Introduction to Probability

Lecture 3: Expectation properties, variance, discrete distributions
Mateja Jamnik, Thomas Sauerwald
University of Cambridge, Department of Computer Science and Technology email: \{mateja.jamnik,thomas.sauerwald\}@cl.cam.ac.uk

Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable

Properties of expectation: linearity

Linearity of expectation

Expectations preserve linearity: if a and b are constants, then

$$
\mathbf{E}[a X+b]=a \mathbf{E}[X]+b
$$

Proof:

Properties of expectation: linearity

Linearity of expectation

Expectations preserve linearity: if a and b are constants, then

$$
\mathbf{E}[a X+b]=a \mathbf{E}[X]+b
$$

Proof:

Example

Let the event be a roll of a 6 -sided die, X its random variable, and Y another random variable where $Y=3 X+1$. What are the expected values $\mathrm{E}[X]$ and $\mathrm{E}[Y]$?

Properties of expectation: additivity

Additivity of expectation
Expectation of a sum is equal to the sum of expectations: if X and Y are any random variables on the same sample space then

$$
\mathbf{E}[X+Y]=\mathbf{E}[X]+\mathbf{E}[Y]
$$

Properties of expectation: additivity

Additivity of expectation

Expectation of a sum is equal to the sum of expectations: if X and Y are any random variables on the same sample space then

$$
\mathbf{E}[X+Y]=\mathbf{E}[X]+\mathbf{E}[Y]
$$

Example

Let the events be rolls of 2 dice, and X the random variable for the roll of die 1, and Y for the roll of die 2. What is the expected value of the sum of the rolls of the two dice?

Properties of expectation: LOTUS

Law of the unconscious statistician (LOTUS)
Let X be a random variable, and Y another random variable that is a function of X, so $Y=g(X)$. Let $p(x)$ be a PMF of X. Then

$$
\mathbf{E}[Y]=\mathbf{E}[g(X)]=\sum_{x: p(x)>0} g(x) p(x)
$$

Note how now we no longer need to know PMF of Y.

Properties of expectation: LOTUS

Law of the unconscious statistician (LOTUS)

Let X be a random variable, and Y another random variable that is a function of X, so $Y=g(X)$. Let $p(x)$ be a PMF of X. Then

$$
\mathbf{E}[Y]=\mathbf{E}[g(X)]=\sum_{x: p(x)>0} g(x) p(x)
$$

Note how now we no longer need to know PMF of Y.

- LOTUS is also known as expected value of a function of a random variable.

Properties of expectation: LOTUS

Law of the unconscious statistician (LOTUS)
Let X be a random variable, and Y another random variable that is a function of X, so $Y=g(X)$. Let $p(x)$ be a PMF of X. Then

$$
\mathbf{E}[Y]=\mathbf{E}[g(X)]=\sum_{x: p(x)>0} g(x) p(x)
$$

Note how now we no longer need to know PMF of Y.

- LOTUS is also known as expected value of a function of a random variable.
- Note that the properties of expectation let you avoid defining difficult PMFs.

Properties of expectation: LOTUS

Law of the unconscious statistician (LOTUS)
Let X be a random variable, and Y another random variable that is a function of X, so $Y=g(X)$. Let $p(x)$ be a PMF of X. Then

$$
\mathbf{E}[Y]=\mathbf{E}[g(X)]=\sum_{x: p(x)>0} g(x) p(x)
$$

Note how now we no longer need to know PMF of Y.

- LOTUS is also known as expected value of a function of a random variable.
- Note that the properties of expectation let you avoid defining difficult PMFs.
- Let X be a discrete RV, then:
- $\mathbf{E}\left[X^{2}\right]$ is know as the second moment of X.
- $\mathbf{E}\left[X^{n}\right]$ is know as the $n^{\text {th }}$ moment of X.

Second moment example

Example

Let X be a discrete random variable that ranges over the values $\{-1,0,1\}$, and respective probabilities $\mathbf{P}[X=-1]=0.2$,
$\mathbf{P}[X=0]=0.5$ and $\mathbf{P}[X=1]=0.3$. Let another random variable $Y=X^{2}$ (second moment). What is $\mathbf{E}[Y]$?

