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What is This Course About?

Complexity Theory is the study of what makes some algorithmic
problems inherently di�cult to solve.

Di�cult in the sense that there is no e�cient algorithm.

Mathematical Logic is the study of formal mathematical reasoning.

It gives a mathematical account of meta-mathematical notions

such as structure, language and proof.

In this course we will see how logic can be used to study complexity
theory. In particular, we will look at how complexity relates to de�nability.
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Computational Complexity

Complexity is usually de�ned in terms of running time or space
asymptotically required by an algorithm. E.g.

• Merge Sort runs in time O(n log n).

• Any sorting algorithm that can sort an arbitrary list of n numbers
requires time Ω(n log n).

Complexity theory is concerned with the hardness of problems rather than
speci�c algorithms.

We will mostly be concerned with broad classi�cation of

complexity: logarithmic vs. polynomial vs. exponential.

Anuj Dawar Logic and Complexity



Graph Properties

For simplicity, we often focus on decision problems.

As an example, consider the following three decision problems on graphs.

1. Given a graph G = (V ,E ) does it contain a triangle?

2. Given a directed graph G = (V ,E ) and two of its vertices s, t ∈ V ,
does G contain a path from s to t?

3. Given a graph G = (V ,E ) is it 3-colourable? That is,

is there a function χ : V → {1, 2, 3} so that whenever (u, v) ∈ E ,
χ(u) ̸= χ(v).
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Graph Properties

1. Checking if G contains a triangle can be solved in polynomial time

and logarithmic space.

2. Checking if G contains a path from s to t can be done in polynomial

time.
Can it be done in logarithmic space?

Unlikely. It is NL-complete.

3. Checking if G is 3-colourable can be done in exponential time and
polynomial space.
Can it be done in polynomial time?

Unlikely. It is NP-complete.
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Logical De�nability

In what kind of formal language can these decision problems be speci�ed
or de�ned?

The graph G = (V ,E ) contains a triangle.

∃x ∈ V ∃y ∈ V ∃z ∈ V (x ̸= y∧y ̸= z∧x ̸= z∧E (x , y)∧E (x , z)∧E (y , z))

The other two properties are provably not de�nable with only �rst-order
quanti�cation over vertices.
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Second-Order Quanti�ers

3-Colourability and reachability can be de�ned with quanti�cation over
sets of vertices.

∃R ⊆ V ∃B ⊆ V ∃G ⊆ V
∀x(Rx ∨ Bx ∨ Gx)∧
∀x(¬(Rx ∧ Bx) ∧ ¬(Bx ∧ Gx) ∧ ¬(Rx ∧ Gx))∧
∀x∀y(Exy → (¬(Rx ∧ Ry)∧

¬(Bx ∧ By)∧
¬(Gx ∧ Gy)))

∀S ⊆ V (s ∈ S ∧ ∀x∀y((x ∈ S ∧ E (x , y)) → y ∈ S) → t ∈ S)
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Course Outline

This course is concerned with the questions of (1) how de�nability relates
to computational complexity and (2) how to analyse de�nability.

1. Complexity Theory�a review of the major complexity classes and
their interrelationships (3L).

2. First-order and second-order logic�their expressive power and
computational complexity (3L).

3. Lower bounds on expressive power�the use of games and locality
(3L).

4. Fixed-point logics and descriptive complexity (3L).

5. Logics with counting and capturing P (4L).
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Useful Information

Some useful books:

• C.H. Papadimitriou. Computational Complexity. Addison-Wesley.
1994.

• S. Arora and B. Barak. Computational Complexity. CUP. 2009.

• H.-D. Ebbinghaus and J. Flum. Finite Model Theory (2nd ed.) 1999.

• N. Immerman. Descriptive Complexity. Springer. 1999.

• L. Libkin. Elements of Finite Model Theory. Springer. 2004.

• E. Grädel et al. Finite Model Theory and its Applications. Springer.
2007.

Course website: http://www.cl.cam.ac.uk/teaching/2223/L15/
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Decision Problems and Algorithms

Formally, a decision problem is a set of strings L ⊆ Σ∗ over a �nite
alphabet Σ.

The problem is decidable if there is an algorithm which given any input
x ∈ Σ∗ will determine whether x ∈ L or not.

The notion of an algorithm is formally de�ned by a machine model: A
Turing Machine; Random Access Machine or even a Java program.
The choice of machine model doesn't a�ect what is or is not decidable.

