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Intro: Sum of Independent (Uniform) Random Variables

Example 1

Let X; and X> be two independent random variables, both uni-
formly distributed on [0, 1]. How does the probability density
of Xi + Xo look like? What happens for Xi + Xo + Xz etc.?

Answer

Let us try to sketch the densities without explicit computations?

e, = [pe, = ooc
1+—= 1
0.5+ 0.5 X+ X+ Xa 4 X
0+——F—+ 0 % } =
0 05 1 0 1 2 3 4

aThis is also called “convolution”. The detailed calculation for fx1 +x, Can be found at the end of
these slides. The exact distribution is known for any number of random variables under the name
Irwin-Hall distribution.
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Motivation

We will study sums of independent and identically distributed variables.
How does their distribution look like, and how well do they concentrate
around the expectation?

Re-use concepts from previous lectures:

1. Independence (Random Var.) (Lec. 1, 7)
2. Expectation and Variance (Lec. 2, 3)

3. Normal Distribution (Lec. 5)

. Markov’s inequality

. Chebyshev’s inequality
. Law of Large Numbers
. Central Limit Theorem

A WO N =

4. Sums of Random Variables (Lec. 6)
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Markov’s Inequality and Chebyshev’s Inequality
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Markov’s Inequality

~——— Markov’s Inequality

For any non-negative random variable X with finite E[ X],
it holds for any a > 0,

PIX>a]< E[X]

Markov’s inequality is a so-called tail-bound: it upper bounds
the probability that the random variable exceeds its mean

] A. Markov (1856-1922)

Comments:
= Markov’s inequality can be rewritten as: for any § > 0,

P[X>6-E[X]] <1/

= Advantage: Very basic inequality, we only need to know E [ X]
= Downside: For many distributions, the tail bound might be quite loose
= Proof is similar to the proof of Chebyshev’s inequality (Exercise!)
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Applying Markov’s Inequality

Example 2

Consider throwing an unbiased, six-sided dice 120 times and let X
denote the number of times we obtain a six.

1. Derive an upper bound on P[ X > 30].
2. Can you also derive an upper boundon P[ X < 10]?

Answer

1. First compute E[X] = 1/6 - 120 = 20. Then by Markov:
20 2
X > < — —=.
P[ 30] 303
2. Consider now the second bound.
= Define a new random variable Y := 120 — X.
= This random variable is also non-negative (as X < 120).
= Applying Markov’s inequality (equivalent version) to Y yields:

P[X<10] =P[Y >110] =P Y>m E[Y]

100
< 10U _ Y
=110 11
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Chebyshev’s Inequality

Chebyshev’s Inequality
For any random variable X with finite E[ X] and V [ X], for
any a > 0,

P[IX-E[X]|>a] <V[X]/a"

P. Chebyshev (1821-1894)

Comments: The “u £+ a few o” rule. Most of the probability
mass is within a few standard deviations from .

= can be rewritten as:

\J
P [|X—E[X]| > \/6~V[X]] <1/6.
= Unlike Markov, Chebyshev’s inequality is two-sided and also holds for
random variables with negative values

= In most cases, Chebyshev’s inequality yields much stronger bounds than
Markov (however, it requires knowledge not only of E[ X] but also V[ X]!)

= Chebyshev’s inequality is also known as Second Moment Method
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Derivation of Chebychev’s inequality

Proof

= We will give a self-contained proof for a continuous random variable
X (the case for discrete X is analogous).

= Write down the definition of V[ X] and then lower bound:
VIX]=E[(X - p)] :/ (X — )2 - fx(x) dx
> [ e (0 ox
[X—p|>a
> / a - fx(x) dx
[x—p|>a
=& fix(x) dx

[x—p|>a

=& -P[|X—pul>a].

= Dividing both sides by &2 yields the resuilt.

[Exercise: Can you find a proof that uses Markov’s inequality? ]
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Example: Chebychev is (usually) much stronger than Markov

Example 3

Throw an unbiased coin n times and let X be the total number of
heads. In an experiment, with n large, we would usually expect a
number of heads that is close to the expectation. Can we justify that?