Note that $Y=g(X)=X^{2}$ and $\mathbf{E}[Y]=\mathbf{E}[g(X)]=\sum_{x: p(x)>0} g(x) p(x)$, thus

Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable

Spread in the distribution

Expectation is a useful statistic, but it does not give a detailed view of the PMF. Consider these 3 distributions (PMFs).

Spread in the distribution

Expectation is a useful statistic, but it does not give a detailed view of the PMF. Consider these 3 distributions (PMFs).

- Expectation is the same for all distributions: $\mathbf{E}[X]=3$.
- First has the greatest spread, the third has the least spread.
- But the "spread" or "dispersion" of X in the distribution is very different!

Spread in the distribution

Expectation is a useful statistic, but it does not give a detailed view of the PMF. Consider these 3 distributions (PMFs).

- Expectation is the same for all distributions: $\mathbf{E}[X]=3$.
- First has the greatest spread, the third has the least spread.
- But the "spread" or "dispersion" of X in the distribution is very different!
- Variance, $\mathbf{V}[X]$ defines a formal quantification of "spread".
- Several ways to quantify: it uses average square distance from the mean.

Definition of variance

Variance

The variance of a discrete random variable X with expected value (mean) μ is:

$$
\mathbf{V}[X]=\mathbf{E}\left[(X-\mu)^{2}\right]
$$

When computing the variance, we often use a different form of the same equation:

$$
\mathbf{V}[X]=\mathbf{E}\left[x^{2}\right]-(\mathbf{E}[X])^{2}
$$

Proof:

Note:

- $\mathbf{V}[X] \geq 0$
- AKA: Second central moment, or square of the standard deviation

Example with a die roll

Example

Let X be the value on one roll of a 6 -sided fair die. Recall that $\mathrm{E}[X]=\frac{7}{2}=3.5$. What is $\mathrm{V}[X]$?

Using $\mathbf{V}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$:

$$
\text { Using } \mathbf{V}[X]=\mathbf{E}\left[(X-\mu)^{2}\right]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]:
$$

Example of spread

Example

Let X, Y and Z be discrete random variables with the range $X:\{10\}$ and probability 1 , and $Y:\{11,9\}$ and $Z:\{110,-90\}$ with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.

Example of spread

Example

Let X, Y and Z be discrete random variables with the range $X:\{10\}$ and probability 1 , and $Y:\{11,9\}$ and $Z:\{110,-90\}$ with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.
a) $\mathbf{E}[X]=\sum_{x} x p(x)=10 \cdot 1=10$

$$
\begin{aligned}
\mathbf{V}[X] & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[(X-10)^{2}\right] \\
& =(X-10)^{2} p(x)=0^{2} \cdot 1=0
\end{aligned}
$$

Example of spread

Example

Let X, Y and Z be discrete random variables with the range $X:\{10\}$ and probability 1 , and $Y:\{11,9\}$ and $Z:\{110,-90\}$ with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.
a) $\mathbf{E}[X]=\sum_{X} x p(x)=10 \cdot 1=10$

$$
\begin{aligned}
\mathbf{V}[X] & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[(X-10)^{2}\right] \\
& =(X-10)^{2} p(x)=0^{2} \cdot 1=0
\end{aligned}
$$

b) $\mathbf{E}[Y]=(11)(0.5)+(9)(0.5)=10$

$$
\begin{aligned}
\mathbf{V}[Y] & =\mathbf{E}\left[(Y-\mathbf{E}[Y])^{2}\right]=\mathbf{E}\left[(Y-10)^{2}\right] \\
& =(11-10)^{2}(0.5)+(9-10)^{2}(0.5)=1
\end{aligned}
$$

Example of spread

Example

Let X, Y and Z be discrete random variables with the range $X:\{10\}$ and probability 1 , and $Y:\{11,9\}$ and $Z:\{110,-90\}$ with equal probabilities $\frac{1}{2}$. Compute expectation and variance for X, Y and Z.
a) $\mathbf{E}[X]=\sum_{X} x p(x)=10 \cdot 1=10$

$$
\begin{aligned}
\mathbf{V}[X] & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[(X-10)^{2}\right] \\
& =(X-10)^{2} p(x)=0^{2} \cdot 1=0
\end{aligned}
$$

