1. In the lecture we saw an illustration of a construction to show that acyclicity of graphs is not definable in first-order logic. Write out a proof of this result.

Prove that acyclicity is not definable in Mon.Σ₁. Is it definable in Mon.Π₁?

2. Prove (using Hanf’s theorem or otherwise) that 3-colourability of graphs is not definable in first-order logic.

Graph 3-colourability (and, indeed, 2-colourability) are definable in Mon.Σ₁. Are they definable in Mon.Π₁? Are they definable in universal second-order logic?

3. Prove the lemma stated in the lecture that any formula that is positive in the relation symbol R defines a monotone operator.

4. Prove that the formula of LFP $\neg[lfp_{R,x}\neg\phi(R/\neg R)](x)$, where $\phi(R/\neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$, defines the greatest fixed point of the operator defined by ϕ.

5. In the lectures, we saw how definitions by simultaneous induction can be replaced by a single application of the lfp operator. In this exercise, you are asked to show the same for nested applications of the lfp operator.

Suppose $\phi(x,y,S,T)$ is a formula in which the relational variables S (of arity s) and T (of arity t) only appear positively, and x and y are tuples of variables of length s and t respectively. Show that (for any t-tuple of terms t) the predicate expression

$$[lfp_{S,x}(lfp_{T,y}\phi(t))]$$

is equivalent to an expression with just one application of lfp.

6. Consider a vocabulary consisting of two unary relations P and O, one binary relation E and two constants s and t. We say that a structure $A = (A, P, O, E, s, t)$ in this vocabulary is an arena if $P \cup O = A$ and $P \cap O = \emptyset$. That is, P and O partition the universe into two disjoint sets.

An arena defines the following game played between a player and an opponent. The game involves a token that is initially placed on the element s. At each move, if the token is currently on an element of P it is player who plays and if it is on an element of O, it is opponent who plays. At each move, if the token is on an element a, the one who plays choses an element b such that $(a, b) \in E$ and moves the token from a to b. If the token reaches t at any point then player has won the game.
We define GAME to be the class of arenas for which player has a strategy for winning the game. Note that in an arena $A = (A, P, O, E, s, t)$, player has a strategy to win from an element a if either $a \in P$ and there is some move from a so that player still has a strategy to win after that move or $a \in O$ and for every move from a, player can win after that move.

(a) Give a sentence of LFP that defines the class of structures GAME.

We say that a collection C of decision problems is closed under logarithmic space reductions if whenever $A \in C$ and $B \leq_L A$ (i.e. B is reducible to A by a logarithmic-space reduction) then $B \in C$.

The class of structures GAME defined above is known to be P-complete under logarithmic-space reductions.

(b) Explain why this, together with (a) implies that the class of problems definable in LFP is not closed under logarithmic-space reductions.

7. Give a sentence of LFP that defines the class of linear orders with an even number of elements.

8. The directed graph reachability problem is the problem of deciding, given a structure (V, E, s, t) where E is an arbitrary binary relation on V, and $s, t \in V$, whether (s, t) is in the reflexive-transitive closure of E. This problem is known to be decidable in NL.

Transitive closure logic is the extension of first-order logic with an operator tc which allows us to form formulae

$$\phi \equiv [\text{tc}_{x,y} \psi](t_1, t_2)$$

where x and y are k-tuples of variables and t_1 and t_2 are k-tuples of terms, for some k; and all occurrences of variables x and y in ψ are bound in ϕ. The semantics is given by saying, if a is an interpretation for the free variables of ϕ, then $A \models \phi[a]$ just in case $(t_{a_1}^1, t_{a_2}^2)$ is in the reflexive-transitive closure of the binary relation defined by $\psi(x, y)$ on A^k.

(a) Show that any class of structures definable by a sentence ϕ, as above, where ψ is first-order, is decidable in NL.

(b) Show that, if K is an isomorphism-closed class of structures in a relational signature including $<$, such that each structure in K interprets $<$ as a linear order and

$$\{[A]_< \mid A \in K\}$$

is decidable in NL, then there is a sentence of transitive-closure logic that defines K.

