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Descriptive Complexity

Descriptive Complexity provides an alternative perspective on
Computational Complexity.

Computational Complexity

• Measure use of resources (space, time, etc.) on a machine model of
computation;

• Complexity of a language�i.e. a set of strings.

Descriptive Complexity

• Complexity of a class of structures�e.g. a collection of graphs.

• Measure the complexity of describing the collection in a formal logic,
using resources such as variables, quanti�ers, higher-order operators,
etc.

There is a fascinating interplay between the views.
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Signature and Structure

In general a signature (or vocabulary) σ is a �nite sequence of relation,
function and constant symbols:

σ = (R1, . . . ,Rm, f1, . . . , fn, c1, . . . , cp)

where, associated with each relation and function symbol is an arity.
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Structure

A structure A over the signature σ is a tuple:

A = (A,RA
1
, . . . ,RA

m, f
A
1
, . . . , f An , c

A
1
, . . . , cAl ),

where,

• A is a non-empty set, the universe of the strucure A,
• each RA

i is a relation over A of the appropriate arity.

• each f Ai is a function over A of the appropriate arity.

• each cAi is an element of A.
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First-order Logic

Formulas of �rst-order logic are formed from the signature σ and an
in�nite collection X of variables as follows.

terms � c , x , f (t1, . . . , ta)

Formulas are de�ned by induction:

• atomic formulas � R(t1, . . . , ta), t1 = t2
• Boolean operations � ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ
• �rst-order quanti�ers � ∃xϕ, ∀xϕ
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Queries

A formula ϕ with free variables among x1, . . . , xn de�nes a map Q from
structures to relations:

Q(A) = {a | A |= ϕ[a]}.

Any such map Q which associates to every structure A a (n-ary) relation
on A, and is isomorphism invariant, is called a (n-ary) query.

Q is isomorphism invariant if, whenever f : A → B is an isomorphism
between A and B, it is also an isomorphism between (A,Q(A)) and
(B,Q(B)).

If n = 0, we can regard the query as a map from structures to {0, 1}�a
Boolean query.
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Graphs

For example, take the signature (E ), where E is a binary relation symbol.

Finite structures (V ,E ) of this signature are directed graphs.

Moreover, the class of such �nite structures satisfying the sentence

∀x¬Exx ∧ ∀x∀y(Exy → Eyx)

can be identi�ed with the class of (loop-free, undirected) graphs.
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Complexity

For a �rst-order sentence ϕ, we ask what is the computational complexity
of the problem:

Input: a structure A
Decide: if A |= ϕ

In other words, how complex can the collection of �nite models of ϕ be?

In order to talk of the complexity of a class of �nite structures, we need
to �x some way of representing �nite structures as strings.
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Representing Structures as Strings

We use an alphabet Σ = {0, 1,#,−}.
For a structure A = (A,R1, . . . ,Rm, f1, . . . , fl), �x a linear order < on
A = {a1, . . . , an}.
Ri (of arity k) is encoded by a string [Ri ]< of 0s and 1s of length nk .

fi is encoded by a string [fi ]< of 0s, 1s and −s of length nk log n.

[A]< = 1 · · · 1︸ ︷︷ ︸
n

#[R1]<# · · ·#[Rm]<#[f1]<# · · ·#[fl ]<

The exact string obtained depends on the choice of order.
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Naïve Algorithm

The straightforward algorithm proceeds recursively on the structure of ϕ:

• Atomic formulas by direct lookup.

• Boolean connectives are easy.

• If ϕ ≡ ∃x ψ then for each a ∈ A check whether

(A, c 7→ a) |= ψ[c/x ],

where c is a new constant symbol.

This runs in time O(lnm) and O(m log n) space, where m is the nesting
depth of quanti�ers in ϕ.