b) $E[Y]=(11)(0.5)+(9)(0.5)=10$

$$
\begin{aligned}
\mathbf{V}[Y] & =\mathbf{E}\left[(Y-\mathbf{E}[Y])^{2}\right]=\mathbf{E}\left[(Y-10)^{2}\right] \\
& =(11-10)^{2}(0.5)+(9-10)^{2}(0.5)=1
\end{aligned}
$$

c) $\mathrm{E}[Z]=(110)(0.5)+(-90)(0.5)=10$

$$
\mathrm{V}[Z]=\mathbf{E}\left[(Z-\mathbf{E}[Z])^{2}\right]=\mathbf{E}\left[(Z-10)^{2}\right]=
$$

$$
=(110-10)^{2}(0.5)+(-90-10)^{2}(0.5)
$$

$$
=100^{2}=10000
$$

Standard deviation

- Standard deviation is a kind of average distance of a sample of the mean, i.e., a root mean square (RMS) average.
- Variance is the square of this average distance.

Standard deviation

- Standard deviation is a kind of average distance of a sample of the mean, i.e., a root mean square (RMS) average.
- Variance is the square of this average distance.

Standard deviation

Standard deviation is defined as a square root of variance:

$$
\mathbf{S D}[X]=\sqrt{\mathbf{V}[X]}
$$

Note:

- $\mathrm{E}[X]$ and $\mathrm{V}[X]$ are real numbers, not RVs.
- $\mathbf{V}[X]$ is expressed in units of the values in the range of X^{2}.
- SD $[X]$ is expressed in units of the values in the range of X.
- For the spread example above: $\mathbf{S D}[X]=0, \mathbf{S D}[Y]=1, \mathbf{S D}[Z]=100$.

Properties of variance

- Property 1: $\mathbf{V}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$

Properties of variance

- Property 1: $\mathbf{V}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$
- Property 2: variance is not linear: $\mathbf{V}[a X+b]=a^{2} \mathbf{V}[X]$

Properties of variance

- Property 1: $\mathbf{V}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$
- Property 2: variance is not linear: $\mathbf{V}[a X+b]=a^{2} \mathbf{V}[X]$

Proof:

$$
\begin{aligned}
\mathbf{V}[(a X+b] & =\mathbf{E}\left[(a X+b)^{2}\right]-(\mathbf{E}[a X+b])^{2} \\
& =\mathbf{E}\left[a^{2} X^{2}+2 a b X+b^{2}\right]-(a \mathbf{E}[X]+b)^{2} \\
& =a^{2} \mathbf{E}\left[X^{2}\right]+2 a b \mathbf{E}[X]+b^{2}-\left(a^{2}(\mathbf{E}[X])^{2}+2 a b \mathbf{E}[X]+b^{2}\right) \\
& =a^{2} \mathbf{E}\left[X^{2}\right]-\left(a^{2}(\mathbf{E}[X])^{2}\right)=a^{2}\left(\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}\right) \\
& =a^{2} \mathbf{V}[X]
\end{aligned}
$$

Summary of expectation and variance for discrete RV

$$
\mathbf{E}[X]=\sum_{x: P[x]>0} x \mathbf{P}[x]=\sum_{x} x p(x)
$$

Properties of Expectation

$$
\mathbf{E}[X+Y]=\mathbf{E}[X]+\mathbf{E}[Y]
$$

$\mathbf{E}[a X+b]=a \mathbf{E}[X]+b$
$\mathbf{E}[g(X)]=\sum_{x} g(x) p_{x}(x)$

Properties of Variance
$\mathbf{V}[X]=\mathbf{E}\left[(X-\mu)^{2}\right]$
$\mathbf{V}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}$
$\mathbf{V}[a X+b]=a^{2} \mathbf{V}[X]$

Parametric/standard discrete random variables

- There is deluge of classic RV abstractions that show up in problems.
- They give rise to significant discrete distributions.
- If problem fits, use precalculated (parametric) PMF, expectation, variance and other properties by providing parameters of the problem.
- We will cover the following RVs:

1. Bernoulli
2. Binomial
3. Poisson
4. Geometric
5. Negative Binomial
6. Hypergeometric

Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable

Bernoulli

Bernoulli discrete random variable

A Bernoulli RV X maps "success" of an experiment to 1 and "failure" to 0 . It is AKA indicator RV, boolean RV. X is "Bernoulli RV with parameter p ", where $\mathbf{P}[$ " sucess" $]=p$ and so PMF $p(1)=p$.

$$
\mathbf{X} \sim \operatorname{Ber}(\mathbf{p})
$$

$$
\begin{aligned}
\text { Range: } & \{0,1\} \\
\text { PMF: } & \mathbf{P}[X=1]=p(1)=p \\
& \mathbf{P}[X=0]=p(0)=1-p
\end{aligned}
$$

Expectation: $\mathbf{E}[X]=p$
Variance: $\mathbf{V}[X]=p(1-p)$

Examples: coin toss, random binary digit, if someone likes a film, the gender of a newborn baby, pas/fail of you taking an exam.

