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Structured prediction in NLP?

What could a structured output be?

Sequence of part of speech tags

Syntax tree

SQL query

Set of labels (a.ka. multi-label classification)
Sequence of words (wait for the next lecture)

ete.



Structured prediction in NLP is everywhere
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Sequences of labels, words and graphs combining them



Structured prediction definition

Given an input x (e.g. a sentence) predict y (e.g. a PoS tag sequence):
Y = arg max score(x,y)
yey
Where Y is rather large and often depends on the input (e.g. LI/ in PoS tagging)

Is this large-scale classification?
e Yes, but with many, many classes
e Yes, but with classes not fixed in advance
e Yes, but with dependencies between parts of the output

Depending on how much the difference is, you might want to just classify



Structured prediction variants

§ = arg max score(z,y)

yey
Linear models (structured perceptron) Y = arg maxw - CI)(CU, y)
yel
Generative models (HMMs) ﬁ = arg max P(:B, y) — argimax P(:z:|y)P(y)
yey yey
Discriminative probabilistic models { = arg max P(y|ac)
(conditional random fields) yey

Most of the above can use both linear and non-linear features, e.g. CRF-LSTMs



https://arxiv.org/pdf/1603.01360.pdf

Structured perceptron

gy = argmaxw - ®(z,y)
yey

We need to learn w from training data

D = {(z,y'),... (=™, yM)}

And define a joint feature map @ (x,y).
Ideas for PoS tagging? @ ° @
m seashells the




Structured perceptron features

g =argmaxw- 2(x,y) fw) () ) (DT
yey
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Two kinds of features:
e [Keatures describing dependencies in the output (without these: classification)

e [Features describing the match of the input to the output

Feature factorization, e.g. adjacent labels:
'g — argmaxw - Zz ¢(CE, 7:7 Yi, y’i—l)
yely
Does this restrict our modelling flexibility?




Perceptron training (reminder)

Input: training examples D = {(z!,y!),... (™, yM)}
Initialize weights w = (0, ..., 0)
for (z,y) € D do
Predict label g = sign(w - ¢(x))
if § # y then
Update w = w + yo(x)
end if

end for

Learn compatibility between positive class and instance




Structured Perceptron training (Collins, 2002)

Input: training examples D = {(z!,y!),... (2™, yM)}
Initialize weights w = (0, ..., 0)
for (z,y) € D do

Predict label § = arg maxw - ®(x, y) -
yey
if ¢ # y then
Update w = w + ®(x,y) — (I)(CI??Q)-
end if

end for
Compatibility between input and output

Feature factorization accelerates both decoding and feature updating
Averaging helps



https://www.aclweb.org/anthology/W02-1001/

Guess the features and weights (Xavier Carreras)

Training Data

PER - -
> ‘ g
Maria is young
. LOC -— —
Athens is big
, PER - - LOC
Jack went to Athens
- LOC - -
Argentina is  bigger
> PER PER = = LOC LOC
Jack London went to South Pacific
" ORG - - ORG

Argentina  played against Chile



Some answers

Training Data
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Weight Vector w
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Decoding

Assuming we have a trained model, decode/predict/solve the argmax/inference:

Y = arg max score(x, y; 0)
yey

Isn’t finding 8 meant to be the slow part (training)?

Decoding is often necessary for training; you need to predict to update weights
Do you know a model where training is faster than decoding?

Hidden Markov Models! (especially if you don’t do Viterbi)

Can be exact or inexact (to save computation)
T SGGGSSGSSSSSS——————————————,— S



Dynamic programming

If we have a factorized the scoring function, we can reuse the scores (optimal

substructure property), e.g.: § = argmaxw- Y., ¢(x,%, Y, Yi—1)
yey

Thus changing one part of the output, doesn’t change all/most scores

Viterbi recurrence:
1. Assume we know for position i the best sequence ending with each possible y,

2. What is the best sequence up to position i+1 for each possible Yiri?

An instance of shortest path finding in graphs



http://web.engr.oregonstate.edu/~huanlian/slides/COLING-tutorial-anim.pdf

az ¢

Viterbi in actionq
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https://web.stanford.edu/~jurafsky/slp3/8.pdf

Conditional random fields

Multinomial logistic regression reminder:

R exp(wy-P(x

ey exp(w, -¢(z))

Conditional random field is a giant of the same type (softmax and linear scoring):

exp(w-2(z,y))
cylel exp(w-®(x,y'))

P(g’):ylx,w) — 3,

The denominator is independent of y: needs to be calculated over all ys!

Often referred to as the partition function




Conditional random fields in practice

. . B exp(w-®(z,y))
P =dleiw) = = e

Factorize the scoring function:

w - (I)(x,'y) — W- Zz gb(xaiay’iayz’—l)

Dynamic programming to the rescue again: forward-backward algorithm

This allows us to train CRF by minimizing the convex negative log likelihood:
w* = argmin Y logP(y|z;w)
w (z,y)eD |

If you factorize the probability distribution: P(g = y|z; w) = H P(y;ly; 1, z; w)

Maximum Entropy Markov Models: train logistic regression, Viterbi at inference




An overview

Xavier Carreras

transition-based

factored

re-ranking

AthNLP2019
-r(ierg::;onﬂz;gn - exact prediction?
label classifiers only individual labels yes
no

full history of decisons (greedy, beam search)

label factors yes

full limited to active set



https://github.com/athnlp/athnlp-labs/blob/master/slides/Carreras_morning_2.pdf
https://github.com/athnlp/athnlp-labs/blob/master/slides/Carreras_morning_2.pdf

Another overview!

binary/multiclass  structured learning

naive HMM
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http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf

Things we didn’t cover

Latent variable structured prediction:
e Intermediate labels for which we don’t have annotation
e C(Can be thought of as hidden layers in NN (they are trained via “hallucinations”)

Constrained inference:
e Sometimes you can prune your search space (remove invalid outputs)
e Reduces the crude enumeration outputs but can make inference slower when
using dynamic programming (e.g. here on enforcing valid syntax trees)
e Dual decomposition is often considered: split it into two (simpler) constrained
inference problems and solve them to agreement



https://www.gc.cuny.edu/CUNY_GC/media/Computer-Science/Student%20Presentations/Kai%20Zhao/Second_Exam_Slides_Kai_Zhao_12-11-2014.pdf
https://arxiv.org/pdf/2010.02550.pdf
http://www.cs.columbia.edu/~mcollins/acltutorial.pdf
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