathbb{A} \models \phi\}
$$

is in logarithmic space and polynomial time.

Complexity of First-Order Logic

The following problem:
FO satisfaction
Input: a structure \mathbb{A} and a first-order sentence ϕ
Decide: if $\mathbb{A}=\phi$
is PSPACE-complete.
It follows from the $O\left(I n^{m}\right)$ and $O(m \log n)$ space algorithm that the problem is in PSPACE.
How do we prove completeness?

QBF

We define quantified Boolean formulas inductively as follows, from a set \mathcal{X} of propositional variables.

- A propositional constant T or F is a formula
- A propositional variable $X \in \mathcal{X}$ is a formula
- If ϕ and ψ are formulas then so are: $\neg \phi, \phi \wedge \psi$ and $\phi \vee \psi$
- If ϕ is a formula and X is a variable then $\exists X \phi$ and $\forall X \phi$ are formulas.

Say that an occurrence of a variable X is free in a formula ϕ if it is not within the scope of a quantifier of the form $\exists X$ or $\forall X$.

QBF

Given a quantified Boolean formula ϕ and an assignment of truth values to its free variables, we can ask whether ϕ evaluates to true or false.
In particular, if ϕ has no free variables, then it is equivalent to either true or false.

QBF is the following decision problem:
Input: a quantified Boolean formula ϕ with no free variables.
Decide: whether ϕ evaluates to true.

Complexity of QBF

Note that a Boolean formula ϕ without quantifiers and with variables X_{1}, \ldots, X_{n} is satisfiable if, and only if, the formula

$$
\exists X_{1} \cdots \exists X_{n} \phi \text { is true. }
$$

Similarly, ϕ is valid if, and only if, the formula

$$
\forall X_{1} \cdots \forall X_{n} \phi \text { is true. }
$$

Thus, SAT \leq_{L} QBF and VAL \leq_{L} QBF and so QBF is NP-hard and co-NP-hard.
In fact, QBF is PSPACE-complete.

PSPACE-hardness

To prove that QBF is PSPACE-hard, we want to show:
Given a machine M with a polynomial space bound and an input x, we can define a quantified Boolean formula ϕ_{x}^{M} which evaluates to true if, and only if, M accepts x.
Moreover, ϕ_{x}^{M} can be computed from x in polynomial time (or even logarithmic space).

The number of distinct configurations of M on input x is bounded by $2^{n^{k}}$ for some k ($n=|x|$).
Each configuration can be represented by n^{k} bits.

Constructing ϕ_{x}^{M}

We use tuples A, B of n^{k} Boolean variables each to encode configurations of M.
Inductively, we define a formula $\psi_{i}(\mathrm{~A}, \mathrm{~B})$ which is true if the configuration coded by B is reachable from that coded by A in at most 2^{i} steps.

$$
\begin{aligned}
\psi_{0}(\mathrm{~A}, \mathrm{~B}) & \equiv " \mathrm{~A}=\mathrm{B} " \vee " \mathrm{~A} \rightarrow_{M} \mathrm{~B} " \\
\psi_{i+1}(\mathrm{~A}, \mathrm{~B}) & \equiv \exists \mathrm{Z} \forall \mathrm{X} \forall \mathrm{Y}[(\mathrm{X}=\mathrm{A} \wedge \mathrm{Y}=\mathrm{Z}) \vee(\mathrm{X}=\mathrm{Z} \wedge \mathrm{Y}=\mathrm{B}) \\
& \left.\Rightarrow \psi_{i}(\mathrm{X}, \mathrm{Y})\right] \\
\phi & \equiv \psi_{n^{k}}(\mathrm{~A}, \mathrm{~B}) \wedge " \mathrm{~A}=\operatorname{start"}^{\prime} \wedge " \mathrm{~B}=\text { accept" }
\end{aligned}
$$

Reducing QBF to FO satisfaction

We have seen that $F O$ satisfaction is in PSPACE.
To show that it is PSPACE-complete, it suffices to show that QBF $\leq_{L} \mathrm{FO}$ sat.