Mod(ϕ) = {A | A |= ϕ}

is in logarithmic space and polynomial time.
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Complexity of First-Order Logic

The following problem:
FO satisfaction

Input: a structure A and a �rst-order sentence ϕ
Decide: if A |= ϕ

is PSPACE-complete.

It follows from the O(lnm) and O(m log n) space algorithm that the
problem is in PSPACE.

How do we prove completeness?

Anuj Dawar Logic and Complexity



QBF

We de�ne quanti�ed Boolean formulas inductively as follows, from a set
X of propositional variables.

• A propositional constant T or F is a formula

• A propositional variable X ∈ X is a formula

• If ϕ and ψ are formulas then so are: ¬ϕ, ϕ ∧ ψ and ϕ ∨ ψ
• If ϕ is a formula and X is a variable then ∃X ϕ and ∀X ϕ are
formulas.

Say that an occurrence of a variable X is free in a formula ϕ if it is not
within the scope of a quanti�er of the form ∃X or ∀X .
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QBF

Given a quanti�ed Boolean formula ϕ and an assignment of truth values
to its free variables, we can ask whether ϕ evaluates to true or false.
In particular, if ϕ has no free variables, then it is equivalent to either true
or false.

QBF is the following decision problem:

Input: a quanti�ed Boolean formula ϕ with no free variables.
Decide: whether ϕ evaluates to true.
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Complexity of QBF

Note that a Boolean formula ϕ without quanti�ers and with variables
X1, . . . ,Xn is satis�able if, and only if, the formula

∃X1 · · · ∃Xn ϕ is true.

Similarly, ϕ is valid if, and only if, the formula

∀X1 · · · ∀Xn ϕ is true.

Thus, SAT ≤L QBF and VAL ≤L QBF and so QBF is NP-hard and
co-NP-hard.
In fact, QBF is PSPACE-complete.
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PSPACE-hardness

To prove that QBF is PSPACE-hard, we want to show:

Given a machine M with a polynomial space bound and an
input x , we can de�ne a quanti�ed Boolean formula ϕMx which
evaluates to true if, and only if, M accepts x .

Moreover, ϕMx can be computed from x in polynomial time (or
even logarithmic space).

The number of distinct con�gurations of M on input x is bounded by 2n
k

for some k (n = |x |).
Each con�guration can be represented by nk bits.
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Constructing ϕM
x

We use tuples A,B of nk Boolean variables each to encode con�gurations
of M.

Inductively, we de�ne a formula ψi (A,B) which is true if the con�guration
coded by B is reachable from that coded by A in at most 2i steps.

ψ0(A,B) ≡ �A = B� ∨ “A →M B�
ψi+1(A,B) ≡ ∃Z∀X∀Y [(X = A ∧ Y = Z) ∨ (X = Z ∧ Y = B)

⇒ ψi (X,Y)]
ϕ ≡ ψnk (A,B) ∧ “A = start� ∧ “B = accept�
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Reducing QBF to FO satisfaction

We have seen that FO satisfaction is in PSPACE.
To show that it is PSPACE-complete, it su�ces to show that
QBF ≤L FO sat.

The reduction maps a quanti�ed Boolean formula ϕ to a pair (A, ϕ∗)
where A is a structure with two elements: 0 and 1 and one unary relation
T with TA = {1}.

ϕ∗ is obtained from ϕ by a simple inductive de�nition.
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Expressive Power of FO

For any �xed sentence ϕ of �rst-order logic, the class of structures
Mod(ϕ) is in L.

There are computationally easy properties that are not de�nable in
�rst-order logic.

• There is no sentence ϕ of �rst-order logic such that A |= ϕ if, and
only if, |A| is even.

• There is no formula ϕ(E , x , y) that de�nes the transitive closure of a
binary relation E .

We will see proofs of these facts later on.
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Second-Order Logic

We extend �rst-order logic by a set of relational variables.

For each m ∈ N there is an in�nite collection of variables
Vm = {Vm

1
,Vm

2
, . . .} of arity m.

