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Properties of expectation: linearity

Linearity of expectation

Expectations preserve linearity: if a and b are constants, then

E[aX+b]=aE[X]+b

Proof: E[aX+b]= Z (ax + b)p(x)
x:p(x)>0
= (a > xp(x)) + (b > p(x))
x:p(x)>0 x:p(x)>0
=aE[X]+b(1)=aE[X]+b
Example

Let the event be a roll of a 6-sided die, X its random variable, and Y
another random variable where Y = 3X + 1. What are the expected
valuesE[ X]and E[ Y ]?

Answer

We know from last time that E[ X ]=3.5. Thus E[ Y ] = 3:3.5+1=11.5.
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Properties of expectation: additivity

Additivity of expectation

Expectation of a sum is equal to the sum of expectations: if X and Y
are any random variables on the same sample space then

E[X+Y]=E[X]+E[Y]

Example

Let the events be rolls of 2 dice, and X the random variable for the roll
of die 1, and Y for the roll of die 2. What is the expected value of the
sum of the rolls of the two dice?

Answer

E[X+Y]=E[X]+E[Y]=35+35=7
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Properties of expectation: LOTUS

Law of the unconscious statistician (LOTUS)

Let X be a random variable, and Y another random variable that is a
function of X, so Y = g(X). Let p(x) be a PMF of X. Then

E[Y]=E[g(X)]= ) g(x)p(x)

x:p(x)>0

Note how now we no longer need to know PMF of Y.

= LOTUS is also known as expected value of a function of a random
variable.

= Note that the properties of expectation let you avoid defining difficult
PMFs.

= Let X be a discrete RV, then:
= E[ X? ] is know as the second moment of X.
* E[ X" ]is know as the n" moment of X.

Sl
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Second moment example

Example

Let X be a discrete random variable that ranges over the values
{-1,0, 1}, and respective probabilites P[ X=-1] = 0.2,
P[X=0]=05and P[ X=1]=0.3. Let another random variable
Y = X? (second moment). What is E[ Y ]?

Answer

Note that ¥ = g(X) = X* and E[ Y] = E[g(X) ] = ¥ .50 9(X)P(X),
thus

E[Y]=(-1)%(0.2) + 0°(0.5)% + (1)?(0.3) = 0.5

Sl
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Variance
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Spread in the distribution

Expectation is a useful statistic, but it does not give a detailed view of the
PMF. Consider these 3 distributions (PMFs).

0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Expectation is the same for all distributions: E[ X ] = 3.

First has the greatest spread, the third has the least spread.

= But the "spread" or "dispersion” of X in the distribution is very different!
Variance, V[ X ] defines a formal quantification of "spread".

= Several ways to quantify: it uses average square distance from the mean.
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Definition of variance

Variance

The variance of a discrete random variable X with expected value
(mean) p is:

VIX]=E[(X-pn)]

When computing the variance, we often use a different form of the
same equation:

VIX]1=E[X*]-(E[X])
Proof: E[X]=pu
(X =) = X2 —2uX + pi°
E[(X-p) | =E[X*—2uX +° | =E[ X* |- 2uE[ X ]+ 1*
=E[X*]-1*=E[ X*]- (E[X])®

Note:
=V[X]=0
= AKA: Second central moment, or square of the standard deviation

=l
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Example with a die roll

Example

Let X be the value on one roll of a 6-sided fair die. Recall that
E[X]= g =3.5. Whatis V[ X ]?

Answer

Using V[ X]=E[ X* ] - (E[ X ])*:

21 _ 421 21 21 21 21 21 91
E[X:|—16+26+3§+46+56+66—F
91 (7\? 35
V[X]=F—(§) —E—Z.Q

Using V[ X]1=E[ (X - p)® | =E[ (X-E[X ] :
vo-(1-3) 5 (-3 e b3 § (-3

-y

o
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Example of spread

Example

Let X, Y and Z be discrete random variables with the range X : {10} and
probability 1, and Y : {11,9} and Z : {110, -90} with equal probabilities %
Compute expectation and variance for X, Y and Z.

PLX] Answer
a) E[X]:pr(x)=1o.1=10 1 .
VIX1=E[(X-E[X]?]=E[(X-10)?] 05
o X
= (X-10)’p(x)=0%-1=0 : :
PLY]
b) E[ Y] =(11)(0.5) +(9)(0.5) = 10 ;
VEY]=E[(Y-E[Y]*]-E[(Y-107] oo
= (11 = 10)%(0.5) + (9 - 10)3(0.5) = 1 0 y
0 9 11
¢) E[Z]=(110)(0.5) + (-90)(0.5) = 10 P[Z]
- _ 27 _ Cm27 L 1
VIZ]=E[(Z-E[Z])*]=E[(Z-10)°]= . N

= (110-10)%(0.5) + (-90—10)2(0.5)
= 100% = 10000 %0 0
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Standard deviation

= Standard deviation is a kind of average distance of a sample of the mean,
i.e., a root mean square (RMS) average.

= Variance is the square of this average distance.

