
Structured prediction

L101: Machine Learning for Language Processing
Andreas Vlachos

Structured prediction in NLP?

2

What could a structured output be?

● Sequence of part of speech tags
● Syntax tree
● SQL query
● Set of labels (a.ka. multi-label classification)
● Sequence of words (wait for the next lecture)
● etc.

Given a piece of text, assign a structured output,
typically a structure consisting of discrete labels

Structured prediction in NLP is everywhere

3

Sequences of labels, words and graphs combining them

Given an input x (e.g. a sentence) predict y (e.g. a PoS tag sequence):

Where Y is rather large and often depends on the input (e.g. L|x| in PoS tagging)

Structured prediction definition

Is this large-scale classification?
● Yes, but with many, many classes
● Yes, but with classes not fixed in advance
● Yes, but with dependencies between parts of the output

Depending on how much the difference is, you might want to just classify

Structured prediction variants

Linear models (structured perceptron)

Generative models (HMMs)

Discriminative probabilistic models
(conditional random fields)

Most of the above can use both linear and non-linear features, e.g. CRF-LSTMs

https://arxiv.org/pdf/1603.01360.pdf

Structured perceptron

We need to learn w from training data

And define a joint feature map Φ(x,y).

Ideas for PoS tagging?

Structured perceptron features

Two kinds of features:
● Features describing dependencies in the output (without these: classification)
● Features describing the match of the input to the output

Feature factorization, e.g. adjacent labels:

Does this restrict our modelling flexibility?

Perceptron training (reminder)

Learn compatibility between positive class and instance

Compatibility between input and output
Feature factorization accelerates both decoding and feature updating
Averaging helps

Structured Perceptron training (Collins, 2002)

Decoding

Feature differences

https://www.aclweb.org/anthology/W02-1001/

Guess the features and weights (Xavier Carreras)

Some answers

Assuming we have a trained model, decode/predict/solve the argmax/inference:

Decoding

Isn’t finding θ meant to be the slow part (training)?

Decoding is often necessary for training; you need to predict to update weights

Do you know a model where training is faster than decoding?

Hidden Markov Models! (especially if you don’t do Viterbi)

Can be exact or inexact (to save computation)

If we have a factorized the scoring function, we can reuse the scores (optimal
substructure property), e.g.:

Dynamic programming

Thus changing one part of the output, doesn’t change all/most scores

Viterbi recurrence:
1. Assume we know for position i the best sequence ending with each possible yi
2. What is the best sequence up to position i+1 for each possible yi+1?

An instance of shortest path finding in graphs

http://web.engr.oregonstate.edu/~huanlian/slides/COLING-tutorial-anim.pdf

Jurafksy and Martin

Viterbi in action

Apart from the best
scores (max), need to
keep pointers to backtrace
to the labels (argmax)

Higher than first order
Markov assumption is
possible, but more
expensive

https://web.stanford.edu/~jurafsky/slp3/8.pdf

Multinomial logistic regression reminder:

Conditional random fields

Conditional random field is a giant of the same type (softmax and linear scoring):

The denominator is independent of y: needs to be calculated over all ys!

Often referred to as the partition function

Conditional random fields in practice

Factorize the scoring function:

Dynamic programming to the rescue again: forward-backward algorithm

This allows us to train CRF by minimizing the convex negative log likelihood:

If you factorize the probability distribution:

Maximum Entropy Markov Models: train logistic regression, Viterbi at inference

An overview

classification

Lecture 7!

Most common

Generalized binary
classification

Feature
flexibility Decoding

Xavier Carreras
AthNLP2019

https://github.com/athnlp/athnlp-labs/blob/master/slides/Carreras_morning_2.pdf
https://github.com/athnlp/athnlp-labs/blob/master/slides/Carreras_morning_2.pdf

Sutton and
McCallum
(2011)

Another overview!

http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf

Latent variable structured prediction:
● Intermediate labels for which we don’t have annotation
● Can be thought of as hidden layers in NN (they are trained via “hallucinations”)

Things we didn’t cover

Constrained inference:
● Sometimes you can prune your search space (remove invalid outputs)
● Reduces the crude enumeration outputs but can make inference slower when

using dynamic programming (e.g. here on enforcing valid syntax trees)
● Dual decomposition is often considered: split it into two (simpler) constrained

inference problems and solve them to agreement

https://www.gc.cuny.edu/CUNY_GC/media/Computer-Science/Student%20Presentations/Kai%20Zhao/Second_Exam_Slides_Kai_Zhao_12-11-2014.pdf
https://arxiv.org/pdf/2010.02550.pdf
http://www.cs.columbia.edu/~mcollins/acltutorial.pdf

● Noah Smith’s book: good overview
● Sutton and McCallum (2011): everything you wanted to know about conditional

random fields
● Xavier Carreras’s AthNLP2019 slides and video
● Michael Collins’s notes on HMMs and Viterbi
● A blog post on implementing Viterbi and CRFs on pytorch

Bibliography

http://www.cs.cmu.edu/~nasmith/LSP/
http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
https://github.com/athnlp/athnlp-labs/blob/master/slides/Carreras_morning_2.pdf
https://www.youtube.com/watch?v=f6Gqr2UCG9k&list=PLSWgH7JB2-1G2h8wj-ecK8FfpX72Z80_B&index=2
http://www.cs.columbia.edu/~mcollins/hmms-spring2013.pdf
https://lauraruis.github.io/2021/01/25/crfpt2.html

