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Course logistics

Rough syllabus:
= Introduction to probability: 1 lecture
= Discrete and continuous random variables: 6 lectures
= Moments and limit theorems: 3 lectures
= Applications/statistics: 2 lectures

Recommended reading:
= Ross, S.M. (2014). A First course in probability. Pearson (9th ed.).

= Dekking, F.M., et. al. (2005) A modern introduction to probability and
statistics. Springer.

= Bertsekas, D.P. & Tsitsiklis, J.N. (2008). Introduction to probability. Athena
Scientific.

= Grimmett, G. & Welsh, D. (2014). Probability: an Introduction. Oxford
University Press (2nd ed.).
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Why probability?

= Gives us mathematical tools to deal with uncertain events.

= It is used everywhere, especially in applications of machine learning.

Machine learning: use probability to compute predictions about and from data.

Probability is not statistics:
= Both about random processes.
= Probability: logically self-contained, few rules for computing, one correct answer.
= Statistics: messier, more art, get experimental data and try to draw
probabilistic conclusions, no single correct answer.
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Applications of probability

Ranking Websites

Google

Finance e
§ Computer Science Mathematics )
HeTORCAL ForechsT o _ ;
$380.00 - TTT s~
i p ~-

3400 -
MEDIAN

532000 i
o .69 B Wy ! Biology
. Low N
22600 Sel >
20 163% -

«Last 12 Months Nex 12 Months»

Physics

Data Mining

>
]
~ocoE-cocooo

Matching

0
0
0
0
0
0
1
1
0
1

Medicine
[

c-o-Hcococoo
c4-oc-cococoo

cocoococo-mon~
cocoococoo
coococol-o=o

United Kingdom

cocococo-m-oco

cocooco-ood~

v

é‘nﬁ Intro to Probability

Logistics, motivation, background



Prerequisite background

= Set theory

= Counting: product rule, sum rule, inclusion-exclusion
= Combinatorics: permutations

Probability space: sample space, event space

= Axioms

= Union bound

= Look for revision material of above on the course website:
https://www.cl.cam.ac.uk/teaching/2324/IntroProb/
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Definition

Conditional probability

Consider an experiment with sample space S, and two events E and F.
Then, the (conditional) probability of event E given F has occurred
(denoted P[ E|F ]) with P[ F ] > 0 is defined by

_P[EnF] P[EF]
PLEF)= "prFT = PrF]

Sample space: all possible outcomes consistent with F (i.e., SN F = F)
Event space: all outcomes in E consistent with F (i.e., En F)
Note: we assume that all outcomes are equally likely
. # outcomes in EnF
P[E|F] = #outcomesin ENF _ “Howcomesins  _ P[ENF]
# outcomes in F # outcomes in £ P[F]

# outcomes in S
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Example

Example

Two dice are rolled yielding value D; and D,. Let E be event that
D1 Tr D2 =4

1. WhatisP[ E]?
2. Letevent Fbe D; =2. Whatis P[ E|F ]?

Answer

. 181 =36, E={(1,8),(2,2),(3,1)}, thusP[E] = 2 = L.
2. S= {(21)(2 2),2,3),(2,4),(2,5),(2,6)}, E = {(2,2)}, thus
PLEIF]=

Sl
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Rules revisited

Chain rule

Rearranging the definition of conditional probability gives us:

P[EF]=P[E|F]P[F]

Generalisation of the Chain rule:

Multiplication rule

P[E1E2'“En] = P[E1 ]P[E2|E1 ]P[E3|EzE1 ]~-~P[E,,|E1-~

'En—1 ]
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Example

Example

An ordinary deck of 52 playing cards is randomly divided into 4 piles of
13 cards each. What is the probability that each pile has exactly 1 ace?