The reduction maps a quantified Boolean formula ϕ to a pair $\left(\mathbb{A}, \phi^{*}\right)$ where \mathbb{A} is a structure with two elements: 0 and 1 and one unary relation T with $T^{\mathbb{A}}=\{1\}$.
ϕ^{*} is obtained from ϕ by a simple inductive definition.

Expressive Power of FO

For any fixed sentence ϕ of first-order logic, the class of structures $\operatorname{Mod}(\phi)$ is in L .

There are computationally easy properties that are not definable in first-order logic.

- There is no sentence ϕ of first-order logic such that $\mathbb{A} \models \phi$ if, and only if, $|A|$ is even.
- There is no formula $\phi(E, x, y)$ that defines the transitive closure of a binary relation E.

We will see proofs of these facts later on.

Second-Order Logic

We extend first-order logic by a set of relational variables.
For each $m \in \mathbb{N}$ there is an infinite collection of variables
$\mathcal{V}^{m}=\left\{V_{1}^{m}, V_{2}^{m}, \ldots\right\}$ of arity m.
Second-order logic extends first-order logic by allowing second-order quantifiers

$$
\exists X \phi \quad \text { for } X \in \mathcal{V}^{m}
$$

A structure \mathbb{A} satisfies $\exists X \phi$ if there is an m-ary relation R on the universe of \mathbb{A} such that $(\mathbb{A}, X \rightarrow R)$ satisfies ϕ.

Existential Second-Order Logic

ESO—existential second-order logic consists of those formulas of second-order logic of the form:

$$
\exists X_{1} \cdots \exists X_{k} \phi
$$

where ϕ is a first-order formula.

Examples

Evennness

This formula is true in a structure if, and only if, the size of the domain is even.

$$
\begin{array}{ll}
\exists B \exists S & \forall x \exists y B(x, y) \wedge \forall x \forall y \forall z B(x, y) \wedge B(x, z) \rightarrow y=z \\
& \forall x \forall y \forall z B(x, z) \wedge B(y, z) \rightarrow x=y \\
& \forall x \forall y S(x) \wedge B(x, y) \rightarrow \neg S(y) \\
& \forall x \forall y \neg S(x) \wedge B(x, y) \rightarrow S(y)
\end{array}
$$

Examples

Transitive Closure

This formula is true of a pair of elements a, b in a structure if, and only if, there is an E-path from a to b.

```
\(\exists P \quad \forall x \forall y P(x, y) \rightarrow E(x, y)\)
    \(\exists x P(a, x) \wedge \exists x P(x, b) \wedge \neg \exists x P(x, a) \wedge \neg \exists x P(b, x)\)
    \(\forall x \forall y(P(x, y) \rightarrow \forall z(P(x, z) \rightarrow y=z))\)
    \(\forall x \forall y(P(x, y) \rightarrow \forall z(P(z, y) \rightarrow x=z))\)
    \(\forall x((x \neq a \wedge \exists y P(x, y)) \rightarrow \exists z P(z, x))\)
    \(\forall x((x \neq b \wedge \exists y P(y, x)) \rightarrow \exists z P(x, z))\)
```


Examples

3-Colourability

The following formula is true in a graph (V, E) if, and only if, it is 3-colourable.
$\exists R \exists B \exists G \quad \forall x(R x \vee B x \vee G x) \wedge$

$$
\begin{aligned}
& \forall x(\neg(R x \wedge B x) \wedge \neg(B x \wedge G x) \wedge \neg(R x \wedge G x)) \wedge \\
& \forall x \forall y(E x y \rightarrow(R x \wedge R y) \wedge \\
& \neg(B x \wedge B y) \wedge \\
&\neg(G x \wedge G y)))
\end{aligned}
$$

Fagin's Theorem

Theorem (Fagin)

A class \mathcal{C} of finite structures is definable by a sentence of existential second-order logic if, and only if, it is decidable by a nondeterminisitic machine running in polynomial time.

$$
E S O=N P
$$

One direction is easy: Given \mathbb{A} and $\exists P_{1} \ldots \exists P_{m} \phi$.
a nondeterministic machine can guess an interpretation for P_{1}, \ldots, P_{m} and then verify ϕ.

