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Course logistics

Rough syllabus:

Introduction to probability: 1 lecture

Discrete and continuous random variables: 6 lectures

Moments and limit theorems: 3 lectures

Applications/statistics: 2 lectures

Recommended reading:

Ross, S.M. (2014). A First course in probability. Pearson (9th ed.).
Dekking, F.M., et. al. (2005) A modern introduction to probability and
statistics. Springer.
Bertsekas, D.P. & Tsitsiklis, J.N. (2008). Introduction to probability. Athena
Scientific.

Grimmett, G. & Welsh, D. (2014). Probability: an Introduction. Oxford
University Press (2nd ed.).
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Why probability?

Gives us mathematical tools to deal with uncertain events.

It is used everywhere, especially in applications of machine learning.

Machine learning: use probability to compute predictions about and from data.

Probability is not statistics:
Both about random processes.
Probability: logically self-contained, few rules for computing, one correct answer.
Statistics: messier, more art, get experimental data and try to draw
probabilistic conclusions, no single correct answer.
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Applications of probability

Ranking Websites Matching

A =
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Prerequisite background

Set theory

Counting: product rule, sum rule, inclusion-exclusion

Combinatorics: permutations

Probability space: sample space, event space

Axioms

Union bound

Look for revision material of above on the course website:

https://www.cl.cam.ac.uk/teaching/2324/IntroProb/
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Definition

Consider an experiment with sample space S, and two events E and F .
Then, the (conditional) probability of event E given F has occurred
(denoted P [E∣F ]) with P [F ] > 0 is defined by

P [E∣F ] = P [E ∩ F ]
P [F ] =

P [EF ]
P [F ]

Conditional probability

Sample space: all possible outcomes consistent with F (i.e., S ∩ F = F )
Event space: all outcomes in E consistent with F (i.e., E ∩ F )
Note: we assume that all outcomes are equally likely

P [E∣F ] = # outcomes in E ∩ F
# outcomes in F

=

# outcomes in E∩F
# outcomes in S
# outcomes in F
# outcomes in S

=
P [E ∩ F ]

P [F ]
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Example

Two dice are rolled yielding value D1 and D2. Let E be event that
D1 + D2 = 4.

1. What is P [E ]?
2. Let event F be D1 = 2. What is P [E∣F ]?

Answer

1. ∣S∣ = 36, E = {(1,3), (2,2), (3,1)}, thus P [E ] = 3
36

=
1

12
.

2. S = {(2,1), (2,2),2,3), (2,4), (2,5), (2,6)},E = {(2,2)}, thus
P [E∣F ] = 1

6

Example
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Rules revisited

Rearranging the definition of conditional probability gives us:

P [EF ] = P [E∣F ]P [F ]

Chain rule

Generalisation of the Chain rule:

P [E1E2⋯En ] = P [E1 ]P [E2∣E1 ]P [E3∣E2E1 ]⋯P [En∣E1⋯En−1 ]

Multiplication rule
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Example

An ordinary deck of 52 playing cards is randomly divided into 4 piles of
13 cards each. What is the probability that each pile has exactly 1 ace?

Answer
Define:

E1= ace♥ is in any one pile

E2= ace♥ and ace♠ are in different piles

E3= ace♥, ace♠ and ace♣ are in different piles

E4= all aces are in different piles

P [E1E2E3E4 ] = P [E1 ]P [E2∣E1 ]P [E3∣E1E2 ]P [E4∣E1E2E3 ]
We have P [E1 ] = 1. For rest we consider complement of next ace
being in the same pile and thus have:

P [E2∣E1 ] = 1 − 12
51

P [E3∣E1E2 ] = 1 − 24
50

P [E4∣E1E2E3 ] = 1 − 36
49

Thus:
P [E1E2E3E4 ] = 39⋅26⋅13

51⋅50⋅49
≈ 0.105

Example
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Law of total probability

For events E and F where P [F ] > 0, then for any event E

P [E ] = P [EF ] + P [EF c ] = P [E∣F ]P [F ] + P [E∣F c ]P [F c ]

In general, for disjoint events F1,F2, . . .Fn s.t. F1 ∪ F2 ∪⋯∪ Fn = S,

P [E ] =
n

∑
i=1

P [E∣Fi ]P [Fi ]

The law of total probability (a.k.a. Partition theorem)

Intuition:

Want to know probability of E . There are two scenarios, F and F c . If we
know these and the probability of E conditioned on each scenario, we can
compute the probability of E .
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Lightbulb example

There are 3 boxes each containing a different number of light bulbs.
The first box has 10 bulbs of which 4 are dead, the second has 6 bulbs
of which 1 is dead, and the third box has 8 bulbs of which 3 are dead.
What is the probability of a dead bulb being selected when a bulb is
chosen at random from one of the 3 boxes (each box has equal chance
of being picked)?