Answer

Define:

E;= ace® is in any one pile

E,= ace® and ace# are in different piles

Es= ace®, ace# and ace# are in different piles

E,= all aces are in different piles

PlE\EE3sEs ] =P[E JP[E|E JP[ B|EE P Ey|E BB ]
We have P[ E; ] = 1. For rest we consider complement of next ace
being in the same pile and thus have:
P[E|E]=1-

_ 24
PlE|EE]=1-%

P[E|EEE]=1-2
Thus:
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Law of total probability

The law of total probability (a.k.a. Partition theorem)

For events E and F where P[ F] > 0, then for any event E
P(E]=P[EF]+P[EF°]=P[E|IF]P[F]1+P[E|IF°]P[F°]

In general, for disjoint events Fy, F5,... F,st. FFUFR U« UF, =S,

s

n
-

P[E]=) P[EIFR]P[F]

Intuition:

Want to know probability of E. There are two scenarios, F and F°. If we
know these and the probability of E conditioned on each scenario, we can
compute the probability of E.

Sl
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Lightbulb example

Example

There are 3 boxes each containing a different number of light bulbs.
The first box has 10 bulbs of which 4 are dead, the second has 6 bulbs
of which 1 is dead, and the third box has 8 bulbs of which 3 are dead.
What is the probability of a dead bulb being selected when a bulb is
chosen at random from one of the 3 boxes (each box has equal chance
of being picked)?

Answer

Let event E = "dead bulb is picked", and F; = "bulb is picked from first
box", F, = "bulb is picked from second box" and F5; = "bulb is picked
from third box". We know:

PLEIF]= P[E|F2]_ P[E|F3]_—

107
We need to compute P[ E ], and we know that P[ F;] = 1:

n
3
El=) PLEIFIPLF]= 155+ 53 * 53 = 560 = 0%
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Bayes’ theorem

How many spam emails contain the word "Dear"?
P[ E|F]=P["Dear"|spam ]

But how about what is the probability that an email containing "Dear" is
spam?

\.

~——— Bayes’ theorem

P[ F|E] =P[spam|"Dear"]

For any events E and F where P[E]>0and P[ F] > 0,

and in expanded form,

P[FIE]=

PLEIFIP[F]

PLEIF]P[F]

PLE]

PLEIF]P[F]

PIFIE]= 5

[EIFIP[FI+P[EIFFIP[F°] Y! P[E|IFR]IP[F]

using the Law of Total Probability. Note that all events F; must be
mutually exclusive (non-overlapping) and exhaustive (their union is the
complete sample space) .
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Example

Example

60% of all email in 2022 is spam. 20% of spam contains the word
"Dear". 1% of non-spam contains the word "Dear". What is the
probability that an email is spam given it contains the word "Dear"?

Answer

= Let event E ="Dear", event F = spam.
P[F]=0.6thusP[F°]=0.4.

* P[E|F]=0.2.
* P[E|F°]=0.01.
= Compute P[ F|E].
_ PLEIF]P[F] _
PLFIE]= P[E|IFIP[F]+P[E|FC]P[F°] ~
_ (0.2)(0.6) ~ 0.968

(0.2)(0.6) + (0.01)(0.4)
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Bayes’ terminology

likelihood

PLAE] - P[E|F]P[E-] P[F]

[normalisation constantj

F: hypothesis, E: evidence

P[ F ]: "prior probability" of hypothesis

P[ E|F ]: probability of evidence given hypothesis (likelihood)
P [ E ]: calculated by making sure that probabilities of all
outcomes sum to 1 (they are "normalised")

/i
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Confusion matrix (error matrix)

Used in classification tasks for predicting output error.

True condition

Total population|| Condition positive | Condition negative
F F°

Predicted False positive

35 condition pos- || P[ E|F] P[EIF°]

== itive E

&’S Predicted False negative

© condition neg- || P[ E°|F] P[E°IF°]

ative E°
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Medical testing example

Example

= A test is 98% effective at detecting the disease COVID-19 ("
ll).

= The test has a "false positive" rate of 1%.

= 0.5% of the population has COVID-19.

= What is the likelihood you have COVID-19 if you test positive?

= Let E: test positive, F: actually have COVID-19.
= Need to find P[ F|E].
= We know:

= P[E|F]=0.98

= P[E|F°]=0.01

= P[F]=0.005thus P[ F°] = 0.995

= Thus
PLE|F]P[F]

P[E|F]P[F]+P[E[F°]P[F°] _
B (0.98)(0.005)
~ (0.98)(0.005) + (0.01)(0.995)

P[FIE]=

=~ 0.33

Answer —MM8M——

Eg Intro to Probability Bayes’ Theorem
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Bayesian intuition

33% chance of having COVID-19 after testing positive may seem surprising.