Similarly, we say a function f : Σ∗ → ∆∗ is computable if there is an
algorithm which takes input x ∈ Σ∗ and gives output f (x).
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Turing Machines

For our purposes, a Turing Machine consists of:

• K � a �nite set of states;

• Σ � a �nite set of symbols, including ⊔ and ▷.

• s ∈ K � an initial state;

• δ : (K × Σ) → (K ∪ {acc, rej})× Σ× {L,R,S}
A transition function that speci�es, for each state and symbol a next
state (or accept acc or reject rej), a symbol to overwrite the current
symbol, and a direction for the tape head to move (L � left, R �
right, or S - stationary)
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Con�gurations

A complete description of the con�guration of a machine can be given if
we know what state it is in, what are the contents of its tape, and what
is the position of its head. This can be summed up in a simple triple:
De�nition

A con�guration is a triple (q,w , u), where q ∈ K and w , u ∈ Σ⋆

The intuition is that (q,w , u) represents a machine in state q with the
string wu on its tape, and the head pointing at the last symbol in w .

The con�guration of a machine completely determines the future
behaviour of the machine.
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Computations

Given a machine M = (K ,Σ, s, δ) we say that a con�guration (q,w , u)
yields in one step (q′,w ′, u′), written

(q,w , u) →M (q′,w ′, u′)

if

• w = va ;

• δ(q, a) = (q′, b,D); and

• either D = L and w ′ = v u′ = bu
or D = S and w ′ = vb and u′ = u
or D = R and w ′ = vbc and u′ = x , where u = cx . If u is empty,
then w ′ = vb⊔ and u′ is empty.
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Computations

The relation →⋆
M is the re�exive and transitive closure of →M .

A sequence of con�gurations c1, . . . , cn, where for each i , ci →M ci+1, is
called a computation of M.
The language L(M) ⊆ Σ⋆ accepted by the machine M is the set of
strings

{x | (s, ▷, x) →⋆
M (acc,w , u) for some w and u}

A machine M is said to halt on input x if for some w and u, either
(s, ▷, x) →⋆

M (acc,w , u) or (s, ▷, x) →⋆
M (rej,w , u)
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Complexity

For any function f : IN → IN, we say that a language L is in TIME(f (n))
if there is a machine M = (K ,Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f (n)).

Similarly, we de�ne SPACE(f (n)) to be the languages accepted by a
machine which uses O(f (n)) tape cells on inputs of length n.
In de�ning space complexity, we assume a machine M, which has a
read-only input tape, and a separate work tape. We only count cells on
the work tape towards the complexity.
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Nondeterminism

If, in the de�nition of a Turing machine, we relax the condition on δ
being a function and instead allow an arbitrary relation, we obtain a
nondeterministic Turing machine.

δ ⊆ (K × Σ)× (K ∪ {acc, rej} × Σ× {R, L,S}).

The yields relation →M is also no longer functional.

We still de�ne the language accepted by M by:

L(M) = {x | (s, ▷, x) →⋆
M (acc,w , u) for some w and u}

though, for some x , there may be computations leading to accepting as
well as rejecting states.
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Nondeterministic Complexity

For any function f : IN → IN, we say that a language L is in
NTIME(f (n)) if there is a nondeterministic machine M = (K ,Σ, s, δ),
such that:

• L = L(M); and

• The running time of M is O(f (n)).

The last statement means that for each x ∈ L(M), there is a computation
of M that accepts x and whose length is bounded by O(f (|x |)).

Similarly, we de�ne NSPACE(f (n)) to be the languages accepted by a
nondeterminstic machine which uses O(f (n)) tape cells on inputs of
length n.

As before, in reckoning space complexity, we only count work space.
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Computation Trees

With a nondeterministic machine, each con�guration gives rise to a tree
of successive con�gurations.

(s, ▷, x)

(q0, u0,w0) (q1, u1,w1)
(q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
.
.
.

.

.

.

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)
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Complexity Classes

A complexity class is a collection of languages determined by three things:

• A model of computation (such as a deterministic Turing machine, or
a nondeterministic TM, or a parallel Random Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to bound
the amount of resource we can use.
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Polynomial Bounds

By making the bounds broad enough, we can make our de�nitions fairly
independent of the model of computation.

The collection of languages recognised in polynomial time is the

same whether we consider Turing machines, register machines,

or any other deterministic model of computation.

The collection of languages recognised in linear time, on the other

hand, is di�erent on a one-tape and a two-tape Turing machine.