Second-order logic extends �rst-order logic by allowing second-order
quanti�ers

∃X ϕ for X ∈ Vm

A structure A satis�es ∃X ϕ if there is an m-ary relation R on the
universe of A such that (A,X → R) satis�es ϕ.
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Existential Second-Order Logic

ESO�existential second-order logic consists of those formulas of
second-order logic of the form:

∃X1 · · · ∃Xk ϕ

where ϕ is a �rst-order formula.
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Examples

Evennness
This formula is true in a structure if, and only if, the size of the domain is
even.
∃B∃S ∀x∃yB(x , y) ∧ ∀x∀y∀zB(x , y) ∧ B(x , z) → y = z

∀x∀y∀zB(x , z) ∧ B(y , z) → x = y
∀x∀yS(x) ∧ B(x , y) → ¬S(y)
∀x∀y¬S(x) ∧ B(x , y) → S(y)
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Examples

Transitive Closure
This formula is true of a pair of elements a, b in a structure if, and only
if, there is an E -path from a to b.
∃P ∀x∀y P(x , y) → E (x , y)

∃xP(a, x) ∧ ∃xP(x , b) ∧ ¬∃xP(x , a) ∧ ¬∃xP(b, x)
∀x∀y(P(x , y) → ∀z(P(x , z) → y = z))
∀x∀y(P(x , y) → ∀z(P(z , y) → x = z))
∀x((x ̸= a ∧ ∃yP(x , y)) → ∃zP(z , x))
∀x((x ̸= b ∧ ∃yP(y , x)) → ∃zP(x , z))
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Examples

3-Colourability
The following formula is true in a graph (V ,E ) if, and only if, it is
3-colourable.
∃R∃B∃G ∀x(Rx ∨ Bx ∨ Gx)∧

∀x( ¬(Rx ∧ Bx) ∧ ¬(Bx ∧ Gx) ∧ ¬(Rx ∧ Gx))∧
∀x∀y(Exy → ( ¬(Rx ∧ Ry)∧

¬(Bx ∧ By)∧
¬(Gx ∧ Gy)))
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Fagin's Theorem

Theorem (Fagin)
A class C of �nite structures is de�nable by a sentence of existential
second-order logic if, and only if, it is decidable by a nondeterminisitic
machine running in polynomial time.

ESO = NP

One direction is easy: Given A and ∃P1 . . . ∃Pmϕ.

a nondeterministic machine can guess an interpretation for
P1, . . . ,Pm and then verify ϕ.
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Fagin's Theorem

Given a machine M and an integer k , there is an ESO sentence ϕ such
that A |= ϕ if, and only if, M accepts [A]<, for some order < in nk steps.

We construct a �rst-order formula ϕM,k such that

(A, <,X) |= ϕM,k ⇔ X codes an accepting computation of M
of length at most nk on input [A]<

So, A |= ∃ < ∃XϕM,k if, and only if, there is some order < on A so that
M accepts [A]< in time nk .
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Order

The formula ϕM,k is built up as the conjunction of a number of formulas.
The �rst of these simply says that < is a linear order

∀x(¬x < x)∧
∀x∀y(x < y → ¬y < x)∧
∀x∀y(x < y ∨ y < x ∨ x = y)
∀x∀y∀z(x < y ∧ y < z → x < z)

We can use a linear order on the elements of A to de�ne a lexicographic
order on k-tuples.

Anuj Dawar Logic and Complexity



Ordering Tuples

If x = x1, . . . , xk and y = y1, . . . , yk are k-tuples of variables, we use
x = y as shorthand for the formula

∧
i≤k xi = yi and x < y as shorthand

for the formula ∨
i≤k

(
(
∧
j<i

xj = yj) ∧ xi < yi
)

We also write y = x+ 1 for the following formula:

x < y ∧ ∀z
(
x < z → (y = z ∨ y < z)

)

Anuj Dawar Logic and Complexity



Constructing the Formula

Let M = (K ,Σ, s, δ).

