Introduction to Probability
Lecture 1: Conditional probabilities and Bayes' theorem
Mateja Jamnik, Thomas Sauerwald
University of Cambridge, Department of Computer Science and Technology email: \{mateja.jamnik,thomas.sauerwald\}@cl.cam.ac.uk

Outline

Logistics, motivation, background

Conditional probability

Bayes' Theorem

Independence

Lecturers

Mateja Jamnik

Thomas Sauerwald

Course logistics

Rough syllabus:

- Introduction to probability: 1 lecture
- Discrete and continuous random variables: 6 lectures
- Moments and limit theorems: 3 lectures
- Applications/statistics: 2 lectures

Recommended reading:

- Ross, S.M. (2014). A First course in probability. Pearson (9th ed.).
- Dekking, F.M., et. al. (2005) A modern introduction to probability and statistics. Springer.
- Bertsekas, D.P. \& Tsitsiklis, J.N. (2008). Introduction to probability. Athena Scientific.
- Grimmett, G. \& Welsh, D. (2014). Probability: an Introduction. Oxford University Press (2nd ed.).

Why probability?

- Gives us mathematical tools to deal with uncertain events.
- It is used everywhere, especially in applications of machine learning.
- Machine learning: use probability to compute predictions about and from data.
- Probability is not statistics:
- Both about random processes.
- Probability: logically self-contained, few rules for computing, one correct answer.
- Statistics: messier, more art, get experimental data and try to draw probabilistic conclusions, no single correct answer.

Applications of probability

Ranking Websites

Matching

Finance

Data Mining

Deep Learning

Medicine

Particle Processes

Prerequisite background

- Set theory
- Counting: product rule, sum rule, inclusion-exclusion
- Combinatorics: permutations
- Probability space: sample space, event space
- Axioms
- Union bound
- Look for revision material of above on the course website:
https://www.cl.cam.ac.uk/teaching/2324/IntroProb/

Outline

Logistics, motivation, background

Conditional probability

Bayes' Theorem

Independence

Definition

Conditional probability

Consider an experiment with sample space S, and two events E and F. Then, the (conditional) probability of event E given F has occurred (denoted $\mathbf{P}[E \mid F]$) with $\mathbf{P}[F]>0$ is defined by

$$
\mathbf{P}[E \mid F]=\frac{\mathbf{P}[E \cap F]}{\mathbf{P}[F]}=\frac{\mathbf{P}[E F]}{\mathbf{P}[F]}
$$

Sample space: all possible outcomes consistent with F (i.e., $S \cap F=F$) Event space: all outcomes in E consistent with F (i.e., $E \cap F$) Note: we assume that all outcomes are equally likely

$$
\mathbf{P}[E \mid F]=\frac{\# \text { outcomes in } E \cap F}{\# \text { outcomes in } F}=\frac{\frac{\# \text { outcomes in } E \cap F}{\# \text { outcomes in } S}}{\frac{\# \text { outcomes in } F}{\# \text { outcomes in } S}}=\frac{\mathbf{P}[E \cap F]}{\mathbf{P}[F]}
$$

Example

Example

Two dice are rolled yielding value D_{1} and D_{2}. Let E be event that $D_{1}+D_{2}=4$.

1. What is $\mathbf{P}[E]$?
2. Let event F be $D_{1}=2$. What is $\mathbf{P}[E \mid F]$?

Rules revisited

Chain rule
Rearranging the definition of conditional probability gives us:

$$
\mathbf{P}[E F]=\mathbf{P}[E \mid F] \mathbf{P}[F]
$$

Generalisation of the Chain rule:
Multiplication rule

$$
\mathbf{P}\left[E_{1} E_{2} \cdots E_{n}\right]=\mathbf{P}\left[E_{1}\right] \mathbf{P}\left[E_{2} \mid E_{1}\right] \mathbf{P}\left[E_{3} \mid E_{2} E_{1}\right] \cdots \mathbf{P}\left[E_{n} \mid E_{1} \cdots E_{n-1}\right]
$$

Example

Example

An ordinary deck of 52 playing cards is randomly divided into 4 piles of 13 cards each. What is the probability that each pile has exactly 1 ace?

Define:
$E_{1}=a c e$ is in any one pile
$E_{2}=a c e$ and ace \downarrow are in different piles
$E_{3}=$ ace , ace and ace $\$$ are in different piles
$E_{4}=$ all aces are in different piles

$$
\mathbf{P}\left[E_{1} E_{2} E_{3} E_{4}\right]=\mathbf{P}\left[E_{1}\right] \mathbf{P}\left[E_{2} \mid E_{1}\right] \mathbf{P}\left[E_{3} \mid E_{1} E_{2}\right] \mathbf{P}\left[E_{4} \mid E_{1} E_{2} E_{3}\right]
$$

We have $\mathbf{P}\left[E_{1}\right]=1$. For rest we consider complement of next ace being in the same pile and thus have:

Outline

Logistics, motivation, background

Conditional probability

Bayes' Theorem

Independence

Law of total probability

The law of total probability (a.k.a. Partition theorem)
For events E and F where $\mathbf{P}[F]>0$, then for any event E

$$
\mathbf{P}[E]=\mathbf{P}[E F]+\mathbf{P}\left[E F^{c}\right]=\mathbf{P}[E \mid F] \mathbf{P}[F]+\mathbf{P}\left[E \mid F^{c}\right] \mathbf{P}\left[F^{c}\right]
$$

In general, for disjoint events $F_{1}, F_{2}, \ldots F_{n}$ s.t. $F_{1} \cup F_{2} \cup \cdots \cup F_{n}=S$,

$$
\mathbf{P}[E]=\sum_{i=1}^{n} \mathbf{P}\left[E \mid F_{i}\right] \mathbf{P}\left[F_{i}\right]
$$

Intuition:
Want to know probability of E. There are two scenarios, F and F^{c}. If we know these and the probability of E conditioned on each scenario, we can compute the probability of E.

Lightbulb example

Example

There are 3 boxes each containing a different number of light bulbs.
The first box has 10 bulbs of which 4 are dead, the second has 6 bulbs of which 1 is dead, and the third box has 8 bulbs of which 3 are dead. What is the probability of a dead bulb being selected when a bulb is chosen at random from one of the 3 boxes (each box has equal chance of being picked)?

Let event $E=$ "dead bulb is picked", and $F_{1}=$ "bulb is picked from first box", $F_{2}=$ "bulb is picked from second box" and $F_{3}=$ "bulb is picked from third box". We know:

$$
\mathbf{P}\left[E \mid F_{1}\right]=\frac{4}{10}, \mathbf{P}\left[E \mid F_{2}\right]=\frac{1}{6}, \mathbf{P}\left[E \mid F_{3}\right]=\frac{3}{8}
$$

We need to compute $\mathbf{P}[E]$, and we know that $\mathbf{P}\left[F_{i}\right]=\frac{1}{3}$:

Bayes' theorem

How many spam emails contain the word "Dear"?

$$
\mathbf{P}[E \mid F]=\mathbf{P}[\text { "Dear"|spam }]
$$

But how about what is the probability that an email containing "Dear" is spam?

$$
\mathbf{P}[F \mid E]=\mathbf{P}[\text { spam|"Dear" }]
$$

Bayes' theorem

For any events E and F where $\mathbf{P}[E]>0$ and $\mathbf{P}[F]>0$,

$$
\mathbf{P}[F \mid E]=\frac{\mathbf{P}[E \mid F] \mathbf{P}[F]}{\mathbf{P}[E]}
$$

and in expanded form,

$$
\mathbf{P}[F \mid E]=\frac{\mathbf{P}[E \mid F] \mathbf{P}[F]}{\mathbf{P}[E \mid F] \mathbf{P}[F]+\mathbf{P}\left[E \mid F^{c}\right] \mathbf{P}\left[F^{c}\right]}=\frac{\mathbf{P}[E \mid F] \mathbf{P}[F]}{\sum_{i=1}^{n} \mathbf{P}\left[E \mid F_{i}\right] \mathbf{P}\left[F_{i}\right]}
$$

using the Law of Total Probability. Note that all events F_{i} must be mutually exclusive (non-overlapping) and exhaustive (their union is the complete sample space).

Example

Example

60% of all email in 2022 is spam. 20\% of spam contains the word "Dear". 1\% of non-spam contains the word "Dear". What is the probability that an email is spam given it contains the word "Dear"?

Answer

- Let event $E=$ "Dear", event $F=$ spam.

Bayes' terminology

F : hypothesis, E : evidence
$\mathbf{P}[F]$: "prior probability" of hypothesis
$\mathbf{P}[E \mid F]$: probability of evidence given hypothesis (likelihood)
$\mathbf{P}[E]$: calculated by making sure that probabilities of all outcomes sum to 1 (they are "normalised")

Confusion matrix (error matrix)

Used in classification tasks for predicting output error.

		True condition	
	Total population	Condition positive F	Condition negative F^{c}
	Predicted condition positive E	True positive $\mathbf{P}[E \mid F]$	False positive $\mathbf{P}\left[E \mid F^{c}\right]$
	Predicted condition negative E^{c}	False negative $\mathbf{P}\left[E^{c} \mid F\right]$	$\begin{aligned} & \text { True negative } \\ & \mathbf{P}\left[E^{c} \mid F^{c}\right] \end{aligned}$

Medical testing example

Example

- A test is 98% effective at detecting the disease COVID-19 ("true positive").
- The test has a "false positive" rate of 1%.
- 0.5\% of the population has COVID-19.
- What is the likelihood you have COVID-19 if you test positive?
- Let E : test positive, F : actually have COVID-19.
- Need to find $\mathbf{P}[F \mid E]$.

Bayesian intuition

- 33% chance of having COVID-19 after testing positive may seem surprising.
- But the space of facts is now conditioned on a positive test result (people who test positive and have COVID-19 and people who test positive and don't have COVID-19).

