Introduction to Probability

Lecture 3: Expectation properties, variance, discrete distributions

Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable

Properties of expectation: linearity

Linearity of expectation

Expectations preserve linearity: if a and b are constants, then

$$\mathbf{E}[aX+b]=a\mathbf{E}[X]+b$$

Proof:

Properties of expectation: linearity

Linearity of expectation —

Expectations preserve linearity: if a and b are constants, then

$$\mathbf{E}[aX + b] = a\mathbf{E}[X] + b$$

Proof:

Example

Let the event be a roll of a 6-sided die, X its random variable, and Y another random variable where Y = 3X + 1. What are the expected values $\mathbf{E}[X]$ and $\mathbf{E}[Y]$?

Answer

Properties of expectation: additivity

Additivity of expectation -

Expectation of a sum is equal to the sum of expectations: if X and Y are any random variables on the same sample space then

$$\mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y]$$

Properties of expectation: additivity

Additivity of expectation –

Expectation of a sum is equal to the sum of expectations: if X and Y are any random variables on the same sample space then

$$\mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y]$$

Example -

Let the events be rolls of 2 dice, and *X* the random variable for the roll of die 1, and *Y* for the roll of die 2. What is the expected value of the sum of the rolls of the two dice?

Answer

- Law of the unconscious statistician (LOTUS) -

Let X be a random variable, and Y another random variable that is a function of X, so Y = g(X). Let p(x) be a PMF of X. Then

$$\mathbf{E}[Y] = \mathbf{E}[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$$

Note how now we no longer need to know PMF of Y.

Law of the unconscious statistician (LOTUS) -

Let X be a random variable, and Y another random variable that is a function of X, so Y = g(X). Let p(x) be a PMF of X. Then

$$\mathbf{E}[Y] = \mathbf{E}[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$$

Note how now we no longer need to know PMF of Y.

 LOTUS is also known as expected value of a function of a random variable.

Law of the unconscious statistician (LOTUS) -

Let X be a random variable, and Y another random variable that is a function of X, so Y = g(X). Let p(x) be a PMF of X. Then

$$\mathbf{E}[Y] = \mathbf{E}[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$$

Note how now we no longer need to know PMF of Y.

- LOTUS is also known as expected value of a function of a random variable.
- Note that the properties of expectation let you avoid defining difficult PMFs.

Law of the unconscious statistician (LOTUS) -

Let X be a random variable, and Y another random variable that is a function of X, so Y = g(X). Let p(x) be a PMF of X. Then

$$\mathbf{E}[Y] = \mathbf{E}[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$$

Note how now we no longer need to know PMF of Y.

- LOTUS is also known as expected value of a function of a random variable.
- Note that the properties of expectation let you avoid defining difficult PMFs.
- Let X be a discrete RV, then:
 - **E** $[X^2]$ is know as the second moment of X.
 - **E** $[X^n]$ is know as the n^{th} moment of X.

Second moment example

Example

Let X be a discrete random variable that ranges over the values $\{-1,0,1\}$, and respective probabilities P[X=-1]=0.2, P[X=0]=0.5 and P[X=1]=0.3. Let another random variable $Y=X^2$ (second moment). What is E[Y]?

Answer

Note that $Y = g(X) = X^2$ and $\mathbf{E}[Y] = \mathbf{E}[g(X)] = \sum_{x:p(x)>0} g(x)p(x)$, thus

Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable

Spread in the distribution

Expectation is a useful statistic, but it does not give a detailed view of the PMF. Consider these 3 distributions (PMFs).

Spread in the distribution

Expectation is a useful statistic, but it does not give a detailed view of the PMF. Consider these 3 distributions (PMFs).

- Expectation is the same for all distributions: E[X] = 3.
- First has the greatest spread, the third has the least spread.
- But the "spread" or "dispersion" of X in the distribution is very different!

Spread in the distribution

Expectation is a useful statistic, but it does not give a detailed view of the PMF. Consider these 3 distributions (PMFs).

- Expectation is the same for all distributions: E[X] = 3.
- First has the greatest spread, the third has the least spread.
- But the "spread" or "dispersion" of X in the distribution is very different!
- Variance, V [X] defines a formal quantification of "spread".
- Several ways to quantify: it uses average square distance from the mean.

