Introduction to Probability

Lecture 11: Estimators (Part II)
Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Easter 2024

Outline

Recap

Estimating Population Size (First Version)

Mean Squared Error

Estimating Population Size (Second Version)

Recap: Unbiased Estimators and Bias

Definition

An estimator T is called an unbiased estimator for a parameter θ if

$$\mathbf{E} [T] = \theta$$

irrespective of the value θ . The bias is defined as

$$\mathbf{E}[T] - \theta = \mathbf{E}[T - \theta].$$

Source: Edwin Leuven (Point Estimation)

- If there are several unbiased estimators, which one to choose? → mean-squared error (or variance)

An Unbiased Estimator may not always exist

Example 6

Suppose that we have one sample $X \sim Bin(n, p)$, where 0 is unknown but <math>n is known. Prove there is no unbiased estimator for 1/p.

Answer

- First a simpler proof which exploits that p might be arbitrarily small
- Intuition: By making p smaller and smaller, we force $\max_{0 \le k \le n} T(k)$, $k \in \{0, 1, ..., n\}$ to become bigger and bigger
- Formal Argument:
 - Fix any estimator T(X)
 - Define $M := \max_{0 \le k \le n} T(k)$. Then,

$$\mathbf{E}[T(X)] = \sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k} \cdot T(k)$$

$$\leq M \cdot \sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k} = M.$$

- Hence this estimator does not work for $p < \frac{1}{M}$, since then $\mathbf{E} [T(X)] \le M < \frac{1}{p}$ (negative bias!)
- The next proof will work even if $p \in [a, b]$ for $0 < a < b \le 1$.

Example 6 (cntd.) -

Suppose that we have one sample $X \sim Bin(n, p)$, where 0 is unknown but <math>n is known. Prove there is no unbiased estimator for 1/p.

Answer

- Suppose there exists an unbiased estimator with $\mathbf{E}[T(X)] = 1/p$.
- Then

$$1 = p \cdot \mathbf{E} [T(X)]$$

$$= p \cdot \sum_{k=0}^{n} \mathbf{P} [X = k] \cdot T(k)$$

$$= p \cdot \sum_{k=0}^{n} {n \choose k} p^{k} \cdot (1 - p)^{n-k} \cdot T(k)$$

- Last term is a polynomial of degree n + 1 with constant term zero
 - $\Rightarrow p \cdot \mathbf{E}[T(X)] 1$ is a (non-zero) polynomial of degree $\leq n + 1$
 - \Rightarrow this polynomial has at most n + 1 roots
 - \Rightarrow **E**[T(X)] can be equal to 1/p for at most n+1 values of p, and thus cannot be an unbiased.

Outline

Recap

Estimating Population Size (First Version)

Mean Squared Error

Estimating Population Size (Second Version)

Estimating Population Size (First Version)

- Suppose we have a sample of a few serial numbers (IDs) of some product
- We assume IDs are running from 1 to an unknown parameter N (so $N = \theta$)
- Each of the IDs is drawn without replacement from the discrete uniform distribution over {1,2,...,N}
- This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

Warning -

- As before, we denote the samples X_1, X_2, \dots, X_n
- Since sampling is without replacement:
 - they are not independent! (but identically distributed)
 - their number must satisfy n ≤ N

First Estimator Based on Sample Mean

Example 1 ____

Construct an unbiased estimator using the sample mean.

Answer

The sample mean is

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Linearity of expectation applies (even for dependent random var.!):

$$\mathbf{E}\left[\overline{X}_{n}\right] = \frac{n \cdot \mathbf{E}\left[X_{1}\right]}{n} = \mathbf{E}\left[X_{1}\right]$$
$$= \sum_{i=1}^{N} i \cdot \frac{1}{N} = \frac{N+1}{2}.$$

Thus we obtain an unbiased estimator by

$$T_1 := 2 \cdot \overline{X}_n - 1$$
.

Example: Odd Behaviour of T_1

- Suppose n = 5
- Let the sample be

The estimator returns:

$$T_1 = 2 \cdot \overline{X}_n - 1 = 2 \cdot \frac{80}{5} - 1 = 31 \odot$$

This estimator will often unnecessarily underestimate the true value *N*.