9. For a binary relation E on a set A, define its deterministic transitive closure to be the set of pairs (a, b) for which there are $c_1, \ldots, c_n \in A$ such
that \(a = c_1, b = c_n \) and for each \(i < n, c_{i+1} \) is the unique element of \(A \) with \((c_i, c_{i+1}) \in E \).

Let \(\text{DTC} \) denote the logic formed by extending first-order logic with an operator \(\text{dtc} \) with syntax analogous to \(\text{tc} \) above, where \(\text{dtc}_{x,y} \psi \) defines the deterministic transitive closure of \(\psi(x,y) \).

(a) Show that every sentence of \(\text{DTC} \) defines a class of structures decidable in \(L \).

(b) Show that, if \(K \) is an isomorphism-closed class of structures in a relational signature including \(< \), such that each structure in \(K \) interprets \(< \) as a linear order and

\[
\{ [A]_< \mid A \in K \}
\]

is decidable in \(L \), then there is a sentence of \(\text{DTC} \) that defines \(K \).

10. On page 47 of Handout 4, the correspondence between \(k \)-pebble games and the equivalence \(\equiv^k \) is stated. This exercise asks you to prove the easy direction of that equivalence. That is, show that if Duplicator has a winning strategy in the \(k \)-pebble game for \(q \) moves starting from position \((A, a) \) and \((B, b) \) then \((A, a) \equiv^k_q (B, b) \).

11. We say that a graph \(G = (V,E) \) has a perfect matching if there is a set \(M \subseteq E \) of edges such that for every vertex \(v \in V \) there is exactly one edge in \(M \) that includes \(v \). Prove that the property of having a perfect matching is not definable in \(\text{LFP} \).

12. Let \(\mathcal{E} \) be the class of equivalence relations. That is, it consists of all structures \(\mathcal{A} = (A, R) \) where \(R \) is a binary relation on \(A \) that is reflexive, symmetric and transitive. Prove that, for any \(k \) there are no more than \(k^k \) equivalence classes of the relation \(\equiv^k \) on \(\mathcal{E} \).

Prove that \(\text{LFP} \) is no more expressive than first-order logic on \(\mathcal{E} \). That is, for any formula \(\phi \) of \(\text{LFP} \), there is a first-order formula \(\psi \) such that, for any \(\mathcal{A} \in \mathcal{E} \), \(\mathcal{A} \models \phi \) if, and only if, \(\mathcal{A} \models \psi \).

13. In Handout 5, pages 10–12, we saw a sketch of the proof that \(\text{CNF-SAT} \) is \(\text{NP} \)-complete under first-order reductions.

Define the problem \(\text{Clique} \) to be the class of structures \((V,E,U) \) where \(E \) is a binary relation on \(V \) and \(U \) is a unary relation and the graph \((V,E) \) contains a clique of size \(|U| \). Show that there is a first-order reduction from \(\text{CNF-SAT} \) to \(\text{Clique} \).

14. Give a definition of what it would mean for the complexity class \(L \) to be recursively indexable. Show that it is recursively indexable if, and only if, it has a complete problem under first-order reductions.

The complexity class \(\text{PolyLogSpace} \) is defined to be class of those problems decidable on a deterministic machine in time \(O((\log n)^k) \) for some \(k \). Show that this class has no complete problems under first-order reductions. (Hint: recall the space hierarchy theorem).
15. The aim of this exercise is to show that Hanf’s theorem can be extended to the logic with counting quantifiers. That is, write $A \equiv_C^p B$ to denote that A and B cannot be distinguished by any sentence of first-order logic with counting quantifiers that has quantifier rank at most p. Also recall that $A \simeq_r B$ denotes that A and B are Hanf equivalent with radius r (see page 21 of Handout 3). Show that for every vocabulary σ and every p there is an r such that if A and B are σ-structures, then $A \simeq_r B$ implies $A \equiv_C^p B$.