Definition of variance

Variance

The variance of a discrete random variable X with expected value (mean) μ is:

$$V[X] = E[(X - \mu)^2]$$

When computing the variance, we often use a different form of the same equation:

$$V[X] = E[X^2] - (E[X])^2$$

Proof:

Note:

- **•** V[X] ≥ 0
- AKA: Second central moment, or square of the standard deviation

Example with a die roll

Example

Let *X* be the value on one roll of a 6-sided fair die. Recall that $\mathbf{E}[X] = \frac{7}{2} = 3.5$. What is $\mathbf{V}[X]$?

Answer

Using $\mathbf{V}[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2$:

Using
$$\mathbf{V}[X] = \mathbf{E}[(X - \mu)^2] = \mathbf{E}[(X - \mathbf{E}[X])^2]$$
:

Example

Let X, Y and Z be discrete random variables with the range $X:\{10\}$ and probability 1, and $Y:\{11,9\}$ and $Z:\{110,-90\}$ with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.

a)
$$\mathbf{E}[X] = \sum_{x} xp(x) = 10 \cdot 1 = 10$$

 $\mathbf{V}[X] = \mathbf{E}[(X - \mathbf{E}[X])^{2}] = \mathbf{E}[(X - 10)^{2}]$
 $= (X - 10)^{2}p(x) = 0^{2} \cdot 1 = 0$

Example

Let X, Y and Z be discrete random variables with the range $X:\{10\}$ and probability 1, and $Y:\{11,9\}$ and $Z:\{110,-90\}$ with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.

a)
$$\mathbf{E}[X] = \sum_{x} xp(x) = 10 \cdot 1 = 10$$

$$\mathbf{V}[X] = \mathbf{E}[(X - \mathbf{E}[X])^{2}] = \mathbf{E}[(X - 10)^{2}]$$

$$= (X - 10)^{2}p(x) = 0^{2} \cdot 1 = 0$$
b) $\mathbf{E}[Y] = (11)(0.5) + (9)(0.5) = 10$

$$\mathbf{V}[Y] = \mathbf{E}[(Y - \mathbf{E}[Y])^{2}] = \mathbf{E}[(Y - 10)^{2}]$$

 $= (11 - 10)^{2}(0.5) + (9 - 10)^{2}(0.5) = 1$

Example

Let X, Y and Z be discrete random variables with the range X: {10} and probability 1, and Y: {11, 9} and Z: {110, -90} with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.

a)
$$\mathbf{E}[X] = \sum_{x} xp(x) = 10 \cdot 1 = 10$$

 $\mathbf{V}[X] = \mathbf{E}[(X - \mathbf{E}[X])^{2}] = \mathbf{E}[(X - 10)^{2}]$
 $= (X - 10)^{2}p(x) = 0^{2} \cdot 1 = 0$

b)
$$\mathbf{E}[Y] = (11)(0.5) + (9)(0.5) = 10$$

 $\mathbf{V}[Y] = \mathbf{E}[(Y - \mathbf{E}[Y])^2] = \mathbf{E}[(Y - 10)^2]$
 $= (11 - 10)^2(0.5) + (9 - 10)^2(0.5) = 1$

c)
$$\mathbf{E}[Z] = (110)(0.5) + (-90)(0.5) = 10$$

 $\mathbf{V}[Z] = \mathbf{E}[(Z - \mathbf{E}[Z])^2] = \mathbf{E}[(Z - 10)^2] =$
 $= (110 - 10)^2(0.5) + (-90 - 10)^2(0.5)$
 $= 100^2 = 10000$

Standard deviation

- Standard deviation is a kind of average distance of a sample of the mean, i.e., a root mean square (RMS) average.
- Variance is the square of this average distance.

Standard deviation

- Standard deviation is a kind of average distance of a sample of the mean, i.e., a root mean square (RMS) average.
- Variance is the square of this average distance.

Standard deviation -

Standard deviation is defined as a square root of variance:

$$\mathbf{SD}[X] = \sqrt{\mathbf{V}[X]}$$

Note:

- **E**[X] and **V**[X] are real numbers, not RVs.
- V[X] is expressed in units of the values in the range of X².
- **SD**[X] is expressed in units of the values in the range of X.
- For the spread example above: SD[X] = 0, SD[Y] = 1, SD[Z] = 100.