Standard deviation

Standard deviation is defined as a square root of variance:

SD[X]=V[X]

Note:
= E[ X]and V[ X ] are real numbers, not RVs.
= V[ X ]is expressed in units of the values in the range of X2.
= SD[ X ]is expressed in units of the values in the range of X.
= For the spread example above: SD[ X]=0,SD[Y]=1,SD[Z] = 100.
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Properties of variance

» Property 1: V[ X ] =E[ X* |- (E[ X ])?
» Property 2: variance is not linear: V[ aX + b] = &V[ X ]
Proof:

V[(aX +b]=E[(aX +b)* |- (E[aX + b])?
= E[ a°X? + 2abX + b | - (aE[ X ] + b)?
= a°E[ X? |+ 2abE[ X ] + b° - (a*(E[ X ])? + 2abE[ X ] + b°)
= B[ X* ] - ((E[X])?) = & (E[ X* | - (E[X]))
=aV[X]
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Summary of expectation and variance for discrete RV

E[X]= Z xP[x]=pr(x)

x:P[ x]>0

Properties of Expectation Properties of Variance
E[X+Y]=E[X]+E[Y] VIX]=E[(X-pn)?]

E[aX+b]=aE[X]+b VIX]=E[X*]- (E[X])

E[9(X)]=) g(x)px(x) V[aX + b= £V X]
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Parametric/standard discrete random variables

= There is deluge of classic RV abstractions that show up in problems.
= They give rise to significant discrete distributions.

= If problem fits, use precalculated (parametric) PMF, expectation, variance
and other properties by providing parameters of the problem.

= We will cover the following RVs:

Bernoulli
Binomial
Poisson
Geometric
Negative Binomial
Hypergeometric

Bl i
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Bernoulli discrete random variable
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Bernoulli

~——— Bernoulli discrete random variable N\
A Bernoulli RV X maps "success" of an experiment to 1 and "failure" to
0. It is AKA indicator RV, boolean RV. X is "Bernoulli RV with parameter

p", where P["sucess” ] = p and so PMF p(1) = p.
X~Ber(p)

Range: {0,1}
PMF: P[X=1]=p(1)=p
P[X=0]=p(0)=1-p
Expectation: E[X]=p
Variance: V[ X]=p(1-p)

Examples: coin toss, random binary digit, if someone likes a film, the gender
of a newborn baby, pas/fail of you taking an exam.
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Bernoulli examples

Example

You watch a film on Netflix. At the end you click "like" with probability p.
Define a RV representing this event.

Answer
= X: 1 if "like"-d

= X ~ Ber(p)

* P[X=1]=pP[X=0]=1-p

Example

Two fair 6-sided dice are rolled. Define a random variable X for a
successful roll of two 6’s, and failure for anything else.

Answer

= X: 1if "success" of rolling two 6’s
= X ~ Ber(p)

“P[X=1]=%

5
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Binomial discrete random variable
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Binomial

~—— Binomial discrete random variable N
A Binomial RV X represents the number of successes in n successive

independept-triale af 2 Barqoulli experiment. X ~ Bin(n, p) is a Binomial
RV, where y of success in a given trial:
X~Bin(n,p)

7n}

is distributed as a

RAdlnge:. 7 a
(Probability that X takes on the value k
~N

P[X = k]=p(k) = (Z)p*m -p)"*
N

Probability Mass Function for a Binomialj
AY =7

Expectation: E[X]=n
Variance: V[ X]= nf

\ J

Examples: # heads in n coin tosses, # of 1’s in randomly generated length n
bit string

Note: by Binomial theorem (revision), we can prove Y ,_P[ X = k] =1.
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Binomial example

Example
Let X be the number of heads after a coin is tossed three times:

X ~ Bin(3,0.5). What is the probability of each of the different values of
X?

Answer

S
|
A
1
oo

PLX=0]=p(0) - S)p°(1—p>3=%
PLX=1]=p(1) = ?)p1<1—p>2=§
g)pzﬂ—p)1 =§

=l
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Binomial RV is sum of Bernoulli RVs

Let X be a Bernoulli RV: X ~ Ber(p). Let Y be a Binomial RV: Y ~ Bin(n, p).
Binomial RV = sum of nindependent Bernoulli RVs:

n
Y=) X, X ~Ber(p)

i=1

E[Y]=E{ n)@}=§njE[)c]=np
i=1 i=1

I

Note: Ber(p) = Bin(1, p)

Eg Intro to Probability Binomial discrete random variable
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Another example

Example

An off-licence sells cases of wine, each containing 20 bottles. The
probability that a bottle is bad is 0.05. The off-licence gives a
money-back guarantee that the case will contain no more than one bad
bottle. What is the probability that the off-licence will have to give money
back?

Answef —m8M8M8Mm
= X: # of bad bottles in a case (20 bottles)
= P[have to give money back ] =P[ X =2]=1-P[X=0]-P[X=1]
= X is a binomial RV with parameters X ~ Bin(n = 20, p = 0.05).
= Bernoulli trial: check if a bottle is bad
= P[success] = P[bottle is bad ] = 0.05
P [ failure ] = P [ bottle is good ] = 0.95
= Recall, when X ~ Bin(n,p) thenP[ X = k] = (Z)pk(1 - p)"’k thus

P[X>2]=1-P[X=0]-P[X=1]

=1- (200)0.0500.9520 - (‘210)0.0510.9519 =0.26
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Visualising Binomial PMFs

X ~ Bin(40,0.3);

P[X=k]

0.2

0.1

0.1

0.0

X ~ Bin(40,0.5); X ~ Bin(40,0.7)

| | | | |
_ _|0opy =03
ML ~ 1n/0op, =05
| aln Oops =0.7
T T T T
0 10 20 30 40
k
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