Answer
X ~ Bin(n,1/2) soE[X]=n-].
= Markov’s inequality: For any § > 0,

PX>(1+0)-E[X]]< 15

= Chebychev’s inequality:
= WehaveV[X]=np(1—p)=n-1/2-1/2. Forany ¢ > 0,

P[X=>(1+9) -E[X]]

P[X-E[X]>4-E[X]]
P[IX —n/2| > 5 (n/2)]
n-1/4 1
82(n/2)2 ~ 32n

IA

IA
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Weak Law of Large Numbers
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Law of Large Numbers P
L: independent and identically distributed

7

The Weak Law of Large Numbers Va
Let X, := 1/n- 37, X;, where the X/’s are i.i.d.with finite expectation p
and finite variance 2. Then, for any e > 0,

nILn;OP[|Yn—M\>6] —-0

O\

Ve>0:V5>0:3IN>0:vn> N: P[|Y,,—u|>e]g5

= “Power of Averaging”: repeated samples allow us to estimate
= A similar statement holds even if the X’s are not identically distributed

= There is also a strong law of large numbers:

P[Iim Y,,:,u]:i

n—oo

“For even the most stupid of men, by some instinct of na-
ture, by himself and without any instruction (which is a remark-
able thing), is convinced that the more observations have been
made, the less danger there is of wandering from one’s goal.” | .. i ess.170)
12
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lllustration of Weak Law of Large Numbers (1/4)

= Let X; be independent random variables taking values € {—1, 41} with
probability 1/2 each

= Consider X, := >, Xiforany n=0,1,...,200

How does a “typical” realisation look like?
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lllustration of Weak Law of Large Numbers (2/4)
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Plot of the Distributions for n=0,1,...,20

@5@5@595@ ’ o800

F 58850 7l | @ & 6800
g85480 1. fﬂ'ﬂ@ﬂ@
& 585 f HEEQEE

& 78 50 . 7 Heodmm
55'5 lvdﬂgﬂg
& 7 7 & £
& m
& 70
& 7 ez
&

Intro to Probability Weak Law of Large Numbers 15



Plot of the Distributions for n=0,1,...,50
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Plot of the Distributions for n=0,1,...,80

as500000000000000000 00005500002,

:::%Z;;’é;fé’
I

aﬁé’gé’%?
ity

Seledesrdssss
%’f G
|
I il
(I
il lji
III\Hl"
i
B
HIH]

L A A P At
LB L

A
e detette:
e

SR
[ ]
i
i
||“h
\| l| I

Intro to Probability

Weak Law of Large Numbers




Interlude: Approximation of P[)~( =0]

Exercise
Try to find an expression for P [)?,, = O]. Using Stir-

ling’s approximation for n!, conclude that P [)~(n = 0] =
©(1/+/n) for even integers n.
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lllustration of Weak Law of Large Numbers (3/4)

= Let X; be independent random variables taking values € {—1,+1} with
probability 1/2 each

= Consider X, := >or, Xiforany forany n=0,1,...,200

[This does not converge! J

Consider now the average (sample mean): X, :=1/n- 31, X.
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lllustration of Weak Law of Large Numbers (4/4)
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Proof of the Weak Law of Large Numbers

~——— The Weak Law of Large Numbers N\

Let X, :=1/n- >, X;, where the X;’s are i.i.d. with finite expectation p
and finite variance o“. Then, for any € > 0,

lim P[|7,7—,u\>e] =0

n— oo

Proof
= Let X, :=1/n-37 . X
- Then E [Yn] = pand

V[Xa] =1/ V[ X] =1/m - L VIX]=1/n- 0%
= Applying Chebyshev’s inequality yields:
2

o
ne2’

P[[Xo—E[Xn]| > €] gelz.v[yn] _

= For any (fixed) € > 0, the right hand side vanishes as n — ~c.

2
(Lete > 0,6 > 0. Pick N = g—é. Then for any n > N, the probability above is smaller than 6.)
2.
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Inferring Probabilities of an Event

Example 4

Suppose that, instead of the expectation p, we want to estimate the
probability of an event, e.g.,

p:=P[X € (a,b]], where a< b.

How can we use the Law of Large Numbers?

Answer

= Let Xi, Xo,..., X, ~ X. Foreach 1 </ < n, define:

B {1 if X; € (a, b,

"0 otherwise.
= We have:
E[Yi]=P[Xie(ab]] - 1+P[X &(ab]]-0=p.

= Similarly, V[ Y;] = p(1 — p)

Law of Large Numbers to Y.

= The random variables Y1, Y2,..., Y, are i.i.d., so we can apply the
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Appendix: Sum of Two Uniform R.V. (hon-examinable)

Example

Let X and Y be two independent random variables, both uniformly
distributed on [0, 1]. How does the probability density of X + Y look like?

Answer

We have (%) [T
ber(@ @ [ @ niviay,

—oo

where for (x), see Chapter 6.3 in Ross (Chapter 11.2 in Dekking et al.). Since fy(y) = 1 if
0 <y < 1and fy(y) = 0 otherwise, we have
1
fxiv(a) = / fx(a— y)dy.
0
Further, for 0 < a < 1 we have fx(a — y) = 1 and fx(a — y) = 0 otherwise, and thus

a
fx+y(a) :/0 dy = a.

Similarly, for 1 < a < 2, fx,y(a) = faz dy = 2 — a. Therefore,

a ifo<a<i,
fxey(@=<{2—a if1<a<2,
0 otherwise.
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