Properties of variance

• Property 1:
$$V[X] = E[X^2] - (E[X])^2$$

Properties of variance

- Property 1: $V[X] = E[X^2] (E[X])^2$
- Property 2: variance is not linear: $V[aX + b] = a^2V[X]$

Properties of variance

- Property 1: $V[X] = E[X^2] (E[X])^2$
- **Property 2:** variance is **not linear**: $V[aX + b] = a^2V[X]$ Proof:

$$V[(aX + b] = E[(aX + b)^{2}] - (E[aX + b])^{2}$$

$$= E[a^{2}X^{2} + 2abX + b^{2}] - (aE[X] + b)^{2}$$

$$= a^{2}E[X^{2}] + 2abE[X] + b^{2} - (a^{2}(E[X])^{2} + 2abE[X] + b^{2})$$

$$= a^{2}E[X^{2}] - (a^{2}(E[X])^{2}) = a^{2}(E[X^{2}] - (E[X])^{2})$$

$$= a^{2}V[X]$$

$$\mathbf{E}[X] = \sum_{x: \mathbf{P}[x] > 0} x \mathbf{P}[x] = \sum_{x} x p(x)$$

Properties of Expectation

$$\mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y]$$

$$\mathbf{E}[aX+b]=a\mathbf{E}[X]+b$$

$$\mathsf{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

Properties of Variance

$$V[X] = E[(X - \mu)^2]$$

$$V[X] = E[X^2] - (E[X])^2$$

$$V[aX + b] = a^2V[X]$$

Parametric/standard discrete random variables

- There is deluge of classic RV abstractions that show up in problems.
- They give rise to significant discrete distributions.
- If problem fits, use precalculated (parametric) PMF, expectation, variance and other properties by providing parameters of the problem.
- We will cover the following RVs:
 - 1. Bernoulli
 - 2. Binomial
 - Poisson
 - 4. Geometric
 - 5. Negative Binomial
 - 6. Hypergeometric

Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable

Bernoulli

Bernoulli discrete random variable

A Bernoulli RV X maps "success" of an experiment to 1 and "failure" to 0. It is AKA indicator RV, boolean RV. X is "Bernoulli RV with parameter p", where P["sucess"] = p and so PMF p(1) = p.

X~Ber(p)

PMF:
$$P[X = 1] = p(1) = p$$

P[
$$X = 0$$
] = $p(0) = 1 - p$

Expectation:
$$\mathbf{E}[X] = p$$

Variance: **V**[
$$X$$
] = $p(1 - p)$

Examples: coin toss, random binary digit, if someone likes a film, the gender of a newborn baby, pas/fail of you taking an exam.

Bernoulli examples

Example	
You watch a film on Netflix. At the end you click "like" with probability <i>p</i> . Define a RV representing this event.	
	Answer —

Bernoulli examples

You watch a film on Netflix. At the end you click "like" with probability p .	
Define a RV representing this event.	
Answer -	
Example	
Two fair 6-sided dice are rolled. Define a random variable X for a successful roll of two 6's, and failure for anything else.	

Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$X \sim Bin(n, p)$$

Range:
$$\{0, 1, ..., n\}$$

PMF: $k \in \{0, 1, ..., n\}$

$$\mathbf{P}[X=k] = p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Expectation:
$$\mathbf{E}[X] = np$$

Variance:
$$\mathbf{V}[X] = np(1-p)$$

Examples: # heads in n coin tosses, # of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k] = 1$.

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where random variable y of success in a given trial:

$$X \sim Bin(n, p)$$

Range:
$$\{0, 1, ..., n\}$$

PMF: $k \in \{0, 1, ..., n\}$

$$\mathbf{P}[X=k] = p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Expectation:
$$\mathbf{E}[X] = np$$

Variance:
$$\mathbf{V}[X] = np(1-p)$$

Examples: # heads in n coin tosses, # of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P} [X = k] = 1$.

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where random variable y of success in a given trial:

X~Bin(n, p)

is distributed as a
Harrige:
$$\{0, 1, ..., n\}$$

PMF: $k \in \{0, 1, ..., n\}$

$$\mathbf{P}[X = k] = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$
Expectation: $\mathbf{E}[X] = np$

Variance: $\mathbf{V}[X] = np(1 - p)$

Examples: # heads in n coin tosses, # of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P} [X = k] = 1$.