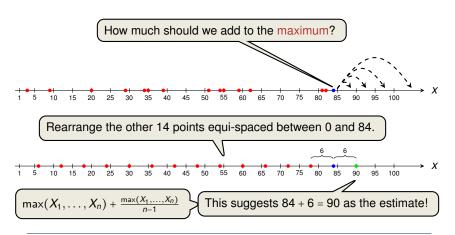
Challenging exercise: Find a lower bound on $P[T_1 < \max(X_1, X_2, ..., X_n)]$

- Achieving unbiasedness alone is not a good strategy
- Improvement: find an estimator which always returns a value at least max(X₁, X₂,..., X_n)

Intuition: Constructing an Estimator based on Maximum

- Suppose *n* = 15
- Our samples are:

9, 82, 39, 35, 20, 51, 54, 62, 81, 29, 84, 59, 3, 34, 55



Deriving the Estimator Based on Maximum

Example 2 -

Construct an unbiased estimator using $max(X_1, ..., X_n)$

Answer

Calculate expectation of the maximum (for details see Dekking et al.)

$$\mathbf{E}[\max(X_1,\ldots,X_n)] = \ldots = \frac{n}{n+1} \cdot N + \frac{n}{n+1} = \frac{n}{n+1} \cdot (N+1).$$

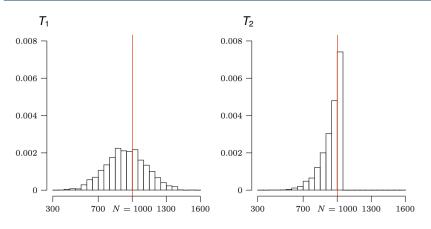
Equi-spaced configuration would suggest $\max(X_1, \dots, X_n) \approx \frac{n-1}{n} \cdot N$

Hence we obtain an unbiased estimator by

$$T_2 := \frac{n+1}{n} \cdot \max(X_1, \dots, X_n) - 1.$$

• For our samples before, we get $t_2 = \frac{16}{15} \cdot 84 - 1 = 88.6$.

Empirical Analysis of the two Estimators



Source: Modern Introduction to Statistics

Figure: Histogram of 2000 values for T_1 and T_2 , when N = 1000 and n = 10.

Can we find a quantity that captures the superiority of T_2 over T_1 ?

Outline

Recap

Estimating Population Size (First Version)

Mean Squared Error

Estimating Population Size (Second Version)

Mean Squared Error Definition —

Let T be an estimator for a parameter θ . The mean squared error of T is

$$\mathsf{MSE}[T] = \mathsf{E}[(T - \theta)^2].$$

• According to this, estimator T_1 better than T_2 if $MSE[T_1] < MSE[T_2]$.

Bias-Variance Decomposition ——

The mean squared error can be decomposed into:

MSE[
$$T$$
] = $\underbrace{(\mathbf{E}[T] - \theta)^2}_{\text{= Bias}^2} + \underbrace{\mathbf{V}[T]}_{\text{= Variance}}$

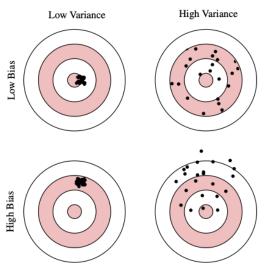
• If T_1 and T_2 are both unbiased, T_1 is better than T_2 iff $V[T_1] < V[T_2]$.

Example 3

We need to prove: $MSE[T] = (E[T] - \theta)^2 + V[T].$

$$\begin{aligned} \mathbf{MSE} \left[\ T \ \right] &= \mathbf{E} \left[\ (T - \theta)^2 \ \right] \\ &= \mathbf{E} \left[\ T^2 - 2T\theta + \theta^2 \ \right] \\ &= \mathbf{E} \left[\ T \ \right]^2 - 2 \cdot \mathbf{E} \left[\ T \ \right] \cdot \theta + \theta^2 + \mathbf{E} \left[\ T^2 \ \right] - \mathbf{E} \left[\ T \ \right]^2 \\ &= \left(\mathbf{E} \left[\ T \ \right] - \theta \right)^2 + \mathbf{V} \left[\ T \ \right]. \end{aligned}$$

Intro to Probability Mean Squared Error 14



Source: Edwin Leuven (Point Estimation)

Intro to Probability Mean Squared Error 15

It holds that **MSE** $[T_1] = \Theta\left(\frac{N^2}{n}\right)$, where $T_1 = 2 \cdot \overline{X}_n - 1$.

Answer

• Since T_1 is unbiased, $MSE[T_1] = (E[T_1] - \theta)^2 + V[T_1] = V[T_1]$, and

$$\mathbf{V}[T_1] = \mathbf{V}[2 \cdot \overline{X}_n - 1] = 4 \cdot \mathbf{V}[\overline{X}_n] = \frac{4}{n^2} \cdot \mathbf{V}[X_1 + \dots + X_n]$$

- Note: The Xi's are not independent!
- Use generalisation of $\mathbf{V}[X_1 + X_2] = \mathbf{V}[X_1] + \mathbf{V}[X_2] + 2 \cdot \mathbf{Cov}[X_1, X_2]$ (Exercise Sheet) to $n \, r.v.$'s, and then that the X_i 's are identically distributed, and also the (X_i, X_j) , $i \neq j$:

$$V[X_1 + \dots + X_n] = \sum_{i=1}^{n} V[X_i] + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} Cov[X_i, X_j]$$
$$= n \cdot V[X_1] + 2\binom{n}{2} \cdot Cov[X_1, X_2].$$

