Structured prediction

L101: Machine Learning for Language Processing ?ﬁgﬁ

Andreas Vlachos

g

Structured prediction in NLP?

What could a structured output be?

Sequence of part of speech tags

Syntax tree

SQL query

Set of labels (a.ka. multi-label classification)
Sequence of words (wait for the next lecture)

ete.

Structured prediction in NLP is everywhere

¢ 1 payarara) ¥y 1 = 0
SQ 22536 suppressed gp4l -induced @ e D

O O O Protein O 1
ARGV ARG\

[INPUT: (center) (defend—Ol)
predicate= INFORM ARG \Ql‘ep-against
name = "The Saffron Brasserie"
type = placetoeat military Cattack—Ol)
eattype = restaurant :
area = riverside, "addenbrookes" Mt ! mod
near = "The Cambridge Squash", "The Mill @@

OuUTPUT: < Cyber)
The Saffron Brasserie is a restaurant at the si op]
| the Cambridge Squash and the Mill in the are NAT 2

Sequences of labels, words and graphs combining them

Structured prediction definition

Given an input x (e.g. a sentence) predict y (e.g. a PoS tag sequence):
Y = arg max score(x,y)
yey
Where Y is rather large and often depends on the input (e.g. LI/ in PoS tagging)

Is this large-scale classification?
e Yes, but with many, many classes
e Yes, but with classes not fixed in advance
e Yes, but with dependencies between parts of the output

Depending on how much the difference is, you might want to just classify

Structured prediction variants

§ = arg max score(z,y)

yey
Linear models (structured perceptron) Y = arg maxw - CI)(CU, y)
yel
Generative models (HMMs) ﬁ = arg max P(:B, y) — argimax P(:z:|y)P(y)
yey yey
Discriminative probabilistic models { = arg max P(y|ac)
(conditional random fields) yey

Most of the above can use both linear and non-linear features, e.g. CRF-LSTMs

https://arxiv.org/pdf/1603.01360.pdf

Structured perceptron

gy = argmaxw - ®(z,y)
yey

We need to learn w from training data

D = {(z,y'),... (=™, yM)}

And define a joint feature map @ (x,y).
Ideas for PoS tagging? @ ° @
m seashells the

Structured perceptron features

g =argmaxw- 2(x,y) fw) ()) (DT
yey
N TN 0 0 0 O

Two kinds of features:
e [Keatures describing dependencies in the output (without these: classification)

e [Features describing the match of the input to the output

Feature factorization, e.g. adjacent labels:
'g — argmaxw - Zz ¢(CE, 7:7 Yi, y’i—l)
yely
Does this restrict our modelling flexibility?

Perceptron training (reminder)

Input: training examples D = {(z!,y!),... (™, yM)}
Initialize weights w = (0, ..., 0)
for (z,y) € D do
Predict label g = sign(w - ¢(x))
if § # y then
Update w = w + yo(x)
end if

end for

Learn compatibility between positive class and instance

Structured Perceptron training (Collins, 2002)

Input: training examples D = {(z!,y!),... (2™, yM)}
Initialize weights w = (0, ..., 0)
for (z,y) € D do

Predict label § = arg maxw - ®(x, y) -
yey
if ¢ # y then
Update w = w + ®(x,y) — (I)(CI??Q)-
end if

end for
Compatibility between input and output

Feature factorization accelerates both decoding and feature updating
Averaging helps

https://www.aclweb.org/anthology/W02-1001/

Guess the features and weights (Xavier Carreras)

Training Data

PER - -
> ‘ g
Maria is young
. LOC -— —
Athens is big
, PER - - LOC
Jack went to Athens
- LOC - -
Argentina is bigger
> PER PER = = LOC LOC
Jack London went to South Pacific
" ORG - - ORG

Argentina played against Chile

Some answers

Training Data

PER - -
> ’ :
Maria is young
. LOC -— —
Athens is big
, PER - - LOC
Jack went to Athens
- LOC - -
Argentina is bigger
> PER PER = = LOC
Jack London went to South
" ORG - - ORG

Argentina played against Chile

LOC
Pacific

Weight Vector w

W(LOWER,-) = =l

W(u PER) — —|—1
W(UpPER,LOC) — el
(WORD,PER,Maria) — 12
(WORD,PER,Jack) — +2
(NEXTW,PER,went) — +2
(NEXTW,0RG,played) — +2
(PREVW ,0RG,against) — +2

g2 ¢<

W(UPPERBIGRAM,PER,PER) = +100
W (UPPERBIGRAM,LOC,LOC) — +100
W (UPPERBIGRAM,LOC,PER) — —100
W (UPPERBIGRAM,PER,LOC) — —100
W (NEXTW,L0C,played) = —1000

Decoding

Assuming we have a trained model, decode/predict/solve the argmax/inference:

Y = arg max score(x, y; 0)
yey

Isn’t finding 8 meant to be the slow part (training)?

Decoding is often necessary for training; you need to predict to update weights
Do you know a model where training is faster than decoding?