We can say that being recognisable in polynomial time is a property of
the language, while being recognisable in linear time is sensitive to the
model of computation.
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Polynomial Time Computation

P =
∞⋃
k=1

TIME(nk)

The class of languages decidable in polynomial time.
The complexity class P plays an important role in complexity theory.

• It is robust, as explained.

• It serves as our formal de�nition of what is feasibly computable
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Nondeterministic Polynomial Time

NP =
∞⋃
k=1

NTIME(nk)

That is, NP is the class of languages accepted by a nondeterministic

machine running in polynomial time.

Since a deterministic machine is just a nondeterministic machine in which
the transition relation is functional, P ⊆ NP.
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Succinct Certi�cates

The complexity class NP can be characterised as the collection of
languages of the form:

L = {x | ∃y R(x , y)}

where R is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.

2. R is polynomially balanced. That is, there is a polynomial p such
that if R(x , y) and the length of x is n, then the length of y is no
more than p(n).
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Equivalence of De�nitions

If L = {x | ∃y R(x , y)} we can de�ne a nondeterministic machine M that
accepts L.

The machine �rst uses nondeterministic branching to guess a value for y ,
and then checks whether R(x , y) holds.

In the other direction, suppose we are given a nondeterministic machine
M which runs in time p(n).
Suppose that for each (q, σ) ∈ K × Σ (i.e. each state, symbol pair) there
are at most k elements in δ(q, σ).
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Equivalence of De�nitions

For y a string over the alphabet {1, . . . , k}, we de�ne the relation
R(x , y) by:

• |y | ≤ p(|x |); and
• the computation of M on input x which, at step i takes the �y [i ]th
transition� is an accepting computation.

Then, L(M) = {x | ∃y R(x , y)}
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Space Complexity Classes

L = SPACE(log n)
The class of languages decidable in logarithmic space.

NL = NSPACE(log n)
The class of languages decidable by a nondeterministic machine in

logarithmic space.

PSPACE =
⋃∞

k=1
SPACE(nk)
The class of languages decidable in polynomial space.

NPSPACE =
⋃∞

k=1
NSPACE(nk)
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Inclusions between Classes

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

where EXP =
⋃∞

k=1
TIME(2n

k

)

Of these, the following are direct from the de�nitions:

L ⊆ NL

P ⊆ NP

PSPACE ⊆ NPSPACE
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NP ⊆ PSPACE

To simulate a nondeterministic machine M running in time t(n) by a
deterministic one, it su�ces to carry out a depth-�rst search of the
computation tree.
We keep a counter to cut o� branches that exceed t(n) steps.

The space required is:

• a counter to count up to t(n); and

• a stack of con�gurations, each of size at most O(t(n)).

The depth of the stack is at most t(n).
Thus, if t is a polynomial, the total space required is polynomial.
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NL ⊆ P

Given a nondeterministic machine M that works with work space bounded
by s(n) and an input x of length n, there is some constant c such that

the total number of possible con�gurations of M within space

bounds s(n) is bounded by n · cs(n).

De�ne the con�guration graph of M, x to be the graph whose nodes are
the possible con�gurations, and there is an edge from i to j if, and only
if, i →M j .
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Reachability in the Con�guration Graph

M accepts x if, and only if, some accepting con�guration is reachable
from the starting con�guration in the con�guration graph of M, x .

Using an O(n2) algorithm for Reachability, we get that M can be
simulated by a deterministic machine operating in time

c ′(ncs(n))2 ∼ c ′c2(log n+s(n)) ∼ d (log n+s(n))

for some constant d .

When s(n) = O(log n), this is polynomial and so NL ⊆ P.
When s(n) is polynomial this is exponential in n and so
NPSPACE ⊆ EXP.

Anuj Dawar Logic and Complexity



Nondeterministic Space Classes

If Reachability were solvable by a deterministic machine with logarithmic
space, then

L = NL.

In fact, Reachability is solvable by a deterministic machine with space
O((log n)2).

This implies
NSPACE(s(n)) ⊆ SPACE((s(n)2)).

In particular PSPACE = NPSPACE.
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Reachability in O((log n)2)

O((log n)2) space Reachability algorithm:

Path(a, b, i)
if i = 1 and a ̸= b and (a, b) is not an edge reject
else if (a, b) is an edge or a = b accept
else, for each node x , check:

1. is there a path a− x of length i/2; and

2. is there a path x − b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits of
information kept at each stage is 3 log n.
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Inclusions between Classes

This leaves us with the following:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Hierarchy Theorems proved by diagonalization can show that:

L ̸= PSPACE NL ̸= NPSPACE P ̸= EXP

For other inclusions above, it remains an open question whether they are
strict.
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Complement Classes

If we interchange accepting and rejecting states in a
deterministic machine that accepts the language L, we get one that accepts

L. If a language L ∈ P, then also L ∈ P.

Complexity classes de�ned in terms of nondeterministic machine models
are not necessarily closed under complementation of languages.