The tuple X of second-order variables appearing in ϕM,k contains the
following:

Sq a k-ary relation symbol for each q ∈ K
Tσ a 2k-ary relation symbol for each σ ∈ Σ
H a 2k-ary relation symbol
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Intuitively, these relations are intended to capture the following:

• Sq(x) � the state of the machine at time x is q.

• Tσ(x, y) � at time x, the symbol at position y of the tape is σ.

• H(x, y) � at time x, the tape head is pointing at tape cell y.

We now have to see how to write the formula ϕM,k , so that it enforces
these meanings.
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Initial state is s and the head is initially at the beginning of the tape.

∀x
(
(∀y x ≤ y) → Ss(x) ∧ H(x, x)

)
The head is never in two places at once

∀x∀y
(
H(x, y) → (∀z(y ̸= z) → (¬H(x, z)))

)
The machine is never in two states at once

∀x
∧
q

(Sq(x) →
∧
q′ ̸=q

(¬Sq′(x)))

Each tape cell contains only one symbol

∀x∀y
∧
σ

(Tσ(x, y) →
∧

σ′ ̸=σ

(¬Tσ′(x, y)))
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Initial Tape Contents

The initial contents of the tape are [A]<.

∀x x ≤ n → T1(1, x)∧
x ≤ na → (T1(1, x+ n + 1) ↔ R1(x|a))

. . .

where,
x < na :

∧
i≤(k−a)

xi = 0

Note: This formula does not depend on the structure A in any way.

Anuj Dawar Logic and Complexity



The tape does not change except under the head

∀x∀y∀z(y ̸= z → (
∧
σ

(H(x, y) ∧ Tσ(x, z) → Tσ(x+ 1, z)))

Each step is according to δ.

∀x∀y
∧
σ

∧
q

(H(x, y) ∧ Sq(x) ∧ Tσ(x, y))

→
∨
∆

(H(x+ 1, y′) ∧ Sq′(x+ 1) ∧ Tσ′(x+ 1, y))
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where ∆ is the set of all triples (q′, σ′,D) such that
((q, σ), (q′, σ′,D)) ∈ δ and

y′ =

 y if D = S
y − 1 if D = L
y + 1 if D = R

Finally, some accepting state is reached

∃x Sacc(x)
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NP

Recall that a language L is in NP if, and only if,

L = {x | ∃yR(x , y)}

where R is polynomial-time decidable and polynomially-balanced.

Fagin's theorem tells us that polynomial-time decidability can, in some
sense, be replaced by �rst-order de�nability.
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co-NP

USO�universal second-order logic consists of those formulas of
second-order logic of the form:

∀X1 · · · ∀Xk ϕ

where ϕ is a �rst-order formula.

A corollary of Fagin's theorem is that a class C of �nite structures is
de�nable by a sentence of universal second-order logic if, and only if, its
complement is decidable by a nondeterminisitic machine running in
polynomial time.

USO = co-NP
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Second-Order Alternation Hierarchy

We can de�ne further classes by allowing other second-order quanti�er
pre�xes.
Σ1

1
= ESO

Π1

1
= USO

Σ1

n+1
is the collection of properties de�nable by a sentence of the form:

∃X1 · · · ∃Xk ϕ where ϕ is a Π1

n formula.
Π1

n+1
is the collection of properties de�nable by a sentence of the form:

∀X1 · · · ∀Xk ϕ where ϕ is a Σ1

n formula.

Note: every formula of second-order logic is Σ1

n and Π1

n for some n.
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Polynomial Hierarchy

We have, for each n:

Σ1

n ∪ Π1

n ⊆ Σ1

n+1
∩ Π1

n+1

The classes together form the polynomial hierarchy or PH.

NP ⊆ PH ⊆ PSPACE
P = NP if, and only if, P = PH
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