Answer

Let event E = "dead bulb is picked", and F1 = "bulb is picked from first
box", F2 = "bulb is picked from second box" and F3 = "bulb is picked
from third box". We know:

P [E∣F1 ] =
4

10
,P [E∣F2 ] =

1
6
,P [E∣F3 ] =

3
8

We need to compute P [E ], and we know that P [Fi ] = 1
3
:

P [E ] =
n

∑
i=1

P [E∣Fi ]P [Fi ] =
4

10
1
3
+

1
6

1
3
+

3
8

1
3
=

113
360

≈ 0.31

Example
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Bayes’ theorem

How many spam emails contain the word "Dear"?

P [E∣F ] = P [ "Dear"∣spam ]
But how about what is the probability that an email containing "Dear" is
spam?

P [F ∣E ] = P [ spam∣"Dear" ]

For any events E and F where P [E ] > 0 and P [F ] > 0,

P [F ∣E ] = P [E∣F ]P [F ]
P [E ]

and in expanded form,

P [F ∣E ] = P [E∣F ]P [F ]
P [E∣F ]P [F ] + P [E∣F c ]P [F c ] =

P [E∣F ]P [F ]
∑n

i=1 P [E∣Fi ]P [Fi ]

using the Law of Total Probability. Note that all events Fi must be
mutually exclusive (non-overlapping) and exhaustive (their union is the
complete sample space) .

Bayes’ theorem
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Example

60% of all email in 2022 is spam. 20% of spam contains the word
"Dear". 1% of non-spam contains the word "Dear". What is the
probability that an email is spam given it contains the word "Dear"?

Answer

Let event E ="Dear", event F = spam.

P [F ] = 0.6 thus P [F c ] = 0.4.

P [E∣F ] = 0.2.

P [E∣F c ] = 0.01.

Compute P [F ∣E ].

P [F ∣E ] = P [E∣F ]P [F ]
P [E∣F ]P [F ] + P [E∣F c ]P [F c ] =

=
(0.2)(0.6)

(0.2)(0.6) + (0.01)(0.4) ≈ 0.968

Example
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Bayes’ terminology

P [F ∣E ] =
P [E∣F ] ⋅ P [F ]

P [E ]

F : hypothesis, E : evidence

posterior
prior

P [F ]: "prior probability" of hypothesis

likelihood

P [E∣F ]: probability of evidence given hypothesis (likelihood)

normalisation constant

P [E ]: calculated by making sure that probabilities of all
outcomes sum to 1 (they are "normalised")
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Confusion matrix (error matrix)

Used in classification tasks for predicting output error.

True condition
Total population Condition positive

F
Condition negative
F c

P
re

di
ct

ed
co

nd
iti

on

Predicted
condition pos-
itive E

True positive
P [E∣F ]

False positive
P [E∣F c ]

Predicted
condition neg-
ative Ec

False negative
P [Ec∣F ]

True negative
P [Ec∣F c ]
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Medical testing example

A test is 98% effective at detecting the disease COVID-19 ("true
positive").

The test has a "false positive" rate of 1%.

0.5% of the population has COVID-19.

What is the likelihood you have COVID-19 if you test positive?

Answer

Let E : test positive, F : actually have COVID-19.

Need to find P [F ∣E ].

We know:
P [E∣F ] = 0.98
P [E∣F c ] = 0.01
P [F ] = 0.005 thus P [F c ] = 0.995

Thus
P [F ∣E ] = P [E∣F ]P [F ]

P [E∣F ]P [F ] + P [E∣F c ]P [F c ] =

=
(0.98)(0.005)

(0.98)(0.005) + (0.01)(0.995) ≈ 0.33

Example
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Bayesian intuition

33% chance of having COVID-19 after testing positive may seem surprising.