De�ne,
co-NP � the languages whose complements are in NP.
co-NL � the languages whose complements are in NL.
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Relationships

P ⊆ NP ∩ co-NP and any of the situations is consistent with our present
state of knowledge:

• P = NP = co-NP

• P = NP ∩ co-NP ̸= NP ̸= co-NP

• P ̸= NP ∩ co-NP = NP = co-NP

• P ̸= NP ∩ co-NP ̸= NP ̸= co-NP

It follows from the fact that PSPACE = NPSPACE that NPSPACE is
closed under complementation.

Also, Immerman and Szelepcsényi showed that NL = co-NL.
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Reductions

Given two languages L1 ⊆ Σ⋆
1
, and L2 ⊆ Σ⋆

2
,

a reduction of L1 to L2 is a computable function

f : Σ⋆
1
→ Σ⋆

2

such that for every string x ∈ Σ⋆
1
,

f (x) ∈ L2 if, and only if, x ∈ L1
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Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1 is
polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(log n), we write

L1 ≤L L2
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Reductions 2

If L1 ≤ L2 we understand that L1 is no more di�cult to solve than L2.

That is to say, for any of the complexity classes C we consider,

If L1 ≤ L2 and L2 ∈ C, then L1 ∈ C

We can get an algorithm to decide L1 by �rst computing f , and then
using the C-algorithm for L2.
Provided that C is closed under such reductions.
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Completeness

The usefulness of reductions is that they allow us to establish the relative
complexity of problems, even when we cannot prove absolute lower
bounds.

Cook and independently Levin �rst showed that there are problems in
NP that are maximally di�cult.

For any complexity class C, a language L is said to be C-hard if for every
language A ∈ C, A ≤ L.

A language L is C-complete if it is in C and it is C-hard.
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Complete Problems

Examples of complete problems for various complexity classes.

NL
Reachability

P
Game, Circuit Value Problem

NP Satis�ability of Boolean Formulas, Graph 3-Colourability,
Hamiltonian Cycle

co-NP
Validity of Boolean Formulas, Non 3-colourability

PSPACE
Geography, The game of HEX
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P-complete Problems

Game
Input: A directed graph G = (V ,E ) with a partition V = V1∪V2

of the vertices and two distinguished vertices s, t ∈ V .

Decide: whether Player 1 can force a token from s to t in the

game where when the token is on v ∈ V1, Player 1 moves it along

an edge leaving v and when it is on v ∈ V2, Player 2 moves it

along an edge leaving v .
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Circuit Value Problem

A Circuit is a directed acyclic graph G = (V ,E ) where each node has
in-degree 0, 1 or 2 and there is exactly one vertex t with no outgoing
edges, along with a labelling which assigns:

• to each node of indegree 0 a value of 0 or 1

• to each node of indegree 1 a label ¬
• to each node of indegree 2 a label ∧ or ∨

The problem CVP is, given a circuit, decide if the target node t evaluates
to 1.
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NP-complete Problems

SAT
Input: A Boolean formula ϕ
Decide: if there is an assignment of truth values to the variables

of ϕ that makes ϕ true.

Hamiltonicity

Input: A graph G = (V ,E )
Decide: if there is a cycle in G that visits every vertex exactly

once.
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co-NP-complete Problems

VAL
Input: A Boolean formula ϕ
Decide: if every assignment of truth values to the variables of ϕ
makes ϕ true.

Non-3-colourability

Input: A graph G = (V ,E )
Decide: if there is no function χ : V → {1, 2, 3} such that the

two endpoints of every edge are di�erently coloured.
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PSPACE-complete Problems

Geography is very much like Game but now players are not allowed to
visit a vertex that has been previously visitied.

HEX is a game played by two players on a graph G = (V ,E ) with a
source and target s, t ∈ V .
The two players take turns selecting vertices from V�neither player can
choose a vertex that has been previously selected. Player 1 wins if, at any
point, the vertices she has selected include a path from s to t. Player 2
wins if all vertices have been selected and no such path is formed.
The problem is to decide which player has a winning strategy.
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