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bornoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where random variable y of success in a given trial:

X~Bin(n, p)

is distributed as a

Hange: {0,
Binomial
PMF:
$$k \in \mathbb{R}$$
 } = $p(k) = \binom{n}{k} p^k (1-p)^{n-k}$

Expectation: $\mathbf{E}[X] = np$

Variance: $\mathbf{V}[X] = np(1-p)$

Examples: # heads in n coin tosses, # of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P} [X = k] = 1$.

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where random variable y of success in a given trial:

X~Bin(n, p)

is distributed as a

Harrige: {0, Binomial PMF:
$$k \in \{0, \dots, n\}$$
}

$$\mathbf{P}[X = k] = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Expectation: $\mathbf{E}[X] = np$

Variance: $\mathbf{V}[X] = np(1 - p)$

Examples: # heads in n coin tosses, # of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k] = 1$.

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$X \sim Bin(n, p)$$

Range:
$$\{0, 1, ..., n\}$$

Probability that X takes on the value k , n

$$\mathbf{P}[X = k] = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Expectation: $\mathbf{E}[X] = np$

Variance: $\mathbf{V}[X] = np(1 - p)$

Examples: # heads in n coin tosses, # of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k] = 1$.

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

Range:
$$\{0, 1, ..., n\}$$

Probability that X takes on the value k , n

$$P[X = k] = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Expectation: $E[X] = np$

Variance: $V[X] = np$

Probability Mass Function for a Binomial

Examples: # heads in n coin tosses, # of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k] = 1$.

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim Bin(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

Range:
$$\{0, 1, ..., n\}$$

PMF: $k \in \{0, 1, ..., n\}$

$$\mathbf{P}[X=k] = p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Expectation:
$$\mathbf{E}[X] = np$$

Variance:
$$\mathbf{V}[X] = np(1-p)$$

Examples: # heads in n coin tosses, # of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P} [X = k] = 1$.

Binomial example

	Example					
Let X be the number of heads after a coin is tossed three times: $X \sim Bin(3, 0.5)$. What is the probability of each of the different values of X ?						
					Answer -	

Binomial RV is sum of Bernoulli RVs

Let X be a Bernoulli RV: $X \sim Ber(p)$. Let Y be a Binomial RV: $Y \sim Bin(n, p)$. Binomial RV = sum of n independent Bernoulli RVs:

$$Y = \sum_{i=1}^{n} X_i, \quad X_i \sim Ber(p)$$

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{E}[X_{i}] = np$$

Note: Ber(p) = Bin(1, p)

Example -

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- Answer -

Example -

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

Answer -

X: # of bad bottles in a case (20 bottles)

Example -

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X: # of bad bottles in a case (20 bottles)
- **P**[have to give money back] = **P**[$X \ge 2$] = 1 − **P**[X = 0] − **P**[X = 1]

Example -

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X: # of bad bottles in a case (20 bottles)
- **P**[have to give money back] = **P**[$X \ge 2$] = 1 − **P**[X = 0] − **P**[X = 1]
- X is a binomial RV with parameters $X \sim Bin(n = 20, p = 0.05)$.

Example -

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X: # of bad bottles in a case (20 bottles)
- **P**[have to give money back] = **P**[$X \ge 2$] = 1 − **P**[X = 0] − **P**[X = 1]
- X is a binomial RV with parameters $X \sim Bin(n = 20, p = 0.05)$.
- Bernoulli trial: check if a bottle is bad

Example -

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X: # of bad bottles in a case (20 bottles)
- **P**[have to give money back] = **P**[$X \ge 2$] = 1 − **P**[X = 0] − **P**[X = 1]
- X is a binomial RV with parameters $X \sim Bin(n = 20, p = 0.05)$.
- Bernoulli trial: check if a bottle is bad
- P[success] = P[bottle is bad] = 0.05P[failure] = P[bottle is good] = 0.95

Example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05. The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X: # of bad bottles in a case (20 bottles)
- **P**[have to give money back] = **P**[$X \ge 2$] = 1 − **P**[X = 0] − **P**[X = 1]
- X is a binomial RV with parameters $X \sim Bin(n = 20, p = 0.05)$.
- Bernoulli trial: check if a bottle is bad
- P[success] = P[bottle is bad] = 0.05P[failure] = P[bottle is good] = 0.95
- Recall, when $X \sim Bin(n, p)$ then $\mathbf{P}[X = k] = \binom{n}{k} p^k (1-p)^{n-k}$ thus

$$P[X \ge 2] = 1 - P[X = 0] - P[X = 1]$$

Visualising Binomial PMFs