Fagin's Theorem

Given a machine M and an integer k, there is an ESO sentence ϕ such that $\mathbb{A} \models \phi$ if, and only if, M accepts $[\mathbb{A}]_{<,}$, for some order $<$in n^{k} steps.

We construct a first-order formula $\phi_{M, k}$ such that

$$
(\mathbb{A},<, \mathrm{X}) \models \phi_{M, k} \quad \Leftrightarrow \quad \begin{aligned}
& \mathrm{X} \text { codes an accepting computation of } M \\
& \text { of length at most } n^{k} \text { on input }[\mathbb{A}]_{<}
\end{aligned}
$$

So, $\mathbb{A} \models \exists<\exists \mathrm{X} \phi_{M, k}$ if, and only if, there is some order $<$ on \mathbb{A} so that M accepts $[\mathbb{A}]_{<}$in time n^{k}.

Order

The formula $\phi_{M, k}$ is built up as the conjunction of a number of formulas. The first of these simply says that $<$ is a linear order

$$
\begin{aligned}
& \forall x(\neg x<x) \wedge \\
& \forall x \forall y(x<y \rightarrow \neg y<x) \wedge \\
& \forall x \forall y(x<y \vee y<x \vee x=y) \\
& \forall x \forall y \forall z(x<y \wedge y<z \rightarrow x<z)
\end{aligned}
$$

We can use a linear order on the elements of \mathbb{A} to define a lexicographic order on k-tuples.

Ordering Tuples

If $x=x_{1}, \ldots, x_{k}$ and $y=y_{1}, \ldots, y_{k}$ are k-tuples of variables, we use $\mathrm{x}=\mathrm{y}$ as shorthand for the formula $\bigwedge_{i \leq k} x_{i}=y_{i}$ and $\mathrm{x}<\mathrm{y}$ as shorthand for the formula

$$
\bigvee_{i \leq k}\left(\left(\bigwedge_{j<i} x_{j}=y_{j}\right) \wedge x_{i}<y_{i}\right)
$$

We also write $y=x+1$ for the following formula:

$$
x<y \wedge \forall z(x<z \rightarrow(y=z \vee y<z))
$$

Constructing the Formula

Let $M=(K, \Sigma, s, \delta)$.
The tuple X of second-order variables appearing in $\phi_{M, k}$ contains the following:
$S_{q} \quad$ a k-ary relation symbol for each $q \in K$
T_{σ} a $2 k$-ary relation symbol for each $\sigma \in \Sigma$
H a $2 k$-ary relation symbol

Intuitively, these relations are intended to capture the following:

- $S_{q}(\mathrm{x})$ - the state of the machine at time x is q.
- $T_{\sigma}(\mathrm{x}, \mathrm{y})$ - at time x , the symbol at position y of the tape is σ.
- $H(x, y)$ - at time x, the tape head is pointing at tape cell y.

We now have to see how to write the formula $\phi_{M, k}$, so that it enforces these meanings.

Initial state is s and the head is initially at the beginning of the tape.

$$
\forall x\left((\forall \mathrm{y} \times \leq \mathrm{y}) \rightarrow S_{s}(\mathrm{x}) \wedge H(\mathrm{x}, \mathrm{x})\right)
$$

The head is never in two places at once

$$
\forall \mathrm{x} \forall \mathrm{y}(H(\mathrm{x}, \mathrm{y}) \rightarrow(\forall \mathrm{z}(\mathrm{y} \neq \mathrm{z}) \rightarrow(\neg H(\mathrm{x}, \mathrm{z}))))
$$

The machine is never in two states at once

$$
\forall x \bigwedge_{q}\left(S_{q}(x) \rightarrow \bigwedge_{q^{\prime} \neq q}\left(\neg S_{q^{\prime}}(x)\right)\right)
$$

Each tape cell contains only one symbol

$$
\forall \mathrm{x} \forall \mathrm{y} \bigwedge_{\sigma}\left(T_{\sigma}(\mathrm{x}, \mathrm{y}) \rightarrow \bigwedge_{\sigma^{\prime} \neq \sigma}\left(\neg T_{\sigma^{\prime}}(\mathrm{x}, \mathrm{y})\right)\right)
$$

Initial Tape Contents

The initial contents of the tape are $[\mathbb{A}]_{<}$.