Bernoulli examples

Example

You watch a film on Netflix. At the end you click "like" with probability p. Define a RV representing this event.

Answer

Bernoulli examples

Example

You watch a film on Netflix. At the end you click "like" with probability p. Define a RV representing this event.

Answer

Example

Two fair 6-sided dice are rolled. Define a random variable X for a successful roll of two 6's, and failure for anything else.

Outline

Properties of expectation

Variance

Bernoulli discrete random variable

Binomial discrete random variable

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim \operatorname{Bin}(n, p)$ is a Binomial RV , where p is the probability of success in a given trial:

$$
X \sim \operatorname{Bin}(n, p)
$$

Range: $\{0,1, \ldots, n\}$
PMF: $k \in\{0,1, \ldots, n\}$

$$
\mathbf{P}[X=k]=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Expectation: $\quad \mathbf{E}[X]=n p$
Variance: $\mathbf{V}[X]=n p(1-p)$

Examples: \# heads in n coin tosses, \# of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k]=1$.

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independenttriale of a Borgoulli experiment. $X \sim \operatorname{Bin}(n, p)$ is a Binomial RV, where random variable y of success in a given trial:

$$
X \sim \operatorname{Bin}(n, p)
$$

Range: $\{0,1, \ldots, n\}$

$$
\text { PMF: } \quad k \in\{0,1, \ldots, n\}
$$

$$
\mathbf{P}[X=k]=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Expectation: $\quad \mathbf{E}[X]=n p$
Variance: $\mathbf{V}[X]=n p(1-p)$

Examples: \# heads in n coin tosses, \# of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k]=1$.

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independenttriale of a Borgoulli experiment. $X \sim \operatorname{Bin}(n, p)$ is a Binomial RV , where $\underbrace{\text { random variable } y \text { of success in a given trial: }}$

is distributed as a
Range: $\{0,1, \ldots, n\}$
PMF: $k \in\{0,1, \ldots, n\}$

$$
\mathbf{P}[X=k]=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Expectation: $\mathbf{E}[X]=n p$
Variance: $\mathbf{V}[X]=n p(1-p)$

Examples: \# heads in n coin tosses, \# of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k]=1$.

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent riale of a Borpoulli experiment. $X \sim \operatorname{Bin}(n, p)$ is a Binomial RV , where $\underbrace{\text { random variable } y \text { of success in a given trial: }}$

$$
\mathbf{P}[X=k]=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Expectation: $\quad \mathbf{E}[X]=n p$
Variance: $\mathbf{V}[X]=n p(1-p)$

Examples: \# heads in n coin tosses, \# of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k]=1$.

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent triale of a Bornoulli experiment. $X \sim \operatorname{Bin}(n, p)$ is a Binomial RV , where (random variable y of success in a given trial:

$$
\mathbf{P}[X=k]=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Expectation: $\quad \mathbf{E}[X]=n p$
Variance: $\mathbf{V}[X]=n p(1-p)$

Examples: \# heads in n coin tosses, \# of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k]=1$.

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim \operatorname{Bin}(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$
X \sim \operatorname{Bin}(n, p)
$$

Expectation: $\quad \mathbf{E}[X]=n p$
Variance: $\mathbf{V}[X]=n p(1-p)$

Examples: \# heads in n coin tosses, \# of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k]=1$.

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim \operatorname{Bin}(n, p)$ is a Binomial RV, where p is the probability of success in a given trial:

$$
X \sim \operatorname{Bin}(n, p)
$$

Examples: \# heads in n coin tosses, \# of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k]=1$.