But the space of facts is now conditioned on a positive test result (people who test
positive and have COVID-19 and people who test positive and don’t have
COVID-19).

F yes disease F c no disease
E test+ True positive False positive

P [E∣F ] = 0.98 P [E∣F c ] = 0.01
Ec test- False negative True negative

P [Ec∣F ] = 0.02 P [Ec∣F c ] = 0.99

But what is a chance of having COVID-19 if you test and it comes back negative?

P [F ∣Ec ] =
P [Ec∣F ]P [F ]

P [Ec∣F ]P [F ] + P [Ec∣F c ]P [F c ] ≈ 0.0001

We update our beliefs with Bayes’ theorem:
I have 0.5% chance of having COVID-19. I take the test:

Test is positive: I now have 33% chance of having COVID-19.
Test is negative: I now have 0.01% chance of having COVID-19.

So it makes sense to take the test.
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Independent events

Two events E and F are independent if and only if

P [EF ] = P [E ]P [F ]

Otherwise, they are called dependent events.

In general, n events E1,E2, . . . ,En are mutually independent if for every
subset of these events with r elements (where r ≤ n) it holds that

P [EaEb⋯Er ] = P [Ea ]P [Eb ]⋯P [Er ]

Independence

Therefore for 3 events E ,F ,G to be independent, we must have

P [EFG ] =P [E ]P [F ]P [G ]
P [EF ] =P [E ]P [F ]
P [EG ] =P [E ]P [G ]
P [FG ] =P [F ]P [G ]
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Independence of complement

Notice an equivalent definition for independent events E and F (P [F ] > 0)

P [E∣F ] = P [E ]

Proof:

P [E∣F ] = P [EF ]
P [F ] =

P [E ]P [F ]
P [F ] = P [E ]

If events E and F are independent, then E and F c are independent:

P [EF c ] = P [E ]P [F c ]

Independence of complement

Proof:

P [EF c ] =P [E ] − P [EF ] = P [E ] − P [E ]P [F ] =
=P [E ] (1 − P [F ]) = P [E ]P [F c ]
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Example

Each roll of a die is an independent trial. We have two rolls of D1 and
D2. Let event E ∶ D1 = 1, F ∶ D2 = 6 and event G ∶ D1 + D2 = 7 (thus
G = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}).
1. Are E and F independent?

2. Are E and G independent?

3. Are E ,F ,G independent?

Answer

1. Yes, since P [E ] = 1
6
,P [F ] = 1

6
and P [EF ] = 1

36
.

2. Yes, since P [E ] = 1
6
,P [G ] = 1

6
and P [EG ] = 1

36
.

3. No, since P [EFG ] = 1
36

≠
1
6

1
6

1
6
.

Example
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Conditional independence

Two events E and F are called conditionally independent given a third
event G if

P [EF ∣G ] = P [E∣G ]P [F ∣G ]
Or equivalently,

P [E∣FG ] = P [E∣G ]

Conditional independence

Notice that:

Dependent events can become conditionally independent.

Independent events can become conditionally dependent.

Knowing when conditioning breaks or creates independence is a big part
of building complex probabilistic models.
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Example revisited

Each roll of a die is an independent trial. We have two rolls of D1 and
D2. Let event E ∶ D1 = 1, F ∶ D2 = 6 and event G ∶ D1 + D2 = 7 (thus
G = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}).
1. Are E and F independent?

2. Are E and F independent given G?

Answer

1. Yes, since P [E ] = 1
6
,P [F ] = 1

6
and P [EF ] = 1

36
.

2. No, since P [E∣G ] = 1
6

and P [F ∣G ] = 1
6
, but

P [EF ∣G ] = 1
6
≠ P [E∣G ]P [F ∣G ].

Example
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Summary of conditional probability

Conditioning on event G:

Name of rule Original rule Conditional rule

1st axiom of probability 0 ≤ P [E ] ≤ 1 0 ≤ P [E∣G ] ≤ 1

Complement P [E ] = 1 − P [Ec ] P [E∣G ] = 1 − P [Ec∣G ]

Chain rule P [EF ] = P [E∣F ]P [F ] P [EF ∣G ] = P [E∣FG ]P [F ∣G ]

Bayes’ theorem P [F ∣E ] = P [E∣F ]P [F ]
P [E ] P [F ∣EG ] = P [E∣FG ]P [F ∣G ]

P [E∣G ]
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