- By definition of the discrete uniform distribution, $V[X_1] = \frac{(N+1)(N-1)}{12}$
- Intuitively, X₁ and X₂ are negatively correlated, which would be sufficient to complete the proof. For a more rigorous and precise derivation (see Dekking et al.):

Cov
$$[X_1, X_2] = -\frac{1}{12}(N+1).$$

Rearranging and simplifying gives

$$\mathbf{V}[T_1] = \frac{(N+1)(N-n)}{3n}.$$

Analysis of the MSE for T_2 (non-examinable)

Example 5

It holds that **MSE** $[T_2] = \Theta\left(\frac{N^2}{n^2}\right)$, where $T_2 = \frac{n+1}{n} \cdot \max(X_1, \dots, X_n) - 1$.

Answer

- T_2 is unbiased \Rightarrow need $V[T_2]$ which reduces to $V[\max(X_1, ..., X_n)]$
- One can prove: For details see Dekking et al.

$$V[\max(X_1,...,X_n)] = \cdots = \frac{n(N+1)(N-n)}{(n+2)(n+1)^2} = \Theta\left(\frac{N^2}{n^2}\right)$$

Equi-spaced (idealised) configuration suggests a standard deviation of $\sigma \approx \frac{N}{n}$

Maximum could have equally likely taken any value between 79 and 90

- MSE [T_2] is much lower than MSE [T_1] = $\Theta\left(\frac{N^2}{n}\right)$, i.e., $\frac{\text{MSE}[T_1]}{\text{MSE}[T_2]} = \frac{n+2}{3}$
- \Rightarrow confirms simulations suggesting that T_2 is better than T_1 !
- can be shown T_2 is the best unbiased estimator, i.e., it minimises MSE.

Outline

Recap

Estimating Population Size (First Version)

Mean Squared Error

Estimating Population Size (Second Version)

A New Estimation Problem

Previous Model

- Population/ID space S = {1,2,..., N}
- We take uniform samples from S without replacement
- Goal: Find estimator for N

New Model belled befo

Similar idea applies to situations where elements are not labelled before we see them first time (Mark & Recapture Method)

- Population/ID space of size |S| = N
- We take uniform samples from S with replacement
- Goal: Find estimator for N
- Suppose n = 6, N = 11, $S = \{3, 4, 7, 8, 10, 15.83356, 20, 21, 56, 81, 10000\}$
- Let the sample be

Let us call this a **collision**

As we do not know \mathcal{S} , our only clue are elements that were sampled twice.

Birthday Problem

Birthday Problem: Given a set of *k* people

- What is the probability of having two with the same birthday (i.e., having at least one collision)?
- What is the expected number of people one needs to ask until the first collision occurs?

P[collision] $\approx 1 - \exp\left(-\frac{k(k-1)}{2.365}\right)$ Note that $\sqrt{365} \approx 19.10...$

Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are **collisions**.

FIND-FIRST-COLLISION(S)

- 1: $C = \emptyset$
- 2: **For** i = 1, 2, ...
- 3: Take next i.i.d. sample X_i from S
- 4: If $X_i \notin C$ then $C \leftarrow C \cup \{X_i\}$
- 5: else return T(i)
- 6: End For

T(i) will be the value of the estimator if algo returns after i rounds. (We want T unbiased)

- Running Time: The expected time until the algorithm stops is:
 - = the expected number of samples until a collision...

Same as the birthday problem, but now with |S| = N days... \odot

Expected Running Time (Knuth, Ramanujan)

$$\sqrt{\frac{\pi N}{2}} - \frac{1}{3} + O\left(\frac{1}{\sqrt{N}}\right).$$

Exercise: Prove a bound of $\leq 2 \cdot \sqrt{N}$

Estimation via Collision: Getting the Estimator Unbiased

Example 6

One can define T(i), $i \in \mathbb{N}$, such that $\mathbf{E}[T] = |S|$ for any finite, non-empty set S.

Answei

- We outline a construction by induction.
- Case |S| = 1: Algo always stops after i = 2 rounds and returns T(2).
 We want

$$1 = \mathbf{E}[T] = T(2) \qquad \Rightarrow \qquad T(2) = 1.$$

Case |S| = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).
 We want

$$2 = \mathbf{E}[T] = \frac{1}{2} \cdot T(2) + \frac{1}{2} \cdot T(3) \implies T(3) = 3.$$

- Case |S| = 3: gives $3 = E[T] = \frac{1}{3} \cdot T(2) + \frac{4}{9} \cdot T(3) + \frac{2}{9} \cdot T(4)$ ⇒ T(4) = 6, similarly, T(5) = 10 etc.
- can continue to define T(i) inductively in this way (note T is unique) (a proof that $T(i) = \binom{i}{2}$ is harder)