Binomial

Binomial discrete random variable

A Binomial RV X represents the number of successes in n successive independent trials of a Bernoulli experiment. $X \sim \operatorname{Bin}(n, p)$ is a Binomial RV , where p is the probability of success in a given trial:

$$
X \sim \operatorname{Bin}(n, p)
$$

Range: $\{0,1, \ldots, n\}$
PMF: $k \in\{0,1, \ldots, n\}$

$$
\mathbf{P}[X=k]=p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Expectation: $\quad \mathbf{E}[X]=n p$
Variance: $\mathbf{V}[X]=n p(1-p)$

Examples: \# heads in n coin tosses, \# of 1's in randomly generated length n bit string

Note: by Binomial theorem (revision), we can prove $\sum_{k=0}^{n} \mathbf{P}[X=k]=1$.

Binomial example

Example

Let X be the number of heads after a coin is tossed three times:
$X \sim \operatorname{Bin}(3,0.5)$. What is the probability of each of the different values of X ?

Binomial RV is sum of Bernoulli RVs

Let X be a Bernoulli RV: $X \sim \operatorname{Ber}(p)$. Let Y be a Binomial RV: $Y \sim \operatorname{Bin}(n, p)$. Binomial RV = sum of n independent Bernoulli RVs:

$$
\begin{gathered}
Y=\sum_{i=1}^{n} X_{i}, \quad X_{i} \sim \operatorname{Ber}(p) \\
\mathbf{E}[Y]=\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=n p
\end{gathered}
$$

Note: $\operatorname{Ber}(p)=\operatorname{Bin}(1, p)$

Another example

Example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05 . The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

Another example

Example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05 . The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X: \# of bad bottles in a case (20 bottles)

Another example

Example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05 . The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X : \# of bad bottles in a case (20 bottles)
- \mathbf{P} [have to give money back $]=\mathbf{P}[X \geq 2]=1-\mathbf{P}[X=0]-\mathbf{P}[X=1]$

Another example

Example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05 . The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X : \# of bad bottles in a case (20 bottles)
- \mathbf{P} [have to give money back $]=\mathbf{P}[X \geq 2]=1-\mathbf{P}[X=0]-\mathbf{P}[X=1]$
- X is a binomial RV with parameters $X \sim \operatorname{Bin}(n=20, p=0.05)$.

Another example

Example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05 . The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X : \# of bad bottles in a case (20 bottles)
- \mathbf{P} [have to give money back $]=\mathbf{P}[X \geq 2]=1-\mathbf{P}[X=0]-\mathbf{P}[X=1]$
- X is a binomial RV with parameters $X \sim \operatorname{Bin}(n=20, p=0.05)$.
- Bernoulli trial: check if a bottle is bad

Another example

Example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05 . The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X : \# of bad bottles in a case (20 bottles)
- \mathbf{P} [have to give money back $]=\mathbf{P}[X \geq 2]=1-\mathbf{P}[X=0]-\mathbf{P}[X=1]$
- X is a binomial RV with parameters $X \sim \operatorname{Bin}(n=20, p=0.05)$.
- Bernoulli trial: check if a bottle is bad
- \mathbf{P} [success] = \mathbf{P} [bottle is bad] $=0.05$
$\mathbf{P}[$ failure $]=\mathbf{P}$ [bottle is good $]=0.95$

Another example

Example

An off-licence sells cases of wine, each containing 20 bottles. The probability that a bottle is bad is 0.05 . The off-licence gives a money-back guarantee that the case will contain no more than one bad bottle. What is the probability that the off-licence will have to give money back?

- X : \# of bad bottles in a case (20 bottles)
- \mathbf{P} [have to give money back $]=\mathbf{P}[X \geq 2]=1-\mathbf{P}[X=0]-\mathbf{P}[X=1]$
- X is a binomial RV with parameters $X \sim \operatorname{Bin}(n=20, p=0.05)$.
- Bernoulli trial: check if a bottle is bad
- \mathbf{P} [success] = \mathbf{P} [bottle is bad] $=0.05$
$\mathbf{P}[$ failure $]=\mathbf{P}$ [bottle is good $]=0.95$
- Recall, when $X \sim \operatorname{Bin}(n, p)$ then $\mathbf{P}[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k}$ thus

$$
\mathbf{P}[X \geq 2]=1-\mathbf{P}[X=0]-\mathbf{P}[X=1]
$$

Visualising Binomial PMFs