But the space of facts is now conditioned on a positive test result (people who test
positive and have COVID-19 and people who test positive and don’t have
COVID-19).

|| Fyesdisease | F°no disease

E test+ True positive False positive
P[E|F]1=0.98 | P[E|F°]=0.01

E° test- False negative True negative
P[E°|F]=0.02 | P[E°|F°]=0.99

But what is a chance of having COVID-19 if you test and it comes back negative?
PLEC|IF]PLF]

[EC|FIP[F]+P[E°|FCIP[F°]

We update our beliefs with Bayes’ theorem:

| have 0.5% chance of having COVID-19. | take the test:

= Test is positive: | now have 33% chance of having COVID-19.
= Test is negative:

~ 0.0001

P[F|E°]=P

So it makes sense to take the test.

Eg Intro to Probability Bayes’ Theorem
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Independence
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Independent events

Independence

Two events E and F are independent if and only if
P[EF]=P[E]P[F]
Otherwise, they are called dependent events.

In general, nevents E;, E,, ..., E, are mutually independent if for every
subset of these events with r elements (where r < n) it holds that

P[EaEb”'Er] = P[Ea]P[Eb]"'P[Er]

Therefore for 3 events E, F, G to be independent, we must have

P[EFG]=P[E [G]
P[EF]=P[E
P[EG]=P[E

]
]
]
P[FG]=P[F]

PLF]P
PLF]
PLG]
PLG]

Eg Intro to Probability Independence
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Independence of complement

Notice an equivalent definition for independent events E and F (P[ F] > 0)
PLEIF]=P[E]

Proof:

P[EF] P[E]P[F]

PLF]  P[F]

PLEIF]= =P[E]

Independence of complement

If events E and F are independent, then E and F° are independent:

P[EF°]=P[E]P[F°]

Proof:

P[EF°]=P[E]-P[EF]=P[E]-P[E]P[F]=
=P[E](1-P[F])=P[E]P[F°]

Sl
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Example

Example

Each roll of a die is an independent trial. We have two rolls of D; and
D,. LeteventE:D; =1, F: D, =6andevent G: D; + D, = 7 (thus
G=1{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}).

1. Are E and F independent?

2. Are E and G independent?

3. Are E, F, G independent?

Answer

1. Yes,sinceP[E]=1,P[F]=1andP[EF]= L.
2. Yes,sinceP[E]=1,P[G]=1andP[EG] = .
3. No, since P[ EFG] = 31—6 + 15152_3

o
Intro to Probability Independence

25



Conditional independence

Conditional independence

Two events E and F are called conditionally independent given a third
event G if
P[EF|IG]=P[E|G]P[F|G]

Or equivalently,
P[E|IFG]=P[E|G]

Notice that:
= Dependent events can become conditionally independent.
= Independent events can become conditionally dependent.

= Knowing when conditioning breaks or creates independence is a big part
of building complex probabilistic models.

Eg Intro to Probability Independence
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Example revisited

Example

Each roll of a die is an independent trial. We have two rolls of D; and
D,. LeteventE:D; =1, F: D, =6andevent G: D; + D, = 7 (thus
G=1{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}).

1. Are E and F independent?

2. Are E and F independent given G?

Answer

1. Yes,sinceP[E]=1,P[F]=1andP[E ]=l
2. No,since P[ E|G] = = and P[F|IG]=
PLEFIG]=¢ #P[E |G]P[F|G]

1
6’

o
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Summary of conditional probability

Conditioning on event G:

Name of rule Original rule Conditional rule

1st axiom of probabilty 0<P[E]=<1 0<P[E|G] =1

Complement P[E]1=1-P[E°] P[E|G]=1-P[E°|G]

Chain rule P[EF]=P[E|F]P[F] P[EF|IG]=P[E|FG]P[F|G]
, _PLEIF]P[F] _P[EIFG]P[FIG]

Bayes’ theorem P[F|E] = PIE] P[F|IEG] = PIEIG]

Eg Intro to Probability Independence 28
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