	F yes disease	F^{C} no disease
E test+	True positive	False positive
	$\mathbf{P}[E \mid F]=0.98$	$\mathbf{P}\left[E \mid F^{C}\right]=0.01$
E^{c} test-	False negative	True negative
	$\mathbf{P}\left[E^{C} \mid F\right]=0.02$	$\mathbf{P}\left[E^{C} \mid F^{C}\right]=0.99$

- But what is a chance of having COVID-19 if you test and it comes back negative?

$$
\mathbf{P}\left[F \mid E^{c}\right]=\frac{\mathbf{P}\left[E^{c} \mid F\right] \mathbf{P}[F]}{\mathbf{P}\left[E^{c} \mid F\right] \mathbf{P}[F]+\mathbf{P}\left[E^{c} \mid F^{c}\right] \mathbf{P}\left[F^{c}\right]} \approx 0.0001
$$

- We update our beliefs with Bayes' theorem:

I have 0.5% chance of having COVID-19. I take the test:

- Test is positive: I now have 33\% chance of having COVID-19.
- Test is negative: I now have 0.01% chance of having COVID-19.
- So it makes sense to take the test.

Outline

Logistics, motivation, background

Conditional probability

Bayes' Theorem

Independence

Independent events

Independence

Two events E and F are independent if and only if

$$
\mathbf{P}[E F]=\mathbf{P}[E] \mathbf{P}[F]
$$

Otherwise, they are called dependent events.
In general, n events $E_{1}, E_{2}, \ldots, E_{n}$ are mutually independent if for every subset of these events with r elements (where $r \leq n$) it holds that

$$
\mathbf{P}\left[E_{a} E_{b} \cdots E_{r}\right]=\mathbf{P}\left[E_{a}\right] \mathbf{P}\left[E_{b}\right] \cdots \mathbf{P}\left[E_{r}\right]
$$

Therefore for 3 events E, F, G to be independent, we must have

$$
\begin{aligned}
\mathbf{P}[E F G] & =\mathbf{P}[E] \mathbf{P}[F] \mathbf{P}[G] \\
\mathbf{P}[E F] & =\mathbf{P}[E] \mathbf{P}[F] \\
\mathbf{P}[E G] & =\mathbf{P}[E] \mathbf{P}[G] \\
\mathbf{P}[F G] & =\mathbf{P}[F] \mathbf{P}[G]
\end{aligned}
$$

Independence of complement

Notice an equivalent definition for independent events E and $F(\mathbf{P}[F]>0)$

$$
\mathbf{P}[E \mid F]=\mathbf{P}[E]
$$

Proof:

Independence of complement
If events E and F are independent, then E and F^{c} are independent:

$$
\mathbf{P}\left[E F^{c}\right]=\mathbf{P}[E] \mathbf{P}\left[F^{c}\right]
$$

Proof:

Example

Example

Each roll of a die is an independent trial. We have two rolls of D_{1} and D_{2}. Let event $E: D_{1}=1, F: D_{2}=6$ and event $G: D_{1}+D_{2}=7$ (thus $G=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\})$.

1. Are E and F independent?
2. Are E and G independent?
3. Are E, F, G independent?

Conditional independence

Conditional independence

Two events E and F are called conditionally independent given a third event G if

$$
\mathbf{P}[E F \mid G]=\mathbf{P}[E \mid G] \mathbf{P}[F \mid G]
$$

Or equivalently,

$$
\mathbf{P}[E \mid F G]=\mathbf{P}[E \mid G]
$$

Notice that:

- Dependent events can become conditionally independent.
- Independent events can become conditionally dependent.
- Knowing when conditioning breaks or creates independence is a big part of building complex probabilistic models.

Example revisited

Example

Each roll of a die is an independent trial. We have two rolls of D_{1} and D_{2}. Let event $E: D_{1}=1, F: D_{2}=6$ and event $G: D_{1}+D_{2}=7$ (thus $G=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\})$.

1. Are E and F independent?
2. Are E and F independent given G ?

Summary of conditional probability

Conditioning on event G :

Name of rule	Original rule	Conditional rule
1st axiom of probability	$0 \leq \mathbf{P}[E] \leq 1$	$0 \leq \mathbf{P}[E \mid G] \leq 1$
Complement	$\mathbf{P}[E]=1-\mathbf{P}\left[E^{c}\right]$	$\mathbf{P}[E \mid G]=1-\mathbf{P}\left[E^{c} \mid G\right]$
Chain rule	$\mathbf{P}[E F]=\mathbf{P}[E \mid F] \mathbf{P}[F]$	$\mathbf{P}[E F \mid G]=\mathbf{P}[E \mid F G] \mathbf{P}[F \mid G]$
Bayes' theorem	$\mathbf{P}[F \mid E]=\frac{\mathbf{P}[E \mid F] \mathbf{P}[F]}{\mathbf{P}[E]}$	$\mathbf{P}[F \mid E G]=\frac{\mathbf{P}[E \mid F G] \mathbf{P}[F \mid G]}{\mathbf{P}[E \mid G]}$