Hidden Markov Models! (especially if you don’t do Viterbi)

Can be exact or inexact (to save computation)
T SGGGSSGSSSSSS——————————————,— S

Dynamic programming

If we have a factorized the scoring function, we can reuse the scores (optimal

substructure property), e.g.: § = argmaxw- Y., ¢(x,%, Y, Yi—1)
yey

Thus changing one part of the output, doesn’t change all/most scores

Viterbi recurrence:
1. Assume we know for position i the best sequence ending with each possible y,

2. What is the best sequence up to position i+1 for each possible Yiri?

An instance of shortest path finding in graphs

http://web.engr.oregonstate.edu/~huanlian/slides/COLING-tutorial-anim.pdf

az ¢

Viterbi in actionq

6

Apart from the best %
scores (max), need to

keep pointers to backtrace
to the labels (argmax) %
Higher than first order 0
Markov assumption is
possible, but more .

expensive

Jurafksy and Martin

el
DT |
o v4(6) v,(6) v3(6)=
. RB max *.0104
S— S— Q§e
&
v4(5) Vo(5)= ¢ V3(5)=
NN | max *.0002 §* P(NNINN) g o0«
=.0000000001 | 000223
o vi(4)=. va(d)=
CPFUL - max * .0003
v4(3)= A =
TN 1 v3(3)
{ ! \‘a“\ | > :
VB ?N6§)3\ .00310x0 max * .00067
/ ’ _ p
4T \aﬂ\ V. (2): |
‘MD | o - "
MD 2" 000 0006 x 0 =]
0 |
= |
{ = I
SNG - N
vy(1) = §§9\ ,/ vo(1) ,I
INNFJ/ panpiste) 28" 000082 — S Fg” /]
=28 =.000009 N 7
/ / -—
N 7 emsammegena o2

\\ . i
N . backtrace -
| start i z

‘. backtrace
rd

et |

04

{l/start\}
will back
0, 04

https://web.stanford.edu/~jurafsky/slp3/8.pdf

Conditional random fields

Multinomial logistic regression reminder:

R exp(wy-P(x

ey exp(w, -¢(z))

Conditional random field is a giant of the same type (softmax and linear scoring):

exp(w-2(z,y))
cylel exp(w-®(x,y'))

P(g’):ylx,w) — 3,

The denominator is independent of y: needs to be calculated over all ys!

Often referred to as the partition function

Conditional random fields in practice

. . B exp(w-®(z,y))
P =dleiw) = = e

Factorize the scoring function:

w - (I)(x,'y) — W- Zz gb(xaiay’iayz’—l)

Dynamic programming to the rescue again: forward-backward algorithm

This allows us to train CRF by minimizing the convex negative log likelihood:
w* = argmin Y logP(y|z;w)
w (z,y)eD |

If you factorize the probability distribution: P(g = y|z; w) = H P(y;ly; 1, z; w)

Maximum Entropy Markov Models: train logistic regression, Viterbi at inference

An overview

Xavier Carreras

transition-based

factored

re-ranking

AthNLP2019
-r(ierg::;onﬂz;gn - exact prediction?
label classifiers only individual labels yes
no

full history of decisons (greedy, beam search)

label factors yes

full limited to active set

https://github.com/athnlp/athnlp-labs/blob/master/slides/Carreras_morning_2.pdf
https://github.com/athnlp/athnlp-labs/blob/master/slides/Carreras_morning_2.pdf

Another overview!

binary/multiclass structured learning

naive HMM
O@O bayes :{>2] g >

..... Cc?nd.'!:.lqnal..................... C?.nd.'!:!qnal............
logistic
regression CRFs
(maxent)
Onllne+ Onllne+
Vlterbl Vlterbl

perceptron

IZ:> structured perceptron

generative

(count & divide)

discriminative
(expectations)

Sutton and
McCallum
(argmax) (2011)

http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf

Things we didn’t cover

Latent variable structured prediction:
e Intermediate labels for which we don’t have annotation
e C(Can be thought of as hidden layers in NN (they are trained via “hallucinations”)

Constrained inference:
e Sometimes you can prune your search space (remove invalid outputs)
e Reduces the crude enumeration outputs but can make inference slower when
using dynamic programming (e.g. here on enforcing valid syntax trees)
e Dual decomposition is often considered: split it into two (simpler) constrained
inference problems and solve them to agreement

https://www.gc.cuny.edu/CUNY_GC/media/Computer-Science/Student%20Presentations/Kai%20Zhao/Second_Exam_Slides_Kai_Zhao_12-11-2014.pdf
https://arxiv.org/pdf/2010.02550.pdf
http://www.cs.columbia.edu/~mcollins/acltutorial.pdf

Bibliography

e Noah Smith’s book: good overview

® Sutton and McCallum (2011): everything you wanted to know about conditional

random fields
Xavier Carreras’s AthNLP2019 slides and video

Michael Collins’s notes on HMMs and Viterbi
A blog post on implementing Viterbi and CRFs on pytorch

http://www.cs.cmu.edu/~nasmith/LSP/
http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf
https://github.com/athnlp/athnlp-labs/blob/master/slides/Carreras_morning_2.pdf
https://www.youtube.com/watch?v=f6Gqr2UCG9k&list=PLSWgH7JB2-1G2h8wj-ecK8FfpX72Z80_B&index=2
http://www.cs.columbia.edu/~mcollins/hmms-spring2013.pdf
https://lauraruis.github.io/2021/01/25/crfpt2.html