$$
\begin{array}{rl}
\forall \mathrm{x} & \mathrm{x} \leq n \rightarrow T_{1}(1, \mathrm{x}) \wedge \\
& \mathrm{x} \leq n^{a} \rightarrow\left(T_{1}(1, \mathrm{x}+n+1) \leftrightarrow R_{1}\left(\left.\mathrm{x}\right|_{a}\right)\right)
\end{array}
$$

where,

$$
x<n^{a} \quad: \bigwedge_{i \leq(k-a)} x_{i}=0
$$

Note: This formula does not depend on the structure \mathbb{A} in any way.

The tape does not change except under the head

$$
\forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{z}\left(\mathrm{y} \neq \mathrm{z} \rightarrow\left(\bigwedge_{\sigma}\left(H(\mathrm{x}, \mathrm{y}) \wedge T_{\sigma}(\mathrm{x}, \mathrm{z}) \rightarrow T_{\sigma}(\mathrm{x}+1, \mathrm{z})\right)\right)\right.
$$

Each step is according to δ.

$$
\begin{aligned}
\forall \mathrm{x} \forall \mathrm{y} \bigwedge_{\sigma} \bigwedge_{q}(& \left.H(\mathrm{x}, \mathrm{y}) \wedge S_{q}(\mathrm{x}) \wedge T_{\sigma}(\mathrm{x}, \mathrm{y})\right) \\
& \rightarrow \bigvee_{\Delta}\left(H\left(\mathrm{x}+1, \mathrm{y}^{\prime}\right) \wedge S_{q^{\prime}}(\mathrm{x}+1) \wedge T_{\sigma^{\prime}}(\mathrm{x}+1, \mathrm{y})\right)
\end{aligned}
$$

where Δ is the set of all triples $\left(q^{\prime}, \sigma^{\prime}, D\right)$ such that $\left((q, \sigma),\left(q^{\prime}, \sigma^{\prime}, D\right)\right) \in \delta$ and

$$
y^{\prime}= \begin{cases}y & \text { if } D=S \\ y-1 & \text { if } D=L \\ y+1 & \text { if } D=R\end{cases}
$$

Finally, some accepting state is reached

$$
\exists x S_{a c c}(x)
$$

NP

Recall that a language L is in NP if, and only if,

$$
L=\{x \mid \exists y R(x, y)\}
$$

where R is polynomial-time decidable and polynomially-balanced.
Fagin's theorem tells us that polynomial-time decidability can, in some sense, be replaced by first-order definability.

co-NP

USO—universal second-order logic consists of those formulas of second-order logic of the form:

$$
\forall X_{1} \cdots \forall X_{k} \phi
$$

where ϕ is a first-order formula.
A corollary of Fagin's theorem is that a class \mathcal{C} of finite structures is definable by a sentence of universal second-order logic if, and only if, its complement is decidable by a nondeterminisitic machine running in polynomial time.

$$
\mathrm{USO}=\mathrm{co}-\mathrm{NP}
$$

Second-Order Alternation Hierarchy

We can define further classes by allowing other second-order quantifier prefixes.
$\Sigma_{1}^{1}=\mathrm{ESO}$
$\Pi_{1}^{1}=$ USO
\sum_{n+1}^{1} is the collection of properties definable by a sentence of the form:
$\exists X_{1} \cdots \exists X_{k} \phi$ where ϕ is a Π_{n}^{1} formula.
Π_{n+1}^{1} is the collection of properties definable by a sentence of the form:
$\forall X_{1} \cdots \forall X_{k} \phi$ where ϕ is a Σ_{n}^{1} formula.
Note: every formula of second-order logic is Σ_{n}^{1} and Π_{n}^{1} for some n.

Polynomial Hierarchy

We have, for each n :

$$
\Sigma_{n}^{1} \cup \Pi_{n}^{1} \subseteq \Sigma_{n+1}^{1} \cap \Pi_{n+1}^{1}
$$

The classes together form the polynomial hierarchy or PH.
$\mathrm{NP} \subseteq \mathrm{PH} \subseteq \mathrm{PSPACE}$
$P=N P$ if, and only if, $P=P H$

